Actual source code: matnest.c
petsc-3.11.4 2019-09-28
2: #include <../src/mat/impls/nest/matnestimpl.h>
3: #include <../src/mat/impls/aij/seq/aij.h>
4: #include <petscsf.h>
6: static PetscErrorCode MatSetUp_NestIS_Private(Mat,PetscInt,const IS[],PetscInt,const IS[]);
7: static PetscErrorCode MatCreateVecs_Nest(Mat A,Vec *right,Vec *left);
8: PETSC_INTERN PetscErrorCode MatConvert_Nest_IS(Mat,MatType,MatReuse,Mat*);
10: /* private functions */
11: static PetscErrorCode MatNestGetSizes_Private(Mat A,PetscInt *m,PetscInt *n,PetscInt *M,PetscInt *N)
12: {
13: Mat_Nest *bA = (Mat_Nest*)A->data;
14: PetscInt i,j;
18: *m = *n = *M = *N = 0;
19: for (i=0; i<bA->nr; i++) { /* rows */
20: PetscInt sm,sM;
21: ISGetLocalSize(bA->isglobal.row[i],&sm);
22: ISGetSize(bA->isglobal.row[i],&sM);
23: *m += sm;
24: *M += sM;
25: }
26: for (j=0; j<bA->nc; j++) { /* cols */
27: PetscInt sn,sN;
28: ISGetLocalSize(bA->isglobal.col[j],&sn);
29: ISGetSize(bA->isglobal.col[j],&sN);
30: *n += sn;
31: *N += sN;
32: }
33: return(0);
34: }
36: /* operations */
37: static PetscErrorCode MatMult_Nest(Mat A,Vec x,Vec y)
38: {
39: Mat_Nest *bA = (Mat_Nest*)A->data;
40: Vec *bx = bA->right,*by = bA->left;
41: PetscInt i,j,nr = bA->nr,nc = bA->nc;
45: for (i=0; i<nr; i++) {VecGetSubVector(y,bA->isglobal.row[i],&by[i]);}
46: for (i=0; i<nc; i++) {VecGetSubVector(x,bA->isglobal.col[i],&bx[i]);}
47: for (i=0; i<nr; i++) {
48: VecZeroEntries(by[i]);
49: for (j=0; j<nc; j++) {
50: if (!bA->m[i][j]) continue;
51: /* y[i] <- y[i] + A[i][j] * x[j] */
52: MatMultAdd(bA->m[i][j],bx[j],by[i],by[i]);
53: }
54: }
55: for (i=0; i<nr; i++) {VecRestoreSubVector(y,bA->isglobal.row[i],&by[i]);}
56: for (i=0; i<nc; i++) {VecRestoreSubVector(x,bA->isglobal.col[i],&bx[i]);}
57: return(0);
58: }
60: static PetscErrorCode MatMultAdd_Nest(Mat A,Vec x,Vec y,Vec z)
61: {
62: Mat_Nest *bA = (Mat_Nest*)A->data;
63: Vec *bx = bA->right,*bz = bA->left;
64: PetscInt i,j,nr = bA->nr,nc = bA->nc;
68: for (i=0; i<nr; i++) {VecGetSubVector(z,bA->isglobal.row[i],&bz[i]);}
69: for (i=0; i<nc; i++) {VecGetSubVector(x,bA->isglobal.col[i],&bx[i]);}
70: for (i=0; i<nr; i++) {
71: if (y != z) {
72: Vec by;
73: VecGetSubVector(y,bA->isglobal.row[i],&by);
74: VecCopy(by,bz[i]);
75: VecRestoreSubVector(y,bA->isglobal.row[i],&by);
76: }
77: for (j=0; j<nc; j++) {
78: if (!bA->m[i][j]) continue;
79: /* y[i] <- y[i] + A[i][j] * x[j] */
80: MatMultAdd(bA->m[i][j],bx[j],bz[i],bz[i]);
81: }
82: }
83: for (i=0; i<nr; i++) {VecRestoreSubVector(z,bA->isglobal.row[i],&bz[i]);}
84: for (i=0; i<nc; i++) {VecRestoreSubVector(x,bA->isglobal.col[i],&bx[i]);}
85: return(0);
86: }
88: static PetscErrorCode MatMultTranspose_Nest(Mat A,Vec x,Vec y)
89: {
90: Mat_Nest *bA = (Mat_Nest*)A->data;
91: Vec *bx = bA->left,*by = bA->right;
92: PetscInt i,j,nr = bA->nr,nc = bA->nc;
96: for (i=0; i<nr; i++) {VecGetSubVector(x,bA->isglobal.row[i],&bx[i]);}
97: for (i=0; i<nc; i++) {VecGetSubVector(y,bA->isglobal.col[i],&by[i]);}
98: for (j=0; j<nc; j++) {
99: VecZeroEntries(by[j]);
100: for (i=0; i<nr; i++) {
101: if (!bA->m[i][j]) continue;
102: /* y[j] <- y[j] + (A[i][j])^T * x[i] */
103: MatMultTransposeAdd(bA->m[i][j],bx[i],by[j],by[j]);
104: }
105: }
106: for (i=0; i<nr; i++) {VecRestoreSubVector(x,bA->isglobal.row[i],&bx[i]);}
107: for (i=0; i<nc; i++) {VecRestoreSubVector(y,bA->isglobal.col[i],&by[i]);}
108: return(0);
109: }
111: static PetscErrorCode MatMultTransposeAdd_Nest(Mat A,Vec x,Vec y,Vec z)
112: {
113: Mat_Nest *bA = (Mat_Nest*)A->data;
114: Vec *bx = bA->left,*bz = bA->right;
115: PetscInt i,j,nr = bA->nr,nc = bA->nc;
119: for (i=0; i<nr; i++) {VecGetSubVector(x,bA->isglobal.row[i],&bx[i]);}
120: for (i=0; i<nc; i++) {VecGetSubVector(z,bA->isglobal.col[i],&bz[i]);}
121: for (j=0; j<nc; j++) {
122: if (y != z) {
123: Vec by;
124: VecGetSubVector(y,bA->isglobal.col[j],&by);
125: VecCopy(by,bz[j]);
126: VecRestoreSubVector(y,bA->isglobal.col[j],&by);
127: }
128: for (i=0; i<nr; i++) {
129: if (!bA->m[i][j]) continue;
130: /* z[j] <- y[j] + (A[i][j])^T * x[i] */
131: MatMultTransposeAdd(bA->m[i][j],bx[i],bz[j],bz[j]);
132: }
133: }
