Actual source code: xmllogevent.c
petsc-3.11.4 2019-09-28
1: /*************************************************************************************
2: * M A R I T I M E R E S E A R C H I N S T I T U T E N E T H E R L A N D S *
3: *************************************************************************************
4: * authors: Bas van 't Hof, Koos Huijssen, Christiaan M. Klaij *
5: *************************************************************************************
6: * content: Support for nested PetscTimers *
7: *************************************************************************************/
8: #include <petsclog.h>
9: #include <petsc/private/logimpl.h>
10: #include <petsctime.h>
11: #include <petscviewer.h>
12: #include "../src/sys/logging/xmlviewer.h"
14: #if defined(PETSC_USE_LOG)
16: /*
17: * Support for nested PetscTimers
18: *
19: * PetscTimers keep track of a lot of useful information: Wall clock times,
20: * message passing statistics, flop counts. Information about the nested structure
21: * of the timers is lost. Example:
22: *
23: * 7:30 Start: awake
24: * 7:30 Start: morning routine
25: * 7:40 Start: eat
26: * 7:49 Done: eat
27: * 7:43 Done: morning routine
28: * 8:15 Start: work
29: * 12:15 Start: eat
30: * 12:45 Done: eat
31: * 16:00 Done: work
32: * 16:30 Start: evening routine
33: * 18:30 Start: eat
34: * 19:15 Done: eat
35: * 22:00 Done: evening routine
36: * 22:00 Done: awake
37: *
38: * Petsc timers provide the following timer results:
39: *
40: * awake: 1 call 14:30 hours
41: * morning routine: 1 call 0:13 hours
42: * eat: 3 calls 1:24 hours
43: * work: 1 call 7:45 hours
44: * evening routine 1 call 5:30 hours
45: *
46: * Nested timers can be used to get the following table:
47: *
48: * [1 call]: awake 14:30 hours
49: * [1 call]: morning routine 0:13 hours ( 2 % of awake)
50: * [1 call]: eat 0:09 hours (69 % of morning routine)
51: * rest (morning routine) 0:04 hours (31 % of morning routine)
52: * [1 call]: work 7:45 hours (53 % of awake)
53: * [1 call]: eat 0:30 hours ( 6 % of work)
54: * rest (work) 7:15 hours (94 % of work)
55: * [1 call]: evening routine 5:30 hours (38 % of awake)
56: * [1 call]: eat 0:45 hours (14 % of evening routine)
57: * rest (evening routine) 4:45 hours (86 % of morning routine)
58: *
59: * We ignore the concept of 'stages', because these seem to be conflicting notions, or at least,
60: * the nested timers make the stages unnecessary.
61: *
62: */
64: /*
65: * Data structures for keeping track of nested timers:
66: *
67: * nestedEvents: information about the timers that have actually been activated
68: * dftParentActive: if a timer is started now, it is part of (nested inside) the dftParentActive
69: *
70: * The Default-timers are used to time the nested timers. Every nested timer corresponds to
71: * (one or more) default timers, where one of the default timers has the same event-id as the
72: * nested one.
73: *
74: * Because of the risk of confusion between nested timer ids and default timer ids, we
75: * introduce a typedef for nested events (NestedEventId) and use the existing type PetscLogEvent
76: * only for default events. Also, all nested event variables are prepended with 'nst', and
77: * default timers with 'dft'.
78: */
80: #define DFT_ID_AWAKE -1
82: typedef PetscLogEvent NestedEventId;
83: typedef struct {
84: NestedEventId nstEvent; /* event-code for this nested event, argument 'event' in PetscLogEventStartNested */
85: int nParents; /* number of 'dftParents': the default timer which was the dftParentActive when this nested timer was activated */
86: PetscLogEvent *dftParentsSorted; /* The default timers which were the dftParentActive when this nested event was started */
87: PetscLogEvent *dftEvents; /* The default timers which represent the different 'instances' of this nested event */
89: PetscLogEvent *dftParents; /* The default timers which were the dftParentActive when this nested event was started */
90: PetscLogEvent *dftEventsSorted; /* The default timers which represent the different 'instances' of this nested event */
91: } PetscNestedEvent;
93: static PetscLogEvent dftParentActive = DFT_ID_AWAKE;
94: static int nNestedEvents = 0;
95: static int nNestedEventsAllocated = 0;
96: static PetscNestedEvent *nestedEvents = NULL;
97: static PetscLogDouble thresholdTime = 0.01; /* initial value was 0.1 */
99: #define THRESHOLD (thresholdTime/100.0+1e-12)
101: static PetscErrorCode PetscLogEventBeginNested(NestedEventId nstEvent, int t, PetscObject o1, PetscObject o2, PetscObject o3, PetscObject o4);
102: static PetscErrorCode PetscLogEventEndNested(NestedEventId nstEvent, int t, PetscObject o1, PetscObject o2, PetscObject o3, PetscObject o4);
103: PETSC_INTERN PetscErrorCode PetscLogView_Nested(PetscViewer);
106: /*@C
107: PetscLogNestedBegin - Turns on nested logging of objects and events. This logs flop
108: rates and object creation and should not slow programs down too much.
110: Logically Collective over PETSC_COMM_WORLD
112: Options Database Keys:
113: . -log_view :filename.xml:ascii_xml - Prints an XML summary of flop and timing information to the file
115: Usage:
116: .vb
117: PetscInitialize(...);
118: PetscLogNestedBegin();
119: ... code ...
120: PetscLogView(viewer);
121: PetscFinalize();
122: .ve
124: Level: advanced
126: .keywords: log, begin
127: .seealso: PetscLogDump(), PetscLogAllBegin(), PetscLogView(), PetscLogTraceBegin(), PetscLogDefaultBegin()
128: @*/
129: PetscErrorCode PetscLogNestedBegin(void)
130: {
134: if (nestedEvents) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_COR,"nestedEvents already allocated");
136: nNestedEventsAllocated = 10;
137: PetscMalloc1(nNestedEventsAllocated,&nestedEvents);
138: dftParentActive = DFT_ID_AWAKE;
139: nNestedEvents =1;
141: /* 'Awake' is nested event 0. It has no parents */
142: nestedEvents[0].nstEvent = 0;
143: nestedEvents[0].nParents = 0;
144: nestedEvents[0].dftParentsSorted = NULL;
145: nestedEvents[0].dftEvents = NULL;
146: nestedEvents[0].dftParents = NULL;
147: nestedEvents[0].dftEventsSorted = NULL;
149: PetscLogSet(PetscLogEventBeginNested,PetscLogEventEndNested);
150: return(0);
151: }
153: /* Delete the data structures for the nested timers */
154: PetscErrorCode PetscLogNestedEnd(void)
155: {
157: int i;
160: if (!nestedEvents) return(0);
161: for (i=0; i<nNestedEvents; i++) {
162: PetscFree4(nestedEvents[i].dftParentsSorted,nestedEvents[i].dftEventsSorted,nestedEvents[i].dftParents,nestedEvents[i].dftEvents);
163: }
164: PetscFree(nestedEvents);
165: nestedEvents = NULL;
166: nNestedEvents = 0;
167: nNestedEventsAllocated = 0;
168: return(0);
169: }
172: /*
173: UTILITIES: FIND STUFF IN SORTED ARRAYS
175: dftIndex - index to be found
176: dftArray - sorted array of PetscLogEvent-ids
177: narray - dimension of dftArray
178: entry - entry in the array where dftIndex may be found;
180: if dftArray[entry] != dftIndex, then dftIndex is not part of dftArray
181: In that case, the dftIndex can be inserted at this entry.