134: for (i=0; i<nr; i++) {VecRestoreSubVector(x,bA->isglobal.row[i],&bx[i]);}
135: for (i=0; i<nc; i++) {VecRestoreSubVector(z,bA->isglobal.col[i],&bz[i]);}
136: return(0);
137: }
139: static PetscErrorCode MatTranspose_Nest(Mat A,MatReuse reuse,Mat *B)
140: {
141: Mat_Nest *bA = (Mat_Nest*)A->data, *bC;
142: Mat C;
143: PetscInt i,j,nr = bA->nr,nc = bA->nc;
147: if (reuse == MAT_INPLACE_MATRIX && nr != nc) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Square nested matrix only for in-place");
149: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
150: Mat *subs;
151: IS *is_row,*is_col;
153: PetscCalloc1(nr * nc,&subs);
154: PetscMalloc2(nr,&is_row,nc,&is_col);
155: MatNestGetISs(A,is_row,is_col);
156: if (reuse == MAT_INPLACE_MATRIX) {
157: for (i=0; i<nr; i++) {
158: for (j=0; j<nc; j++) {
159: subs[i + nr * j] = bA->m[i][j];
160: }
161: }
162: }
164: MatCreateNest(PetscObjectComm((PetscObject)A),nc,is_col,nr,is_row,subs,&C);
165: PetscFree(subs);
166: PetscFree2(is_row,is_col);
167: } else {
168: C = *B;
169: }
171: bC = (Mat_Nest*)C->data;
172: for (i=0; i<nr; i++) {
173: for (j=0; j<nc; j++) {
174: if (bA->m[i][j]) {
175: MatTranspose(bA->m[i][j], reuse, &(bC->m[j][i]));
176: } else {
177: bC->m[j][i] = NULL;
178: }
179: }
180: }
182: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) {
183: *B = C;
184: } else {
185: MatHeaderMerge(A, &C);
186: }
187: return(0);
188: }
190: static PetscErrorCode MatNestDestroyISList(PetscInt n,IS **list)
191: {
193: IS *lst = *list;
194: PetscInt i;
197: if (!lst) return(0);
198: for (i=0; i<n; i++) if (lst[i]) {ISDestroy(&lst[i]);}
199: PetscFree(lst);
200: *list = NULL;
201: return(0);
202: }
204: static PetscErrorCode MatDestroy_Nest(Mat A)
205: {
206: Mat_Nest *vs = (Mat_Nest*)A->data;
207: PetscInt i,j;
211: /* release the matrices and the place holders */
212: MatNestDestroyISList(vs->nr,&vs->isglobal.row);
213: MatNestDestroyISList(vs->nc,&vs->isglobal.col);
214: MatNestDestroyISList(vs->nr,&vs->islocal.row);
215: MatNestDestroyISList(vs->nc,&vs->islocal.col);
217: PetscFree(vs->row_len);
218: PetscFree(vs->col_len);
220: PetscFree2(vs->left,vs->right);
222: /* release the matrices and the place holders */
223: if (vs->m) {
224: for (i=0; i<vs->nr; i++) {
225: for (j=0; j<vs->nc; j++) {
226: MatDestroy(&vs->m[i][j]);
227: }
228: PetscFree(vs->m[i]);
229: }
230: PetscFree(vs->m);
231: }
232: PetscFree(A->data);
234: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMat_C",0);
235: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMat_C",0);
236: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMats_C",0);
237: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSize_C",0);
238: PetscObjectComposeFunction((PetscObject)A,"MatNestGetISs_C",0);
239: PetscObjectComposeFunction((PetscObject)A,"MatNestGetLocalISs_C",0);
240: PetscObjectComposeFunction((PetscObject)A,"MatNestSetVecType_C",0);
241: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMats_C",0);
242: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_mpiaij_C",0);
243: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_seqaij_C",0);
244: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_aij_C",0);
245: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_is_C",0);
246: return(0);
247: }
249: static PetscErrorCode MatAssemblyBegin_Nest(Mat A,MatAssemblyType type)
250: {
251: Mat_Nest *vs = (Mat_Nest*)A->data;
252: PetscInt i,j;
256: for (i=0; i<vs->nr; i++) {
257: for (j=0; j<vs->nc; j++) {
258: if (vs->m[i][j]) {
259: MatAssemblyBegin(vs->m[i][j],type);
260: if (!vs->splitassembly) {
261: /* Note: split assembly will fail if the same block appears more than once (even indirectly through a nested
262: * sub-block). This could be fixed by adding a flag to Mat so that there was a way to check if a Mat was
263: * already performing an assembly, but the result would by more complicated and appears to offer less
264: * potential for diagnostics and correctness checking. Split assembly should be fixed once there is an
265: * interface for libraries to make asynchronous progress in "user-defined non-blocking collectives".
266: */
267: MatAssemblyEnd(vs->m[i][j],type);
268: }
269: }
270: }
271: }
272: return(0);
273: }
275: static PetscErrorCode MatAssemblyEnd_Nest(Mat A, MatAssemblyType type)
276: {
277: Mat_Nest *vs = (Mat_Nest*)A->data;
278: PetscInt i,j;
282: for (i=0; i<vs->nr; i++) {
283: for (j=0; j<vs->nc; j++) {
284: if (vs->m[i][j]) {
285: if (vs->splitassembly) {
286: MatAssemblyEnd(vs->m[i][j],type);
287: }
288: }
289: }
290: }
291: return(0);
292: }
294: static PetscErrorCode MatNestFindNonzeroSubMatRow(Mat A,PetscInt row,Mat *B)
295: {
297: Mat_Nest *vs = (Mat_Nest*)A->data;
298: PetscInt j;
299: Mat sub;
302: sub = (row < vs->nc) ? vs->m[row][row] : (Mat)NULL; /* Prefer to find on the diagonal */
303: for (j=0; !sub && j<vs->nc; j++) sub = vs->m[row][j];
304: if (sub) {MatSetUp(sub);} /* Ensure that the sizes are available */
305: *B = sub;
306: return(0);
307: }
309: static PetscErrorCode MatNestFindNonzeroSubMatCol(Mat A,PetscInt col,Mat *B)
310: {
312: Mat_Nest *vs = (Mat_Nest*)A->data;
313: PetscInt i;
314: Mat sub;
317: sub = (col < vs->nr) ? vs->m[col][col] : (Mat)NULL; /* Prefer to find on the diagonal */
318: for (i=0; !sub && i<vs->nr; i++) sub = vs->m[i][col];
319: if (sub) {MatSetUp(sub);} /* Ensure that the sizes are available */
320: *B = sub;
321: return(0);
322: }
324: static PetscErrorCode MatNestFindIS(Mat A,PetscInt n,const IS list[],IS is,PetscInt *found)
325: {
327: PetscInt i;
328: PetscBool flg;
334: *found = -1;
335: for (i=0; i<n; i++) {
336: if (!list[i]) continue;
337: ISEqual(list[i],is,&flg);
338: if (flg) {
339: *found = i;
340: return(0);
341: }
342: }
343: SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Could not find index set");
344: return(0);
345: }
347: /* Get a block row as a new MatNest */
348: static PetscErrorCode MatNestGetRow(Mat A,PetscInt row,Mat *B)
349: {
350: Mat_Nest *vs = (Mat_Nest*)A->data;
351: char keyname[256];
355: *B = NULL;
356: PetscSNPrintf(keyname,sizeof(keyname),"NestRow_%D",row);
357: PetscObjectQuery((PetscObject)A,keyname,(PetscObject*)B);
358: if (*B) return(0);
360: MatCreateNest(PetscObjectComm((PetscObject)A),1,NULL,vs->nc,vs->isglobal.col,vs->m[row],B);
362: (*B)->assembled = A->assembled;
364: PetscObjectCompose((PetscObject)A,keyname,(PetscObject)*B);
365: PetscObjectDereference((PetscObject)*B); /* Leave the only remaining reference in the composition */
366: return(0);
367: }
369: static PetscErrorCode MatNestFindSubMat(Mat A,struct MatNestISPair *is,IS isrow,IS iscol,Mat *B)
370: {
371: Mat_Nest *vs = (Mat_Nest*)A->data;
373: PetscInt row,col;
374: PetscBool same,isFullCol,isFullColGlobal;
377: /* Check if full column space. This is a hack */
378: isFullCol = PETSC_FALSE;
379: PetscObjectTypeCompare((PetscObject)iscol,ISSTRIDE,&same);
380: if (same) {
381: PetscInt n,first,step,i,an,am,afirst,astep;
382: ISStrideGetInfo(iscol,&first,&step);
383: ISGetLocalSize(iscol,&n);
384: isFullCol = PETSC_TRUE;
385: for (i=0,an=A->cmap->rstart; i<vs->nc; i++) {
386: ISStrideGetInfo(is->col[i],&afirst,&astep);
387: ISGetLocalSize(is->col[i],&am);
388: if (afirst != an || astep != step) isFullCol = PETSC_FALSE;
389: an += am;
390: }
391: if (an != A->cmap->rstart+n) isFullCol = PETSC_FALSE;
392: }
393: MPIU_Allreduce(&isFullCol,&isFullColGlobal,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)iscol));
395: if (isFullColGlobal && vs->nc > 1) {
396: PetscInt row;
397: MatNestFindIS(A,vs->nr,is->row,isrow,&row);
398: MatNestGetRow(A,row,B);
399: } else {
400: MatNestFindIS(A,vs->nr,is->row,isrow,&row);