182: */
183: static PetscErrorCode PetscLogEventFindDefaultTimer(PetscLogEvent dftIndex,const PetscLogEvent *dftArray,int narray,int *entry)
184: {
186: if (narray==0 || dftIndex <= dftArray[0]) {
187: *entry = 0;
188: } else if (dftIndex > dftArray[narray-1]) {
189: *entry = narray;
190: } else {
191: int ihigh = narray-1, ilow=0;
192: while (ihigh>ilow) {
193: const int imiddle = (ihigh+ilow)/2;
194: if (dftArray[imiddle] > dftIndex) {
195: ihigh = imiddle;
196: } else if (dftArray[imiddle]<dftIndex) {
197: ilow = imiddle+1;
198: } else {
199: ihigh = imiddle;
200: ilow = imiddle;
201: }
202: }
203: *entry = ihigh;
204: }
205: return(0);
206: }
208: /*
209: Utility: find the nested event with given identification
211: nstEvent - Nested event to be found
212: entry - entry in the nestedEvents where nstEvent may be found;
214: if nestedEvents[entry].nstEvent != nstEvent, then index is not part of iarray
215: */
216: static PetscErrorCode PetscLogEventFindNestedTimer(NestedEventId nstEvent,int *entry)
217: {
219: if (nNestedEvents==0 || nstEvent <= nestedEvents[0].nstEvent) {
220: *entry = 0;
221: } else if (nstEvent > nestedEvents[nNestedEvents-1].nstEvent) {
222: *entry = nNestedEvents;
223: } else {
224: int ihigh = nNestedEvents-1, ilow = 0;
225: while (ihigh>ilow) {
226: const int imiddle = (ihigh+ilow)/2;
227: if (nestedEvents[imiddle].nstEvent > nstEvent) {
228: ihigh = imiddle;
229: } else if (nestedEvents[imiddle].nstEvent<nstEvent) {
230: ilow = imiddle+1;
231: } else {
232: ihigh = imiddle;
233: ilow = imiddle;
234: }
235: }
236: *entry = ihigh;
237: }
238: return(0);
239: }
241: /*
242: Nested logging is not prepared yet to support user-defined logging stages, so for now we force logging on the main stage.
243: Using PetscLogStage{Push/Pop}() would be more appropriate, but these two calls do extra bookkeeping work we don't need.
244: */
246: #define MAINSTAGE 0
248: static PetscLogStage savedStage = 0;
250: PETSC_STATIC_INLINE PetscErrorCode PetscLogStageOverride(void)
251: {
252: PetscStageLog stageLog = petsc_stageLog;
256: if (stageLog->curStage == MAINSTAGE) return(0);
257: savedStage = stageLog->curStage;
258: stageLog->curStage = MAINSTAGE;
259: PetscIntStackPush(stageLog->stack, MAINSTAGE);
260: return(0);
261: }
263: PETSC_STATIC_INLINE PetscErrorCode PetscLogStageRestore(void)
264: {
265: PetscStageLog stageLog = petsc_stageLog;
269: if (savedStage == MAINSTAGE) return(0);
270: stageLog->curStage = savedStage;
271: PetscIntStackPop(stageLog->stack, &savedStage);
272: return(0);
273: }
275: /******************************************************************************************/
276: /* Start a nested event */
277: static PetscErrorCode PetscLogEventBeginNested(NestedEventId nstEvent, int t, PetscObject o1, PetscObject o2, PetscObject o3, PetscObject o4)
278: {
279: PetscErrorCode ierr;
280: int entry, pentry, tentry,i;
281: PetscLogEvent dftEvent;
284: PetscLogEventFindNestedTimer(nstEvent, &entry);
285: if (entry>=nNestedEvents || nestedEvents[entry].nstEvent != nstEvent) {
286: /* Nested event doesn't exist yet: create it */
288: if (nNestedEvents==nNestedEventsAllocated) {
289: /* Enlarge and re-allocate nestedEvents if needed */
290: PetscNestedEvent *tmp = nestedEvents;
291: PetscMalloc1(2*nNestedEvents,&nestedEvents);
292: nNestedEventsAllocated*=2;
293: PetscMemcpy(nestedEvents, tmp, nNestedEvents*sizeof(PetscNestedEvent));
294: PetscFree(tmp);
295: }
297: /* Clear space in nestedEvents for new nested event */
298: nNestedEvents++;
299: for (i = nNestedEvents-1; i>entry; i--) {
300: nestedEvents[i] = nestedEvents[i-1];
301: }
303: /* Create event in nestedEvents */
304: nestedEvents[entry].nstEvent = nstEvent;
305: nestedEvents[entry].nParents=1;
306: PetscMalloc4(1,&nestedEvents[entry].dftParentsSorted,1,&nestedEvents[entry].dftEventsSorted,1,&nestedEvents[entry].dftParents,1,&nestedEvents[entry].dftEvents);
308: /* Fill in new event */
309: pentry = 0;
310: dftEvent = (PetscLogEvent) nstEvent;
312: nestedEvents[entry].nstEvent = nstEvent;
313: nestedEvents[entry].dftParents[pentry] = dftParentActive;
314: nestedEvents[entry].dftEvents[pentry] = dftEvent;
315: nestedEvents[entry].dftParentsSorted[pentry] = dftParentActive;
316: nestedEvents[entry].dftEventsSorted[pentry] = dftEvent;
318: } else {
319: /* Nested event exists: find current dftParentActive among parents */
320: PetscLogEvent *dftParentsSorted = nestedEvents[entry].dftParentsSorted;
321: PetscLogEvent *dftEvents = nestedEvents[entry].dftEvents;
322: int nParents = nestedEvents[entry].nParents;
324: PetscLogEventFindDefaultTimer( dftParentActive, dftParentsSorted, nParents, &pentry);
326: if (pentry>=nParents || dftParentActive != dftParentsSorted[pentry]) {
327: /* dftParentActive not in the list: add it to the list */
328: int i;
329: PetscLogEvent *dftParents = nestedEvents[entry].dftParents;
330: PetscLogEvent *dftEventsSorted = nestedEvents[entry].dftEventsSorted;
331: char name[100];
333: /* Register a new default timer */
334: sprintf(name, "%d -> %d", (int) dftParentActive, (int) nstEvent);
335: PetscLogEventRegister(name, 0, &dftEvent);
336: PetscLogEventFindDefaultTimer( dftEvent, dftEventsSorted, nParents, &tentry);
338: /* Reallocate parents and dftEvents to make space for new parent */
339: PetscMalloc4(1+nParents,&nestedEvents[entry].dftParentsSorted,1+nParents,&nestedEvents[entry].dftEventsSorted,1+nParents,&nestedEvents[entry].dftParents,1+nParents,&nestedEvents[entry].dftEvents);
340: PetscMemcpy(nestedEvents[entry].dftParentsSorted, dftParentsSorted, nParents*sizeof(PetscLogEvent));
341: PetscMemcpy(nestedEvents[entry].dftEventsSorted, dftEventsSorted, nParents*sizeof(PetscLogEvent));
342: PetscMemcpy(nestedEvents[entry].dftParents, dftParents, nParents*sizeof(PetscLogEvent));
343: PetscMemcpy(nestedEvents[entry].dftEvents, dftEvents, nParents*sizeof(PetscLogEvent));
344: PetscFree4(dftParentsSorted,dftEventsSorted,dftParents,dftEvents);
346: dftParents = nestedEvents[entry].dftParents;
347: dftEvents = nestedEvents[entry].dftEvents;
348: dftParentsSorted = nestedEvents[entry].dftParentsSorted;
349: dftEventsSorted = nestedEvents[entry].dftEventsSorted;
351: nestedEvents[entry].nParents++;
352: nParents++;
354: for (i = nParents-1; i>pentry; i--) {
355: dftParentsSorted[i] = dftParentsSorted[i-1];
356: dftEvents[i] = dftEvents[i-1];
357: }
358: for (i = nParents-1; i>tentry; i--) {
359: dftParents[i] = dftParents[i-1];
360: dftEventsSorted[i] = dftEventsSorted[i-1];
361: }
363: /* Fill in the new default timer */
364: dftParentsSorted[pentry] = dftParentActive;
365: dftEvents[pentry] = dftEvent;
366: dftParents[tentry] = dftParentActive;
367: dftEventsSorted[tentry] = dftEvent;
369: } else {
370: /* dftParentActive was found: find the corresponding default 'dftEvent'-timer */
371: dftEvent = nestedEvents[entry].dftEvents[pentry];
372: }
373: }
375: /* Start the default 'dftEvent'-timer and update the dftParentActive */
376: PetscLogStageOverride();
377: PetscLogEventBeginDefault(dftEvent,t,o1,o2,o3,o4);
378: PetscLogStageRestore();
379: dftParentActive = dftEvent;
380: return(0);
381: }
383: /* End a nested event */
384: static PetscErrorCode PetscLogEventEndNested(NestedEventId nstEvent, int t, PetscObject o1, PetscObject o2, PetscObject o3, PetscObject o4)
385: {
386: PetscErrorCode ierr;
387: int entry, pentry, nParents;
388: PetscLogEvent *dftEventsSorted;
391: /* Find the nested event */
392: PetscLogEventFindNestedTimer(nstEvent, &entry);
393: if (entry>=nNestedEvents) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE, "Logging event %d larger than number of events %d",entry,nNestedEvents);
394: if (nestedEvents[entry].nstEvent != nstEvent) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE, "Logging event %d had unbalanced begin/end pairs does not match %d",entry,nstEvent);
395: dftEventsSorted = nestedEvents[entry].dftEventsSorted;
396: nParents = nestedEvents[entry].nParents;
398: /* Find the current default timer among the 'dftEvents' of this event */
399: PetscLogEventFindDefaultTimer( dftParentActive, dftEventsSorted, nParents, &pentry);
401: if (pentry>=nParents) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE, "Entry %d is larger than number of parents %d",pentry,nParents);
402: if (dftEventsSorted[pentry] != dftParentActive) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE, "Active parent is %d, but we seem to be closing %d",dftParentActive,dftEventsSorted[pentry]);
404: /* Stop the default timer and update the dftParentActive */
405: PetscLogStageOverride();
406: PetscLogEventEndDefault(dftParentActive,t,o1,o2,o3,o4);
407: PetscLogStageRestore();
408: dftParentActive = nestedEvents[entry].dftParents[pentry];
409: return(0);
410: }
412: /*@
413: PetscLogSetThreshold - Set the threshold time for logging the events; this is a percentage out of 100, so 1. means any event
414: that takes 1 or more percent of the time.
416: Logically Collective over PETSC_COMM_WORLD
418: Input Parameter:
419: . newThresh - the threshold to use
421: Output Parameter:
422: . oldThresh - the previously set threshold value
424: Options Database Keys:
425: . -log_view :filename.xml:ascii_xml - Prints an XML summary of flop and timing information to the file
427: Usage:
428: .vb
429: PetscInitialize(...);
430: PetscLogNestedBegin();
431: PetscLogSetThreshold(0.1,&oldthresh);
432: ... code ...
433: PetscLogView(viewer);
434: PetscFinalize();
435: .ve
437: Level: advanced
439: .keywords: log, begin
440: .seealso: PetscLogDump(), PetscLogAllBegin(), PetscLogView(), PetscLogTraceBegin(), PetscLogDefaultBegin(),
441: PetscLogNestedBegin()
442: @*/
443: PetscErrorCode PetscLogSetThreshold(PetscLogDouble newThresh, PetscLogDouble *oldThresh)
444: {
446: if (oldThresh) *oldThresh = thresholdTime;
447: if (newThresh == PETSC_DECIDE) newThresh = 0.01;
448: if (newThresh == PETSC_DEFAULT) newThresh = 0.01;
449: thresholdTime = PetscMax(newThresh, 0.0);
450: return(0);
451: }
453: static PetscErrorCode PetscPrintExeSpecs(PetscViewer viewer)
454: {
455: PetscErrorCode ierr;
456: char arch[128],hostname[128],username[128],pname[PETSC_MAX_PATH_LEN],date[128];
457: char version[256], buildoptions[128] = "";
458: PetscMPIInt size;
459: size_t len;
462: MPI_Comm_size(PetscObjectComm((PetscObject)viewer),&size);
463: PetscGetArchType(arch,sizeof(arch));
464: PetscGetHostName(hostname,sizeof(hostname));
465: PetscGetUserName(username,sizeof(username));
466: PetscGetProgramName(pname,sizeof(pname));
467: PetscGetDate(date,sizeof(date));
468: PetscGetVersion(version,sizeof(version));
470: PetscViewerXMLStartSection(viewer, "runspecification", "Run Specification");
471: PetscViewerXMLPutString( viewer, "executable" , "Executable" , pname );
472: PetscViewerXMLPutString( viewer, "architecture", "Architecture" , arch );
473: PetscViewerXMLPutString( viewer, "hostname" , "Host" , hostname);
474: PetscViewerXMLPutInt( viewer, "nprocesses" , "Number of processes", size );
475: PetscViewerXMLPutString( viewer, "user" , "Run by user" , username);
476: PetscViewerXMLPutString( viewer, "date" , "Started at" , date);
477: PetscViewerXMLPutString( viewer, "petscrelease", "Petsc Release", version);
479: #if defined(PETSC_USE_DEBUG)
480: PetscStrlcat(buildoptions, "Debug ", sizeof(buildoptions));
481: #endif
482: #if defined(PETSC_USE_COMPLEX)
483: PetscStrlcat(buildoptions, "Complex ", sizeof(buildoptions));
484: #endif
485: #if defined(PETSC_USE_REAL_SINGLE)
486: PetscStrlcat(buildoptions, "Single ", sizeof(buildoptions));
487: #elif defined(PETSC_USE_REAL___FLOAT128)
488: PetscStrlcat(buildoptions, "Quadruple ", sizeof(buildoptions));
489: #elif defined(PETSC_USE_REAL___FP16)
490: PetscStrlcat(buildoptions, "Half ", sizeof(buildoptions));
491: #endif
492: #if defined(PETSC_USE_64BIT_INDICES)
493: PetscStrlcat(buildoptions, "Int64 ", sizeof(buildoptions));
494: #endif
495: #if defined(__cplusplus)
496: PetscStrlcat(buildoptions, "C++ ", sizeof(buildoptions));
497: #endif
498: PetscStrlen(buildoptions,&len);
499: if (len) {
500: PetscViewerXMLPutString(viewer, "petscbuildoptions", "Petsc build options", buildoptions);
501: }
502: PetscViewerXMLEndSection(viewer, "runspecification");
503: return(0);
504: }
506: /* Print the global performance: max, max/min, average and total of
507: * time, objects, flops, flops/sec, memory, MPI messages, MPI message lengths, MPI reductions.
508: */
509: static PetscErrorCode PetscPrintXMLGlobalPerformanceElement(PetscViewer viewer, const char *name, const char *desc, PetscLogDouble local_val, const PetscBool print_average, const PetscBool print_total)
510: {
511: PetscErrorCode ierr;
512: PetscLogDouble min, tot, ratio, avg;
513: MPI_Comm comm;
514: PetscMPIInt rank, size;
515: PetscLogDouble valrank[2], max[2];
518: PetscObjectGetComm((PetscObject)viewer,&comm);
519: MPI_Comm_size(PetscObjectComm((PetscObject)viewer),&size);
520: MPI_Comm_rank(comm, &rank);
522: valrank[0] = local_val;
523: valrank[1] = (PetscLogDouble) rank;
524: MPIU_Allreduce(&local_val, &min, 1, MPIU_PETSCLOGDOUBLE, MPI_MIN, comm);
525: MPIU_Allreduce(valrank, &max, 1, MPIU_2PETSCLOGDOUBLE, MPI_MAXLOC, comm);
526: MPIU_Allreduce(&local_val, &tot, 1, MPIU_PETSCLOGDOUBLE, MPI_SUM, comm);
527: avg = tot/((PetscLogDouble) size);
528: if (min != 0.0) ratio = max[0]/min;
529: else ratio = 0.0;
531: PetscViewerXMLStartSection(viewer, name, desc);
532: PetscViewerXMLPutDouble(viewer, "max", NULL, max[0], "%e");
533: PetscViewerXMLPutInt( viewer, "maxrank" , "rank at which max was found" , (PetscMPIInt) max[1] );
534: PetscViewerXMLPutDouble(viewer, "ratio", NULL, ratio, "%f");
535: if (print_average) {
536: PetscViewerXMLPutDouble(viewer, "average", NULL, avg, "%e");
537: }
538: if (print_total) {
539: PetscViewerXMLPutDouble(viewer, "total", NULL, tot, "%e");
540: }
541: PetscViewerXMLEndSection(viewer, name);
542: return(0);
543: }
545: /* Print the global performance: max, max/min, average and total of
546: * time, objects, flops, flops/sec, memory, MPI messages, MPI message lengths, MPI reductions.