401: MatNestFindIS(A,vs->nc,is->col,iscol,&col);
402: if (!vs->m[row][col]) {
403: PetscInt lr,lc;
405: MatCreate(PetscObjectComm((PetscObject)A),&vs->m[row][col]);
406: ISGetLocalSize(vs->isglobal.row[row],&lr);
407: ISGetLocalSize(vs->isglobal.col[col],&lc);
408: MatSetSizes(vs->m[row][col],lr,lc,PETSC_DECIDE,PETSC_DECIDE);
409: MatSetUp(vs->m[row][col]);
410: MatAssemblyBegin(vs->m[row][col],MAT_FINAL_ASSEMBLY);
411: MatAssemblyEnd(vs->m[row][col],MAT_FINAL_ASSEMBLY);
412: }
413: *B = vs->m[row][col];
414: }
415: return(0);
416: }
418: static PetscErrorCode MatCreateSubMatrix_Nest(Mat A,IS isrow,IS iscol,MatReuse reuse,Mat *B)
419: {
421: Mat_Nest *vs = (Mat_Nest*)A->data;
422: Mat sub;
425: MatNestFindSubMat(A,&vs->isglobal,isrow,iscol,&sub);
426: switch (reuse) {
427: case MAT_INITIAL_MATRIX:
428: if (sub) { PetscObjectReference((PetscObject)sub); }
429: *B = sub;
430: break;
431: case MAT_REUSE_MATRIX:
432: if (sub != *B) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Submatrix was not used before in this call");
433: break;
434: case MAT_IGNORE_MATRIX: /* Nothing to do */
435: break;
436: case MAT_INPLACE_MATRIX: /* Nothing to do */
437: SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MAT_INPLACE_MATRIX is not supported yet");
438: break;
439: }
440: return(0);
441: }
443: PetscErrorCode MatGetLocalSubMatrix_Nest(Mat A,IS isrow,IS iscol,Mat *B)
444: {
446: Mat_Nest *vs = (Mat_Nest*)A->data;
447: Mat sub;
450: MatNestFindSubMat(A,&vs->islocal,isrow,iscol,&sub);
451: /* We allow the submatrix to be NULL, perhaps it would be better for the user to return an empty matrix instead */
452: if (sub) {PetscObjectReference((PetscObject)sub);}
453: *B = sub;
454: return(0);
455: }
457: static PetscErrorCode MatRestoreLocalSubMatrix_Nest(Mat A,IS isrow,IS iscol,Mat *B)
458: {
460: Mat_Nest *vs = (Mat_Nest*)A->data;
461: Mat sub;
464: MatNestFindSubMat(A,&vs->islocal,isrow,iscol,&sub);
465: if (*B != sub) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Local submatrix has not been gotten");
466: if (sub) {
467: if (((PetscObject)sub)->refct <= 1) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Local submatrix has had reference count decremented too many times");
468: MatDestroy(B);
469: }
470: return(0);
471: }
473: static PetscErrorCode MatGetDiagonal_Nest(Mat A,Vec v)
474: {
475: Mat_Nest *bA = (Mat_Nest*)A->data;
476: PetscInt i;
480: for (i=0; i<bA->nr; i++) {
481: Vec bv;
482: VecGetSubVector(v,bA->isglobal.row[i],&bv);
483: if (bA->m[i][i]) {
484: MatGetDiagonal(bA->m[i][i],bv);
485: } else {
486: VecSet(bv,0.0);
487: }
488: VecRestoreSubVector(v,bA->isglobal.row[i],&bv);
489: }
490: return(0);
491: }
493: static PetscErrorCode MatDiagonalScale_Nest(Mat A,Vec l,Vec r)
494: {
495: Mat_Nest *bA = (Mat_Nest*)A->data;
496: Vec bl,*br;
497: PetscInt i,j;
501: PetscCalloc1(bA->nc,&br);
502: if (r) {
503: for (j=0; j<bA->nc; j++) {VecGetSubVector(r,bA->isglobal.col[j],&br[j]);}
504: }
505: bl = NULL;
506: for (i=0; i<bA->nr; i++) {
507: if (l) {
508: VecGetSubVector(l,bA->isglobal.row[i],&bl);
509: }
510: for (j=0; j<bA->nc; j++) {
511: if (bA->m[i][j]) {
512: MatDiagonalScale(bA->m[i][j],bl,br[j]);
513: }
514: }
515: if (l) {
516: VecRestoreSubVector(l,bA->isglobal.row[i],&bl);
517: }
518: }
519: if (r) {
520: for (j=0; j<bA->nc; j++) {VecRestoreSubVector(r,bA->isglobal.col[j],&br[j]);}
521: }
522: PetscFree(br);
523: return(0);
524: }
526: static PetscErrorCode MatScale_Nest(Mat A,PetscScalar a)
527: {
528: Mat_Nest *bA = (Mat_Nest*)A->data;
529: PetscInt i,j;