547: */
548: static PetscErrorCode PetscPrintGlobalPerformance(PetscViewer viewer, PetscLogDouble locTotalTime)
549: {
550: PetscErrorCode ierr;
551: PetscLogDouble flops, mem, red, mess;
552: const PetscBool print_total_yes = PETSC_TRUE,
553: print_total_no = PETSC_FALSE,
554: print_average_no = PETSC_FALSE,
555: print_average_yes = PETSC_TRUE;
558: /* Must preserve reduction count before we go on */
559: red = petsc_allreduce_ct + petsc_gather_ct + petsc_scatter_ct;
561: /* Calculate summary information */
562: PetscViewerXMLStartSection(viewer, "globalperformance", "Global performance");
564: /* Time */
565: PetscPrintXMLGlobalPerformanceElement(viewer, "time", "Time (sec)", locTotalTime, print_average_yes, print_total_no);
567: /* Objects */
568: PetscPrintXMLGlobalPerformanceElement(viewer, "objects", "Objects", (PetscLogDouble) petsc_numObjects, print_average_yes, print_total_no);
570: /* Flop */
571: PetscPrintXMLGlobalPerformanceElement(viewer, "mflop", "MFlop", petsc_TotalFlops/1.0E6, print_average_yes, print_total_yes);
573: /* Flop/sec -- Must talk to Barry here */
574: if (locTotalTime != 0.0) flops = petsc_TotalFlops/locTotalTime;
575: else flops = 0.0;
576: PetscPrintXMLGlobalPerformanceElement(viewer, "mflops", "MFlop/sec", flops/1.0E6, print_average_yes, print_total_yes);
578: /* Memory */
579: PetscMallocGetMaximumUsage(&mem);
580: if (mem > 0.0) {
581: PetscPrintXMLGlobalPerformanceElement(viewer, "memory", "Memory (MiB)", mem/1024.0/1024.0, print_average_yes, print_total_yes);
582: }
583: /* Messages */
584: mess = 0.5*(petsc_irecv_ct + petsc_isend_ct + petsc_recv_ct + petsc_send_ct);
585: PetscPrintXMLGlobalPerformanceElement(viewer, "messagetransfers", "MPI Message Transfers", mess, print_average_yes, print_total_yes);
587: /* Message Volume */
588: mess = 0.5*(petsc_irecv_len + petsc_isend_len + petsc_recv_len + petsc_send_len);
589: PetscPrintXMLGlobalPerformanceElement(viewer, "messagevolume", "MPI Message Volume (MiB)", mess/1024.0/1024.0, print_average_yes, print_total_yes);
591: /* Reductions */
592: PetscPrintXMLGlobalPerformanceElement(viewer, "reductions", "MPI Reductions", red , print_average_no, print_total_no);
593: PetscViewerXMLEndSection(viewer, "globalperformance");
594: return(0);
595: }
597: typedef struct {
598: PetscLogEvent dftEvent;
599: NestedEventId nstEvent;
600: PetscLogEvent dftParent;
601: NestedEventId nstParent;
602: PetscBool own;
603: int depth;
604: NestedEventId* nstPath;
605: } PetscNestedEventTree;
607: /* Compare timers to sort them in the tree */
608: static int compareTreeItems(const void *item1_, const void *item2_)
609: {
610: int i;
611: PetscNestedEventTree *item1 = (PetscNestedEventTree *) item1_;
612: PetscNestedEventTree *item2 = (PetscNestedEventTree *) item2_;
614: for (i=0; i<PetscMin(item1->depth,item2->depth); i++) {
615: if (item1->nstPath[i]<item2->nstPath[i]) return -1;
616: if (item1->nstPath[i]>item2->nstPath[i]) return +1;
617: }
618: if (item1->depth < item2->depth) return -1;
619: if (item1->depth > item2->depth) return 1;
620: return 0;
621: }
622: /*
623: * Do MPI communication to get the complete, nested calling tree for all processes: there may be
624: * calls that happen in some processes, but not in others.
625: *
626: * The output, tree[nTimers] is an array of PetscNestedEventTree-structs.
627: * The tree is sorted so that the timers can be printed in the order of appearance.
628: *
629: * For tree-items which appear in the trees of multiple processes (which will be most items), the
630: * following rule is followed:
631: * + if information from my own process is available, then that is the information stored in tree.
632: * otherwise it is some other process's information.
633: */
634: static PetscErrorCode PetscLogNestedTreeCreate(PetscViewer viewer, PetscNestedEventTree **p_tree, int *p_nTimers)
635: {
636: PetscNestedEventTree *tree = NULL, *newTree;
637: int *treeIndices;
638: int nTimers, totalNTimers, i, j, iTimer0, maxDefaultTimer;
639: int yesno;
640: PetscBool done;
641: PetscErrorCode ierr;
642: int maxdepth;
643: int depth;
644: int illegalEvent;
645: int iextra;
646: NestedEventId *nstPath, *nstMyPath;
647: MPI_Comm comm;
650: PetscObjectGetComm((PetscObject)viewer,&comm);
652: /* Calculate memory needed to store everybody's information and allocate tree */
653: nTimers = 0;
654: for (i=0; i<nNestedEvents; i++) nTimers += nestedEvents[i].nParents;
656: PetscMalloc1(nTimers,&tree);
658: /* Fill tree with readily available information */
659: iTimer0 = 0;
660: maxDefaultTimer =0;
661: for (i=0; i<nNestedEvents; i++) {
662: int nParents = nestedEvents[i].nParents;
663: NestedEventId nstEvent = nestedEvents[i].nstEvent;
664: PetscLogEvent *dftParentsSorted = nestedEvents[i].dftParentsSorted;
665: PetscLogEvent *dftEvents = nestedEvents[i].dftEvents;
666: for (j=0; j<nParents; j++) {
667: maxDefaultTimer = PetscMax(dftEvents[j],maxDefaultTimer);
669: tree[iTimer0+j].dftEvent = dftEvents[j];
670: tree[iTimer0+j].nstEvent = nstEvent;
671: tree[iTimer0+j].dftParent = dftParentsSorted[j];
672: tree[iTimer0+j].own = PETSC_TRUE;
674: tree[iTimer0+j].nstParent = 0;
675: tree[iTimer0+j].depth = 0;
676: tree[iTimer0+j].nstPath = NULL;
677: }
678: iTimer0 += nParents;
679: }
681: /* Calculate the global maximum for the default timer index, so array treeIndices can
682: * be allocated only once */
683: MPIU_Allreduce(&maxDefaultTimer, &j, 1, MPI_INT, MPI_MAX, comm);
684: maxDefaultTimer = j;
686: /* Find default timer's place in the tree */
687: PetscCalloc1(maxDefaultTimer+1,&treeIndices);
688: treeIndices[0] = 0;
689: for (i=0; i<nTimers; i++) {
690: PetscLogEvent dftEvent = tree[i].dftEvent;
691: treeIndices[dftEvent] = i;
692: }
694: /* Find each dftParent's nested identification */
695: for (i=0; i<nTimers; i++) {
696: PetscLogEvent dftParent = tree[i].dftParent;
697: if (dftParent!= DFT_ID_AWAKE) {
698: int j = treeIndices[dftParent];
699: tree[i].nstParent = tree[j].nstEvent;
700: }
701: }
703: /* Find depths for each timer path */
704: done = PETSC_FALSE;
705: maxdepth = 0;
706: while (!done) {
707: done = PETSC_TRUE;
708: for (i=0; i<nTimers; i++) {
709: if (tree[i].dftParent == DFT_ID_AWAKE) {
710: tree[i].depth = 1;
711: maxdepth = PetscMax(1,maxdepth);
712: } else {
713: int j = treeIndices[tree[i].dftParent];
714: depth = 1+tree[j].depth;
715: if (depth>tree[i].depth) {
716: done = PETSC_FALSE;
717: tree[i].depth = depth;
718: maxdepth = PetscMax(depth,maxdepth);
719: }
720: }
721: }
722: }