533: for (i=0; i<bA->nr; i++) {
534: for (j=0; j<bA->nc; j++) {
535: if (bA->m[i][j]) {
536: MatScale(bA->m[i][j],a);
537: }
538: }
539: }
540: return(0);
541: }
543: static PetscErrorCode MatShift_Nest(Mat A,PetscScalar a)
544: {
545: Mat_Nest *bA = (Mat_Nest*)A->data;
546: PetscInt i;
550: for (i=0; i<bA->nr; i++) {
551: if (!bA->m[i][i]) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for shifting an empty diagonal block, insert a matrix in block (%D,%D)",i,i);
552: MatShift(bA->m[i][i],a);
553: }
554: return(0);
555: }
557: static PetscErrorCode MatDiagonalSet_Nest(Mat A,Vec D,InsertMode is)
558: {
559: Mat_Nest *bA = (Mat_Nest*)A->data;
560: PetscInt i;
564: for (i=0; i<bA->nr; i++) {
565: Vec bv;
566: VecGetSubVector(D,bA->isglobal.row[i],&bv);
567: if (bA->m[i][i]) {
568: MatDiagonalSet(bA->m[i][i],bv,is);
569: }
570: VecRestoreSubVector(D,bA->isglobal.row[i],&bv);
571: }
572: return(0);
573: }
575: static PetscErrorCode MatSetRandom_Nest(Mat A,PetscRandom rctx)
576: {
577: Mat_Nest *bA = (Mat_Nest*)A->data;
578: PetscInt i,j;
582: for (i=0; i<bA->nr; i++) {
583: for (j=0; j<bA->nc; j++) {
584: if (bA->m[i][j]) {
585: MatSetRandom(bA->m[i][j],rctx);
586: }
587: }
588: }
589: return(0);
590: }
592: static PetscErrorCode MatCreateVecs_Nest(Mat A,Vec *right,Vec *left)
593: {
594: Mat_Nest *bA = (Mat_Nest*)A->data;
595: Vec *L,*R;
596: MPI_Comm comm;
597: PetscInt i,j;
601: PetscObjectGetComm((PetscObject)A,&comm);
602: if (right) {
603: /* allocate R */
604: PetscMalloc1(bA->nc, &R);
605: /* Create the right vectors */
606: for (j=0; j<bA->nc; j++) {
607: for (i=0; i<bA->nr; i++) {
608: if (bA->m[i][j]) {
609: MatCreateVecs(bA->m[i][j],&R[j],NULL);
610: break;
611: }
612: }
613: if (i==bA->nr) SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null column.");
614: }
615: VecCreateNest(comm,bA->nc,bA->isglobal.col,R,right);
616: /* hand back control to the nest vector */
617: for (j=0; j<bA->nc; j++) {
618: VecDestroy(&R[j]);
619: }
620: PetscFree(R);
621: }
623: if (left) {
624: /* allocate L */
625: PetscMalloc1(bA->nr, &L);
626: /* Create the left vectors */
627: for (i=0; i<bA->nr; i++) {
628: for (j=0; j<bA->nc; j++) {
629: if (bA->m[i][j]) {
630: MatCreateVecs(bA->m[i][j],NULL,&L[i]);
631: break;
632: }
633: }
634: if (j==bA->nc) SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null row.");
635: }
637: VecCreateNest(comm,bA->nr,bA->isglobal.row,L,left);
638: for (i=0; i<bA->nr; i++) {
639: VecDestroy(&L[i]);
640: }
642: PetscFree(L);
643: }
644: return(0);
645: }
647: static PetscErrorCode MatView_Nest(Mat A,PetscViewer viewer)
648: {
649: Mat_Nest *bA = (Mat_Nest*)A->data;
650: PetscBool isascii;
651: PetscInt i,j;
655: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
656: if (isascii) {
658: PetscViewerASCIIPrintf(viewer,"Matrix object: \n");
659: PetscViewerASCIIPushTab(viewer);
660: PetscViewerASCIIPrintf(viewer, "type=nest, rows=%D, cols=%D \n",bA->nr,bA->nc);
662: PetscViewerASCIIPrintf(viewer,"MatNest structure: \n");
663: for (i=0; i<bA->nr; i++) {
664: for (j=0; j<bA->nc; j++) {
665: MatType type;
666: char name[256] = "",prefix[256] = "";
667: PetscInt NR,NC;
668: PetscBool isNest = PETSC_FALSE;
670: if (!bA->m[i][j]) {
671: PetscViewerASCIIPrintf(viewer, "(%D,%D) : NULL \n",i,j);
672: continue;
673: }
674: MatGetSize(bA->m[i][j],&NR,&NC);
675: MatGetType(bA->m[i][j], &type);
676: if (((PetscObject)bA->m[i][j])->name) {PetscSNPrintf(name,sizeof(name),"name=\"%s\", ",((PetscObject)bA->m[i][j])->name);}
677: if (((PetscObject)bA->m[i][j])->prefix) {PetscSNPrintf(prefix,sizeof(prefix),"prefix=\"%s\", ",((PetscObject)bA->m[i][j])->prefix);}
678: PetscObjectTypeCompare((PetscObject)bA->m[i][j],MATNEST,&isNest);
680: PetscViewerASCIIPrintf(viewer,"(%D,%D) : %s%stype=%s, rows=%D, cols=%D \n",i,j,name,prefix,type,NR,NC);
682: if (isNest) {
683: PetscViewerASCIIPushTab(viewer); /* push1 */
684: MatView(bA->m[i][j],viewer);
685: PetscViewerASCIIPopTab(viewer); /* pop1 */
686: }
687: }
688: }
689: PetscViewerASCIIPopTab(viewer); /* pop0 */
690: }
691: return(0);
692: }
694: static PetscErrorCode MatZeroEntries_Nest(Mat A)
695: {
696: Mat_Nest *bA = (Mat_Nest*)A->data;
697: PetscInt i,j;
701: for (i=0; i<bA->nr; i++) {
702: for (j=0; j<bA->nc; j++) {
703: if (!bA->m[i][j]) continue;
704: MatZeroEntries(bA->m[i][j]);
705: }
706: }
707: return(0);
708: }
710: static PetscErrorCode MatCopy_Nest(Mat A,Mat B,MatStructure str)
711: {
712: Mat_Nest *bA = (Mat_Nest*)A->data,*bB = (Mat_Nest*)B->data;
713: PetscInt i,j,nr = bA->nr,nc = bA->nc;
717: if (nr != bB->nr || nc != bB->nc) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Cannot copy a Mat_Nest of block size (%D,%D) to a Mat_Nest of block size (%D,%D)",bB->nr,bB->nc,nr,nc);
718: for (i=0; i<nr; i++) {
719: for (j=0; j<nc; j++) {
720: if (bA->m[i][j] && bB->m[i][j]) {
721: MatCopy(bA->m[i][j],bB->m[i][j],str);
722: } else if (bA->m[i][j] || bB->m[i][j]) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Matrix block does not exist at %D,%D",i,j);
723: }
724: }
725: PetscObjectStateIncrease((PetscObject)B);
726: return(0);
727: }
729: static PetscErrorCode MatAXPY_Nest(Mat Y,PetscScalar a,Mat X,MatStructure str)
730: {
731: Mat_Nest *bY = (Mat_Nest*)Y->data,*bX = (Mat_Nest*)X->data;
732: PetscInt i,j,nr = bY->nr,nc = bY->nc;
736: if (nr != bX->nr || nc != bX->nc) SETERRQ4(PetscObjectComm((PetscObject)Y),PETSC_ERR_ARG_INCOMP,"Cannot AXPY a MatNest of block size (%D,%D) with a MatNest of block size (%D,%D)",bX->nr,bX->nc,nr,nc);
737: for (i=0; i<nr; i++) {
738: for (j=0; j<nc; j++) {
739: if (bY->m[i][j] && bX->m[i][j]) {
740: MatAXPY(bY->m[i][j],a,bX->m[i][j],str);
741: } else if (bX->m[i][j]) SETERRQ2(PetscObjectComm((PetscObject)Y),PETSC_ERR_ARG_INCOMP,"Matrix block does not exist at %D,%D",i,j);
742: }
743: }
744: return(0);
745: }
747: static PetscErrorCode MatDuplicate_Nest(Mat A,MatDuplicateOption op,Mat *B)
748: {
749: Mat_Nest *bA = (Mat_Nest*)A->data;
750: Mat *b;
751: PetscInt i,j,nr = bA->nr,nc = bA->nc;
755: PetscMalloc1(nr*nc,&b);
756: for (i=0; i<nr; i++) {
757: for (j=0; j<nc; j++) {
758: if (bA->m[i][j]) {
759: MatDuplicate(bA->m[i][j],op,&b[i*nc+j]);
760: } else {
761: b[i*nc+j] = NULL;
762: }
763: }
764: }
765: MatCreateNest(PetscObjectComm((PetscObject)A),nr,bA->isglobal.row,nc,bA->isglobal.col,b,B);
766: /* Give the new MatNest exclusive ownership */
767: for (i=0; i<nr*nc; i++) {
768: MatDestroy(&b[i]);
769: }
770: PetscFree(b);
772: MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY);
773: MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY);
774: return(0);
775: }
777: /* nest api */
778: PetscErrorCode MatNestGetSubMat_Nest(Mat A,PetscInt idxm,PetscInt jdxm,Mat *mat)
779: {
780: Mat_Nest *bA = (Mat_Nest*)A->data;
783: if (idxm >= bA->nr) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",idxm,bA->nr-1);
784: if (jdxm >= bA->nc) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Col too large: row %D max %D",jdxm,bA->nc-1);
785: *mat = bA->m[idxm][jdxm];
786: return(0);
787: }
789: /*@
790: MatNestGetSubMat - Returns a single, sub-matrix from a nest matrix.