724: /* Allocate the paths in the entire tree */
725: for (i=0; i<nTimers; i++) {
726: depth = tree[i].depth;
727: PetscCalloc1(depth,&tree[i].nstPath);
728: }
730: /* Calculate the paths for all timers */
731: for (depth=1; depth<=maxdepth; depth++) {
732: for (i=0; i<nTimers; i++) {
733: if (tree[i].depth==depth) {
734: if (depth>1) {
735: int j = treeIndices[tree[i].dftParent];
736: PetscMemcpy(tree[i].nstPath,tree[j].nstPath,(depth-1)*sizeof(NestedEventId));
737: }
738: tree[i].nstPath[depth-1] = tree[i].nstEvent;
739: }
740: }
741: }
742: PetscFree(treeIndices);
744: /* Sort the tree on basis of the paths */
745: qsort(tree, nTimers, sizeof(PetscNestedEventTree), compareTreeItems);
747: /* Allocate an array to store paths */
748: depth = maxdepth;
749: MPIU_Allreduce(&depth, &maxdepth, 1, MPI_INT, MPI_MAX, comm);
750: PetscMalloc1(maxdepth+1, &nstPath);
751: PetscMalloc1(maxdepth+1, &nstMyPath);
753: /* Find an illegal nested event index (1+largest nested event index) */
754: illegalEvent = 1+nestedEvents[nNestedEvents-1].nstEvent;
755: i = illegalEvent;
756: MPIU_Allreduce(&i, &illegalEvent, 1, MPI_INT, MPI_MAX, comm);
758: /* First, detect timers which are not available in this process, but are available in others
759: * Allocate a new tree, that can contain all timers
760: * Then, fill the new tree with all (own and not-own) timers */
761: newTree= NULL;
762: for (yesno=0; yesno<=1; yesno++) {
763: depth = 1;
764: i = 0;
765: iextra = 0;
766: while (depth>0) {
767: int j;
768: PetscBool same;
770: /* Construct the next path in this process's tree:
771: * if necessary, supplement with invalid path entries */
772: depth++;
773: if (depth > maxdepth + 1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Depth %d > maxdepth+1 %d",depth,maxdepth+1);
774: if (i<nTimers) {
775: for (j=0; j<tree[i].depth; j++) nstMyPath[j] = tree[i].nstPath[j];
776: for (j=tree[i].depth; j<depth; j++) nstMyPath[j] = illegalEvent;
777: } else {
778: for (j=0; j<depth; j++) nstMyPath[j] = illegalEvent;
779: }
781: /* Communicate with other processes to obtain the next path and its depth */
782: MPIU_Allreduce(nstMyPath, nstPath, depth, MPI_INT, MPI_MIN, comm);
783: for (j=depth-1; (int) j>=0; j--) {
784: if (nstPath[j]==illegalEvent) depth=j;
785: }
787: if (depth>0) {
788: /* If the path exists */
790: /* check whether the next path is the same as this process's next path */
791: same = PETSC_TRUE;
792: for (j=0; same && j<depth; j++) { same = (same && nstMyPath[j] == nstPath[j]) ? PETSC_TRUE : PETSC_FALSE;}
794: if (same) {
795: /* Register 'own path' */
796: if (newTree) newTree[i+iextra] = tree[i];
797: i++;
798: } else {
799: /* Register 'not an own path' */
800: if (newTree) {
801: newTree[i+iextra].nstEvent = nstPath[depth-1];
802: newTree[i+iextra].own = PETSC_FALSE;
803: newTree[i+iextra].depth = depth;
804: PetscMalloc1(depth, &newTree[i+iextra].nstPath);
805: for (j=0; j<depth; j++) {newTree[i+iextra].nstPath[j] = nstPath[j];}
807: newTree[i+iextra].dftEvent = 0;
808: newTree[i+iextra].dftParent = 0;
809: newTree[i+iextra].nstParent = 0;
810: }
811: iextra++;
812: }
814: }
815: }
817: /* Determine the size of the complete tree (with own and not-own timers) and allocate the new tree */
818: totalNTimers = nTimers + iextra;
819: if (!newTree) {
820: PetscMalloc1(totalNTimers, &newTree);
821: }
822: }
823: PetscFree(nstPath);
824: PetscFree(nstMyPath);
825: PetscFree(tree);
826: tree = newTree;
827: newTree = NULL;
829: /* Set return value and return */
830: *p_tree = tree;
831: *p_nTimers = totalNTimers;
832: return(0);
833: }
835: /*
836: * Delete the nested timer tree
837: */
838: static PetscErrorCode PetscLogNestedTreeDestroy(PetscNestedEventTree *tree, int nTimers)
839: {
840: int i;
841: PetscErrorCode ierr;
844: for (i=0; i<nTimers; i++) {
845: PetscFree(tree[i].nstPath);
846: }
847: PetscFree(tree);
848: return(0);
849: }
851: /* Print the global performance: max, max/min, average and total of
852: * time, objects, flops, flops/sec, memory, MPI messages, MPI message lengths, MPI reductions.
853: */
854: static PetscErrorCode PetscPrintXMLNestedLinePerfResults(PetscViewer viewer,const char *name,PetscLogDouble value,PetscLogDouble minthreshold,PetscLogDouble maxthreshold,PetscLogDouble minmaxtreshold)
855: {
856: MPI_Comm comm; /* MPI communicator in reduction */
857: PetscMPIInt rank; /* rank of this process */
858: PetscLogDouble val_in[2], max[2], min[2];
859: PetscLogDouble minvalue, maxvalue, tot;
860: PetscMPIInt size;
861: PetscMPIInt minLoc, maxLoc;
865: PetscObjectGetComm((PetscObject)viewer,&comm);
866: MPI_Comm_size(comm, &size);
867: MPI_Comm_rank(comm, &rank);
868: val_in[0] = value;
869: val_in[1] = (PetscLogDouble) rank;
870: MPIU_Allreduce(val_in, max, 1, MPIU_2PETSCLOGDOUBLE, MPI_MAXLOC, comm);
871: MPIU_Allreduce(val_in, min, 1, MPIU_2PETSCLOGDOUBLE, MPI_MINLOC, comm);
872: maxvalue = max[0];
873: maxLoc = (PetscMPIInt) max[1];
874: minvalue = min[0];
875: minLoc = (PetscMPIInt) min[1];
876: MPIU_Allreduce(&value, &tot, 1, MPIU_PETSCLOGDOUBLE, MPI_SUM, comm);
878: if (maxvalue<maxthreshold && minvalue>=minthreshold) {
879: /* One call per parent or NO value: don't print */
880: } else {
881: PetscViewerXMLStartSection(viewer, name, NULL);
882: if (maxvalue>minvalue*minmaxtreshold) {
883: PetscViewerXMLPutDouble(viewer, "avgvalue", NULL, tot/size, "%g");
884: PetscViewerXMLPutDouble(viewer, "minvalue", NULL, minvalue, "%g");
885: PetscViewerXMLPutDouble(viewer, "maxvalue", NULL, maxvalue, "%g");
886: PetscViewerXMLPutInt( viewer, "minloc" , NULL, minLoc);
887: PetscViewerXMLPutInt( viewer, "maxloc" , NULL, maxLoc);
888: } else {
889: PetscViewerXMLPutDouble(viewer, "value", NULL, tot/size, "%g");
890: }
891: PetscViewerXMLEndSection(viewer, name);
892: }
893: return(0);
894: }
896: #define N_COMM 8
897: static PetscErrorCode PetscLogNestedTreePrintLine(PetscViewer viewer,PetscEventPerfInfo perfInfo,PetscLogDouble countsPerCall,int parentCount,int depth,const char *name,PetscLogDouble totalTime,PetscBool *isPrinted)
898: {
899: PetscLogDouble time = perfInfo.time;
900: PetscLogDouble timeMx;
902: MPI_Comm comm;
905: PetscObjectGetComm((PetscObject)viewer,&comm);
906: MPIU_Allreduce(&time, &timeMx, 1, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
907: *isPrinted = ((timeMx/totalTime) >= THRESHOLD) ? PETSC_TRUE : PETSC_FALSE;
908: if (*isPrinted) {
909: PetscViewerXMLStartSection(viewer, "event", NULL);
910: PetscViewerXMLPutString(viewer, "name", NULL, name);