792: Not collective
794: Input Parameters:
795: + A - nest matrix
796: . idxm - index of the matrix within the nest matrix
797: - jdxm - index of the matrix within the nest matrix
799: Output Parameter:
800: . sub - matrix at index idxm,jdxm within the nest matrix
802: Level: developer
804: .seealso: MatNestGetSize(), MatNestGetSubMats()
805: @*/
806: PetscErrorCode MatNestGetSubMat(Mat A,PetscInt idxm,PetscInt jdxm,Mat *sub)
807: {
811: PetscUseMethod(A,"MatNestGetSubMat_C",(Mat,PetscInt,PetscInt,Mat*),(A,idxm,jdxm,sub));
812: return(0);
813: }
815: PetscErrorCode MatNestSetSubMat_Nest(Mat A,PetscInt idxm,PetscInt jdxm,Mat mat)
816: {
817: Mat_Nest *bA = (Mat_Nest*)A->data;
818: PetscInt m,n,M,N,mi,ni,Mi,Ni;
822: if (idxm >= bA->nr) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",idxm,bA->nr-1);
823: if (jdxm >= bA->nc) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Col too large: row %D max %D",jdxm,bA->nc-1);
824: MatGetLocalSize(mat,&m,&n);
825: MatGetSize(mat,&M,&N);
826: ISGetLocalSize(bA->isglobal.row[idxm],&mi);
827: ISGetSize(bA->isglobal.row[idxm],&Mi);
828: ISGetLocalSize(bA->isglobal.col[jdxm],&ni);
829: ISGetSize(bA->isglobal.col[jdxm],&Ni);
830: if (M != Mi || N != Ni) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_INCOMP,"Submatrix dimension (%D,%D) incompatible with nest block (%D,%D)",M,N,Mi,Ni);
831: if (m != mi || n != ni) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_INCOMP,"Submatrix local dimension (%D,%D) incompatible with nest block (%D,%D)",m,n,mi,ni);
833: PetscObjectReference((PetscObject)mat);
834: MatDestroy(&bA->m[idxm][jdxm]);
835: bA->m[idxm][jdxm] = mat;
836: return(0);
837: }
839: /*@
840: MatNestSetSubMat - Set a single submatrix in the nest matrix.
842: Logically collective on the submatrix communicator
844: Input Parameters:
845: + A - nest matrix
846: . idxm - index of the matrix within the nest matrix
847: . jdxm - index of the matrix within the nest matrix
848: - sub - matrix at index idxm,jdxm within the nest matrix
850: Notes:
851: The new submatrix must have the same size and communicator as that block of the nest.
853: This increments the reference count of the submatrix.
855: Level: developer
857: .seealso: MatNestSetSubMats(), MatNestGetSubMats()
858: @*/
859: PetscErrorCode MatNestSetSubMat(Mat A,PetscInt idxm,PetscInt jdxm,Mat sub)
860: {
864: PetscUseMethod(A,"MatNestSetSubMat_C",(Mat,PetscInt,PetscInt,Mat),(A,idxm,jdxm,sub));
865: return(0);
866: }
868: PetscErrorCode MatNestGetSubMats_Nest(Mat A,PetscInt *M,PetscInt *N,Mat ***mat)
869: {
870: Mat_Nest *bA = (Mat_Nest*)A->data;
873: if (M) *M = bA->nr;
874: if (N) *N = bA->nc;
875: if (mat) *mat = bA->m;
876: return(0);
877: }
879: /*@C
880: MatNestGetSubMats - Returns the entire two dimensional array of matrices defining a nest matrix.
882: Not collective
884: Input Parameters:
885: . A - nest matrix
887: Output Parameter:
888: + M - number of rows in the nest matrix
889: . N - number of cols in the nest matrix
890: - mat - 2d array of matrices
892: Notes:
894: The user should not free the array mat.
896: In Fortran, this routine has a calling sequence
897: $ call MatNestGetSubMats(A, M, N, mat, ierr)
898: where the space allocated for the optional argument mat is assumed large enough (if provided).
900: Level: developer
902: .seealso: MatNestGetSize(), MatNestGetSubMat()
903: @*/
904: PetscErrorCode MatNestGetSubMats(Mat A,PetscInt *M,PetscInt *N,Mat ***mat)
905: {
909: PetscUseMethod(A,"MatNestGetSubMats_C",(Mat,PetscInt*,PetscInt*,Mat***),(A,M,N,mat));
910: return(0);
911: }
913: PetscErrorCode MatNestGetSize_Nest(Mat A,PetscInt *M,PetscInt *N)
914: {
915: Mat_Nest *bA = (Mat_Nest*)A->data;
918: if (M) *M = bA->nr;
919: if (N) *N = bA->nc;
920: return(0);
921: }
923: /*@
924: MatNestGetSize - Returns the size of the nest matrix.
926: Not collective
928: Input Parameters:
929: . A - nest matrix
931: Output Parameter:
932: + M - number of rows in the nested mat
933: - N - number of cols in the nested mat
935: Notes:
937: Level: developer
939: .seealso: MatNestGetSubMat(), MatNestGetSubMats()
940: @*/
941: PetscErrorCode MatNestGetSize(Mat A,PetscInt *M,PetscInt *N)
942: {
946: PetscUseMethod(A,"MatNestGetSize_C",(Mat,PetscInt*,PetscInt*),(A,M,N));
947: return(0);
948: }
950: static PetscErrorCode MatNestGetISs_Nest(Mat A,IS rows[],IS cols[])
951: {
952: Mat_Nest *vs = (Mat_Nest*)A->data;
953: PetscInt i;
956: if (rows) for (i=0; i<vs->nr; i++) rows[i] = vs->isglobal.row[i];
957: if (cols) for (i=0; i<vs->nc; i++) cols[i] = vs->isglobal.col[i];
958: return(0);
959: }
961: /*@C
962: MatNestGetISs - Returns the index sets partitioning the row and column spaces
964: Not collective
966: Input Parameters:
967: . A - nest matrix
969: Output Parameter:
970: + rows - array of row index sets
971: - cols - array of column index sets
973: Level: advanced
975: Notes:
976: The user must have allocated arrays of the correct size. The reference count is not increased on the returned ISs.