911: PetscPrintXMLNestedLinePerfResults(viewer, "time", time/totalTime*100.0, 0, 0, 1.02);
912: PetscPrintXMLNestedLinePerfResults(viewer, "ncalls", parentCount>0 ? countsPerCall : 0, 0.99, 1.01, 1.02);
913: PetscPrintXMLNestedLinePerfResults(viewer, "mflops", time>=timeMx*0.001 ? 1e-6*perfInfo.flops/time : 0, 0, 0.01, 1.05);
914: PetscPrintXMLNestedLinePerfResults(viewer, "mbps",time>=timeMx*0.001 ? perfInfo.messageLength/(1024*1024*time) : 0, 0, 0.01, 1.05);
915: PetscPrintXMLNestedLinePerfResults(viewer, "nreductsps", time>=timeMx*0.001 ? perfInfo.numReductions/time : 0, 0, 0.01, 1.05);
916: }
917: return(0);
918: }
920: /* Count the number of times the parent event was called */
922: static int countParents( const PetscNestedEventTree *tree, PetscEventPerfInfo *eventPerfInfo, int i)
923: {
924: if (tree[i].depth<=1) {
925: return 1; /* Main event: only once */
926: } else if (!tree[i].own) {
927: return 1; /* This event didn't happen in this process, but did in another */
928: } else {
929: int iParent;
930: for (iParent=i-1; iParent>=0; iParent--) {
931: if (tree[iParent].depth == tree[i].depth-1) break;
932: }
933: if (tree[iParent].depth != tree[i].depth-1) {
934: /* ***** Internal error: cannot find parent */
935: return -2;
936: } else {
937: PetscLogEvent dftEvent = tree[iParent].dftEvent;
938: return eventPerfInfo[dftEvent].count;
939: }
940: }
941: }
943: typedef struct {
944: int id;
945: PetscLogDouble val;
946: } PetscSortItem;
948: static int compareSortItems(const void *item1_, const void *item2_)
949: {
950: PetscSortItem *item1 = (PetscSortItem *) item1_;
951: PetscSortItem *item2 = (PetscSortItem *) item2_;
952: if (item1->val > item2->val) return -1;
953: if (item1->val < item2->val) return +1;
954: return 0;
955: }
957: static PetscErrorCode PetscLogNestedTreePrint(PetscViewer viewer, PetscNestedEventTree *tree, int nTimers, int iStart, PetscLogDouble totalTime)
958: {
959: int depth = tree[iStart].depth;
960: const char *name;
961: int parentCount, nChildren;
962: PetscSortItem *children;
963: PetscErrorCode ierr;
964: const int stage = MAINSTAGE;
965: PetscStageLog stageLog;
966: PetscEventRegInfo *eventRegInfo;
967: PetscEventPerfInfo *eventPerfInfo;
968: PetscEventPerfInfo myPerfInfo, otherPerfInfo, selfPerfInfo;
969: PetscLogDouble countsPerCall;
970: PetscBool wasPrinted;
971: PetscBool childWasPrinted;
972: MPI_Comm comm;
975: /* Look up the name of the event and its PerfInfo */
976: PetscLogGetStageLog(&stageLog);
977: eventRegInfo = stageLog->eventLog->eventInfo;
978: eventPerfInfo = stageLog->stageInfo[stage].eventLog->eventInfo;
979: name = eventRegInfo[(PetscLogEvent)tree[iStart].nstEvent].name;
980: PetscObjectGetComm((PetscObject)viewer,&comm);
982: /* Count the number of child processes */
983: nChildren = 0;
984: {
985: int i;
986: for (i=iStart+1; i<nTimers; i++) {
987: if (tree[i].depth <= depth) break;
988: if (tree[i].depth == depth + 1) nChildren++;
989: }
990: }
992: if (nChildren>0) {
993: /* Create an array for the id-s and maxTimes of the children,
994: * leaving 2 spaces for self-time and other-time */
995: int i;
996: PetscLogDouble *times, *maxTimes;
998: PetscMalloc1(nChildren+2,&children);
999: nChildren = 0;
1000: for (i=iStart+1; i<nTimers; i++) {
1001: if (tree[i].depth<=depth) break;
1002: if (tree[i].depth == depth + 1) {
1003: children[nChildren].id = i;
1004: children[nChildren].val = eventPerfInfo[tree[i].dftEvent].time ;
1005: nChildren++;
1006: }
1007: }
1009: /* Calculate the children's maximum times, to see whether children will be ignored or printed */
1010: PetscMalloc1(nChildren,×);
1011: for (i=0; i<nChildren; i++) { times[i] = children[i].val; }
1013: PetscMalloc1(nChildren,&maxTimes);
1014: MPIU_Allreduce(times, maxTimes, nChildren, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
1015: PetscFree(times);
1017: for (i=0; i<nChildren; i++) { children[i].val = maxTimes[i]; }
1018: PetscFree(maxTimes);
1019: }
1021: if (!tree[iStart].own) {
1022: /* Set values for a timer that was not activated in this process
1023: * (but was, in other processes of this run) */
1024: PetscMemzero(&myPerfInfo,sizeof(myPerfInfo));
1026: selfPerfInfo = myPerfInfo;
1027: otherPerfInfo = myPerfInfo;
1029: parentCount = 1;
1030: countsPerCall = 0;
1031: } else {
1032: /* Set the values for a timer that was activated in this process */
1033: int i;
1034: PetscLogEvent dftEvent = tree[iStart].dftEvent;
1036: parentCount = countParents( tree, eventPerfInfo, iStart);
1037: myPerfInfo = eventPerfInfo[dftEvent];
1038: countsPerCall = (PetscLogDouble) myPerfInfo.count / (PetscLogDouble) parentCount;
1040: selfPerfInfo = myPerfInfo;
1041: otherPerfInfo.time = 0;
1042: otherPerfInfo.flops = 0;
1043: otherPerfInfo.numMessages = 0;
1044: otherPerfInfo.messageLength = 0;
1045: otherPerfInfo.numReductions = 0;
1047: for (i=0; i<nChildren; i++) {
1048: /* For all child counters: subtract the child values from self-timers */
1050: PetscLogEvent dftChild = tree[children[i].id].dftEvent;
1051: PetscEventPerfInfo childPerfInfo = eventPerfInfo[dftChild];
1053: selfPerfInfo.time -= childPerfInfo.time;
1054: selfPerfInfo.flops -= childPerfInfo.flops;
1055: selfPerfInfo.numMessages -= childPerfInfo.numMessages;
1056: selfPerfInfo.messageLength -= childPerfInfo.messageLength;
1057: selfPerfInfo.numReductions -= childPerfInfo.numReductions;
1059: if ((children[i].val/totalTime) < THRESHOLD) {
1060: /* Add them to 'other' if the time is ignored in the output */
1061: otherPerfInfo.time += childPerfInfo.time;
1062: otherPerfInfo.flops += childPerfInfo.flops;
1063: otherPerfInfo.numMessages += childPerfInfo.numMessages;
1064: otherPerfInfo.messageLength += childPerfInfo.messageLength;
1065: otherPerfInfo.numReductions += childPerfInfo.numReductions;
1066: }
1067: }
1068: }
1070: /* Main output for this timer */
1071: PetscLogNestedTreePrintLine(viewer, myPerfInfo, countsPerCall, parentCount, depth, name, totalTime, &wasPrinted);
1073: /* Now print the lines for the children */
1074: if (nChildren > 0) {
1075: /* Calculate max-times for 'self' and 'other' */
1076: int i;
1077: PetscLogDouble times[2], maxTimes[2];
1078: times[0] = selfPerfInfo.time; times[1] = otherPerfInfo.time;
1079: MPIU_Allreduce(times, maxTimes, 2, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
1080: children[nChildren+0].id = -1;
1081: children[nChildren+0].val = maxTimes[0];
1082: children[nChildren+1].id = -2;
1083: children[nChildren+1].val = maxTimes[1];
1085: /* Now sort the children (including 'self' and 'other') on total time */
1086: qsort(children, nChildren+2, sizeof(PetscSortItem), compareSortItems);
1088: /* Print (or ignore) the children in ascending order of total time */
1089: PetscViewerXMLStartSection(viewer,"events", NULL);
1090: for (i=0; i<nChildren+2; i++) {
1091: if ((children[i].val/totalTime) < THRESHOLD) {
1092: /* ignored: no output */
1093: } else if (children[i].id==-1) {
1094: PetscLogNestedTreePrintLine(viewer, selfPerfInfo, 1, parentCount, depth+1, "self", totalTime, &childWasPrinted);
1095: if (childWasPrinted) {
1096: PetscViewerXMLEndSection(viewer,"event");
1097: }
1098: } else if (children[i].id==-2) {
1099: size_t len;
1100: char *otherName;
1102: PetscStrlen(name,&len);
1103: PetscMalloc1(len+16,&otherName);
1104: PetscSNPrintf(otherName,len+16,"%s: other-timed",name);
1105: PetscLogNestedTreePrintLine(viewer, otherPerfInfo, 1, 1, depth+1, otherName, totalTime, &childWasPrinted);
1106: PetscFree(otherName);
1107: if (childWasPrinted) {
1108: PetscViewerXMLEndSection(viewer,"event");
1109: }
1110: } else {
1111: /* Print the child with a recursive call to this function */
1112: PetscLogNestedTreePrint(viewer, tree, nTimers, children[i].id, totalTime);
1113: }
1114: }
1115: PetscViewerXMLEndSection(viewer,"events");
1116: PetscFree(children);
1117: }
1119: if (wasPrinted) {
1120: PetscViewerXMLEndSection(viewer, "event");
1121: }
1122: return(0);
1123: }
1125: static PetscErrorCode PetscLogNestedTreePrintTop(PetscViewer viewer, PetscNestedEventTree *tree, int nTimers, PetscLogDouble totalTime)
1126: {
1127: int i, nChildren;
1128: PetscSortItem *children;
1129: PetscErrorCode ierr;
1130: const int stage = MAINSTAGE;
1131: PetscStageLog stageLog;
1132: PetscEventPerfInfo *eventPerfInfo;
1133: MPI_Comm comm;
1136: PetscObjectGetComm((PetscObject)viewer,&comm);
1138: /* Look up the PerfInfo */
1139: PetscLogGetStageLog(&stageLog);
1140: eventPerfInfo = stageLog->stageInfo[stage].eventLog->eventInfo;
1142: /* Count the number of child processes, and count total time */
1143: nChildren = 0;
1144: for (i=0; i<nTimers; i++)
1145: if (tree[i].depth==1) nChildren++;
1147: if (nChildren>0) {
1148: /* Create an array for the id-s and maxTimes of the children,
1149: * leaving 2 spaces for self-time and other-time */
1150: PetscLogDouble *times, *maxTimes;
1152: PetscMalloc1(nChildren,&children);
1153: nChildren = 0;
1154: for (i=0; i<nTimers; i++) {
1155: if (tree[i].depth == 1) {
1156: children[nChildren].id = i;
1157: children[nChildren].val = eventPerfInfo[tree[i].dftEvent].time ;
1158: nChildren++;
1159: }
1160: }
1162: /* Calculate the children's maximum times, to sort them */
1163: PetscMalloc1(nChildren,×);
1164: for (i=0; i<nChildren; i++) { times[i] = children[i].val; }
1166: PetscMalloc1(nChildren,&maxTimes);
1167: MPIU_Allreduce(times, maxTimes, nChildren, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
1168: PetscFree(times);
1170: for (i=0; i<nChildren; i++) { children[i].val = maxTimes[i]; }
1171: PetscFree(maxTimes);
1173: /* Now sort the children on total time */
1174: qsort(children, nChildren, sizeof(PetscSortItem), compareSortItems);
1175: /* Print (or ignore) the children in ascending order of total time */
1176: PetscViewerXMLStartSection(viewer, "timertree", "Timings tree");
1177: PetscViewerXMLPutDouble(viewer, "totaltime", NULL, totalTime, "%f");
1178: PetscViewerXMLPutDouble(viewer, "timethreshold", NULL, thresholdTime, "%f");
1180: for (i=0; i<nChildren; i++) {
1181: if ((children[i].val/totalTime) < THRESHOLD) {
1182: /* ignored: no output */
1183: } else {
1184: /* Print the child with a recursive call to this function */
1185: PetscLogNestedTreePrint(viewer, tree, nTimers, children[i].id, totalTime);
1186: }
1187: }
1188: PetscViewerXMLEndSection(viewer, "timertree");
1189: PetscFree(children);
1190: }
1191: return(0);
1192: }
1194: typedef struct {
1195: char *name;
1196: PetscLogDouble time;
1197: PetscLogDouble flops;
1198: PetscLogDouble numMessages;
1199: PetscLogDouble messageLength;
1200: PetscLogDouble numReductions;
1201: } PetscSelfTimer;
1203: static PetscErrorCode PetscCalcSelfTime(PetscViewer viewer, PetscSelfTimer **p_self, int *p_nstMax)
1204: {
1205: PetscErrorCode ierr;
1206: const int stage = MAINSTAGE;
1207: PetscStageLog stageLog;
1208: PetscEventRegInfo *eventRegInfo;
1209: PetscEventPerfInfo *eventPerfInfo;
1210: PetscSelfTimer *selftimes;
1211: PetscSelfTimer *totaltimes;
1212: NestedEventId *nstEvents;
1213: int i, j, maxDefaultTimer;
1214: NestedEventId nst;
1215: PetscLogEvent dft;
1216: int nstMax, nstMax_local;
1217: MPI_Comm comm;
1220: PetscObjectGetComm((PetscObject)viewer,&comm);
1221: PetscLogGetStageLog(&stageLog);
1222: eventRegInfo = stageLog->eventLog->eventInfo;
1223: eventPerfInfo = stageLog->stageInfo[stage].eventLog->eventInfo;
1225: /* For each default timer, calculate the (one) nested timer that it corresponds to. */
1226: maxDefaultTimer =0;
1227: for (i=0; i<nNestedEvents; i++) {
1228: int nParents = nestedEvents[i].nParents;
1229: PetscLogEvent *dftEvents = nestedEvents[i].dftEvents;
1230: for (j=0; j<nParents; j++) maxDefaultTimer = PetscMax(dftEvents[j],maxDefaultTimer);
1231: }
1232: PetscMalloc1(maxDefaultTimer+1,&nstEvents);
1233: for (dft=0; dft<maxDefaultTimer; dft++) {nstEvents[dft] = 0;}
1234: for (i=0; i<nNestedEvents; i++) {
1235: int nParents = nestedEvents[i].nParents;
1236: NestedEventId nstEvent = nestedEvents[i].nstEvent;
1237: PetscLogEvent *dftEvents = nestedEvents[i].dftEvents;
1238: for (j=0; j<nParents; j++) nstEvents[dftEvents[j]] = nstEvent;
1239: }
1241: /* Calculate largest nested event-ID */
1242: nstMax_local = 0;
1243: for (i=0; i<nNestedEvents; i++) nstMax_local = PetscMax(nestedEvents[i].nstEvent,nstMax_local);
1244: MPIU_Allreduce(&nstMax_local, &nstMax, 1, MPI_INT, MPI_MAX, comm);
1246: /* Initialize all total-times with zero */
1247: PetscMalloc1(nstMax+1,&selftimes);
1248: PetscMalloc1(nstMax+1,&totaltimes);
1249: for (nst=0; nst<=nstMax; nst++) {
1250: totaltimes[nst].time = 0;
1251: totaltimes[nst].flops = 0;
1252: totaltimes[nst].numMessages = 0;
1253: totaltimes[nst].messageLength = 0;
1254: totaltimes[nst].numReductions = 0;
1255: totaltimes[nst].name = NULL;
1256: }
1258: /* Calculate total-times */
1259: for (i=0; i<nNestedEvents; i++) {
1260: const int nParents = nestedEvents[i].nParents;
1261: const NestedEventId nstEvent = nestedEvents[i].nstEvent;
1262: const PetscLogEvent *dftEvents = nestedEvents[i].dftEvents;
1263: for (j=0; j<nParents; j++) {
1264: const PetscLogEvent dftEvent = dftEvents[j];
1265: totaltimes[nstEvent].time += eventPerfInfo[dftEvent].time;
1266: totaltimes[nstEvent].flops += eventPerfInfo[dftEvent].flops;
1267: totaltimes[nstEvent].numMessages += eventPerfInfo[dftEvent].numMessages;
1268: totaltimes[nstEvent].messageLength += eventPerfInfo[dftEvent].messageLength;
1269: totaltimes[nstEvent].numReductions += eventPerfInfo[dftEvent].numReductions;
1270: }
1271: totaltimes[nstEvent].name = eventRegInfo[(PetscLogEvent)nstEvent].name;
1272: }
1274: /* Initialize: self-times := totaltimes */
1275: for (nst=0; nst<=nstMax; nst++) { selftimes[nst] = totaltimes[nst]; }
1277: /* Subtract timed subprocesses from self-times */
1278: for (i=0; i<nNestedEvents; i++) {
1279: const int nParents = nestedEvents[i].nParents;
1280: const PetscLogEvent *dftEvents = nestedEvents[i].dftEvents;
1281: const NestedEventId *dftParentsSorted = nestedEvents[i].dftParentsSorted;
1282: for (j=0; j<nParents; j++) {
1283: if (dftParentsSorted[j] != DFT_ID_AWAKE) {
1284: const PetscLogEvent dftEvent = dftEvents[j];
1285: const NestedEventId nstParent = nstEvents[dftParentsSorted[j]];
1286: selftimes[nstParent].time -= eventPerfInfo[dftEvent].time;
1287: selftimes[nstParent].flops -= eventPerfInfo[dftEvent].flops;
1288: selftimes[nstParent].numMessages -= eventPerfInfo[dftEvent].numMessages;
1289: selftimes[nstParent].messageLength -= eventPerfInfo[dftEvent].messageLength;
1290: selftimes[nstParent].numReductions -= eventPerfInfo[dftEvent].numReductions;
1291: }
1292: }
1293: }
1295: PetscFree(nstEvents);
1296: PetscFree(totaltimes);
1298: /* Set outputs */
1299: *p_self = selftimes;
1300: *p_nstMax = nstMax;
1301: return(0);
1302: }
1304: static PetscErrorCode PetscPrintSelfTime(PetscViewer viewer, const PetscSelfTimer *selftimes, int nstMax, PetscLogDouble totalTime)
1305: {
1306: PetscErrorCode ierr;
1307: int i;
1308: NestedEventId nst;
1309: PetscSortItem *sortSelfTimes;
1310: PetscLogDouble *times, *maxTimes;
1311: PetscStageLog stageLog;
1312: PetscEventRegInfo *eventRegInfo;
1313: const int dum_depth = 1, dum_count=1, dum_parentcount=1;
1314: PetscBool wasPrinted;
1315: MPI_Comm comm;
1318: PetscObjectGetComm((PetscObject)viewer,&comm);
1319: PetscLogGetStageLog(&stageLog);
1320: eventRegInfo = stageLog->eventLog->eventInfo;
1322: PetscMalloc1(nstMax+1,×);
1323: PetscMalloc1(nstMax+1,&maxTimes);
1324: for (nst=0; nst<=nstMax; nst++) { times[nst] = selftimes[nst].time;}
1325: MPIU_Allreduce(times, maxTimes, nstMax+1, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
1326: PetscFree(times);
1328: PetscMalloc1(nstMax+1,&sortSelfTimes);
1330: /* Sort the self-timers on basis of the largest time needed */
1331: for (nst=0; nst<=nstMax; nst++) {
1332: sortSelfTimes[nst].id = nst;
1333: sortSelfTimes[nst].val = maxTimes[nst];
1334: }
1335: PetscFree(maxTimes);
1336: qsort(sortSelfTimes, nstMax+1, sizeof(PetscSortItem), compareSortItems);
1338: PetscViewerXMLStartSection(viewer, "selftimertable", "Self-timings");
1339: PetscViewerXMLPutDouble(viewer, "totaltime", NULL, totalTime, "%f");
1341: for (i=0; i<=nstMax; i++) {
1342: if ((sortSelfTimes[i].val/totalTime) >= THRESHOLD) {
1343: NestedEventId nstEvent = sortSelfTimes[i].id;
1344: const char *name = eventRegInfo[(PetscLogEvent)nstEvent].name;
1345: PetscEventPerfInfo selfPerfInfo;
1347: selfPerfInfo.time = selftimes[nstEvent].time ;
1348: selfPerfInfo.flops = selftimes[nstEvent].flops;
1349: selfPerfInfo.numMessages = selftimes[nstEvent].numMessages;
1350: selfPerfInfo.messageLength = selftimes[nstEvent].messageLength;
1351: selfPerfInfo.numReductions = selftimes[nstEvent].numReductions;
1353: PetscLogNestedTreePrintLine(viewer, selfPerfInfo, dum_count, dum_parentcount, dum_depth, name, totalTime, &wasPrinted);
1354: if (wasPrinted){
1355: PetscViewerXMLEndSection(viewer, "event");
1356: }
1357: }
1358: }
1359: PetscViewerXMLEndSection(viewer, "selftimertable");
1360: PetscFree(sortSelfTimes);
1361: return(0);
1362: }
1364: PetscErrorCode PetscLogView_Nested(PetscViewer viewer)
1365: {
1366: PetscErrorCode ierr;
1367: PetscLogDouble locTotalTime, globTotalTime;
1368: PetscNestedEventTree *tree = NULL;
1369: PetscSelfTimer *selftimers = NULL;
1370: int nTimers = 0, nstMax = 0;
1371: MPI_Comm comm;
1374: PetscObjectGetComm((PetscObject)viewer,&comm);
1375: PetscViewerInitASCII_XML(viewer);
1376: PetscViewerASCIIPrintf(viewer, "<!-- PETSc Performance Summary: -->\n");
1377: PetscViewerXMLStartSection(viewer, "petscroot", NULL);
1379: /* Get the total elapsed time, local and global maximum */
1380: PetscTime(&locTotalTime); locTotalTime -= petsc_BaseTime;
1381: MPIU_Allreduce(&locTotalTime, &globTotalTime, 1, MPIU_PETSCLOGDOUBLE, MPI_MAX, comm);
1383: /* Print global information about this run */
1384: PetscPrintExeSpecs(viewer);
1385: PetscPrintGlobalPerformance(viewer, locTotalTime);
1387: /* Collect nested timer tree info from all processes */
1388: PetscLogNestedTreeCreate(viewer, &tree, &nTimers);
1389: PetscLogNestedTreePrintTop(viewer, tree, nTimers, globTotalTime);
1390: PetscLogNestedTreeDestroy(tree, nTimers);
1392: /* Calculate self-time for all (not-nested) events */
1393: PetscCalcSelfTime(viewer, &selftimers, &nstMax);
1394: PetscPrintSelfTime(viewer, selftimers, nstMax, globTotalTime);
1395: PetscFree(selftimers);
1397: PetscViewerXMLEndSection(viewer, "petscroot");
1398: PetscViewerFinalASCII_XML(viewer);
1399: return(0);
1400: }
1402: PETSC_EXTERN PetscErrorCode PetscASend(int count, int datatype)
1403: {
1404: #if !defined(MPIUNI_H) && !defined(PETSC_HAVE_BROKEN_RECURSIVE_MACRO) && !defined(PETSC_HAVE_MPI_MISSING_TYPESIZE)
1406: #endif
1409: petsc_send_ct++;
1410: #if !defined(MPIUNI_H) && !defined(PETSC_HAVE_BROKEN_RECURSIVE_MACRO) && !defined(PETSC_HAVE_MPI_MISSING_TYPESIZE)
1411: PetscMPITypeSize(&petsc_send_len,count, MPI_Type_f2c((MPI_Fint) datatype));
1412: #endif
1413: return(0);
1414: }
1416: PETSC_EXTERN PetscErrorCode PetscARecv(int count, int datatype)
1417: {
1418: #if !defined(MPIUNI_H) && !defined(PETSC_HAVE_BROKEN_RECURSIVE_MACRO) && !defined(PETSC_HAVE_MPI_MISSING_TYPESIZE)
1420: #endif
1423: petsc_recv_ct++;
1424: #if !defined(MPIUNI_H) && !defined(PETSC_HAVE_BROKEN_RECURSIVE_MACRO) && !defined(PETSC_HAVE_MPI_MISSING_TYPESIZE)
1425: PetscMPITypeSize(&petsc_recv_len,count, MPI_Type_f2c((MPI_Fint) datatype));
1426: #endif
1427: return(0);
1428: }
1430: PETSC_EXTERN PetscErrorCode PetscAReduce()
1431: {
1433: petsc_allreduce_ct++;
1434: return(0);
1435: }
1437: #endif