978: .seealso: MatNestGetSubMat(), MatNestGetSubMats(), MatNestGetSize(), MatNestGetLocalISs()
979: @*/
980: PetscErrorCode MatNestGetISs(Mat A,IS rows[],IS cols[])
981: {
986: PetscUseMethod(A,"MatNestGetISs_C",(Mat,IS[],IS[]),(A,rows,cols));
987: return(0);
988: }
990: static PetscErrorCode MatNestGetLocalISs_Nest(Mat A,IS rows[],IS cols[])
991: {
992: Mat_Nest *vs = (Mat_Nest*)A->data;
993: PetscInt i;
996: if (rows) for (i=0; i<vs->nr; i++) rows[i] = vs->islocal.row[i];
997: if (cols) for (i=0; i<vs->nc; i++) cols[i] = vs->islocal.col[i];
998: return(0);
999: }
1001: /*@C
1002: MatNestGetLocalISs - Returns the index sets partitioning the row and column spaces
1004: Not collective
1006: Input Parameters:
1007: . A - nest matrix
1009: Output Parameter:
1010: + rows - array of row index sets (or NULL to ignore)
1011: - cols - array of column index sets (or NULL to ignore)
1013: Level: advanced
1015: Notes:
1016: The user must have allocated arrays of the correct size. The reference count is not increased on the returned ISs.
1018: .seealso: MatNestGetSubMat(), MatNestGetSubMats(), MatNestGetSize(), MatNestGetISs()
1019: @*/
1020: PetscErrorCode MatNestGetLocalISs(Mat A,IS rows[],IS cols[])
1021: {
1026: PetscUseMethod(A,"MatNestGetLocalISs_C",(Mat,IS[],IS[]),(A,rows,cols));
1027: return(0);
1028: }
1030: PetscErrorCode MatNestSetVecType_Nest(Mat A,VecType vtype)
1031: {
1033: PetscBool flg;
1036: PetscStrcmp(vtype,VECNEST,&flg);
1037: /* In reality, this only distinguishes VECNEST and "other" */
1038: if (flg) A->ops->getvecs = MatCreateVecs_Nest;
1039: else A->ops->getvecs = (PetscErrorCode (*)(Mat,Vec*,Vec*)) 0;
1040: return(0);
1041: }
1043: /*@C
1044: MatNestSetVecType - Sets the type of Vec returned by MatCreateVecs()
1046: Not collective
1048: Input Parameters:
1049: + A - nest matrix
1050: - vtype - type to use for creating vectors
1052: Notes:
1054: Level: developer
1056: .seealso: MatCreateVecs()
1057: @*/
1058: PetscErrorCode MatNestSetVecType(Mat A,VecType vtype)
1059: {
1063: PetscTryMethod(A,"MatNestSetVecType_C",(Mat,VecType),(A,vtype));
1064: return(0);
1065: }
1067: PetscErrorCode MatNestSetSubMats_Nest(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[])
1068: {
1069: Mat_Nest *s = (Mat_Nest*)A->data;
1070: PetscInt i,j,m,n,M,N;
1074: s->nr = nr;
1075: s->nc = nc;
1077: /* Create space for submatrices */
1078: PetscMalloc1(nr,&s->m);
1079: for (i=0; i<nr; i++) {
1080: PetscMalloc1(nc,&s->m[i]);
1081: }
1082: for (i=0; i<nr; i++) {
1083: for (j=0; j<nc; j++) {
1084: s->m[i][j] = a[i*nc+j];
1085: if (a[i*nc+j]) {
1086: PetscObjectReference((PetscObject)a[i*nc+j]);
1087: }
1088: }
1089: }
1091: MatSetUp_NestIS_Private(A,nr,is_row,nc,is_col);
1093: PetscMalloc1(nr,&s->row_len);
1094: PetscMalloc1(nc,&s->col_len);
1095: for (i=0; i<nr; i++) s->row_len[i]=-1;
1096: for (j=0; j<nc; j++) s->col_len[j]=-1;
1098: MatNestGetSizes_Private(A,&m,&n,&M,&N);
1100: PetscLayoutSetSize(A->rmap,M);
1101: PetscLayoutSetLocalSize(A->rmap,m);
1102: PetscLayoutSetSize(A->cmap,N);
1103: PetscLayoutSetLocalSize(A->cmap,n);
1105: PetscLayoutSetUp(A->rmap);
1106: PetscLayoutSetUp(A->cmap);
1108: PetscCalloc2(nr,&s->left,nc,&s->right);
1109: return(0);
1110: }
1112: /*@
1113: MatNestSetSubMats - Sets the nested submatrices
1115: Collective on Mat
1117: Input Parameter:
1118: + N - nested matrix
1119: . nr - number of nested row blocks
1120: . is_row - index sets for each nested row block, or NULL to make contiguous
1121: . nc - number of nested column blocks
1122: . is_col - index sets for each nested column block, or NULL to make contiguous
1123: - a - row-aligned array of nr*nc submatrices, empty submatrices can be passed using NULL
1125: Level: advanced
1127: .seealso: MatCreateNest(), MATNEST
1128: @*/
1129: PetscErrorCode MatNestSetSubMats(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[])
1130: {
1132: PetscInt i,nr_nc;
1136: if (nr < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Number of rows cannot be negative");
1137: if (nr && is_row) {
1140: }
1141: if (nc < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Number of columns cannot be negative");
1142: if (nc && is_col) {
1145: }
1146: nr_nc=nr*nc;
1148: PetscUseMethod(A,"MatNestSetSubMats_C",(Mat,PetscInt,const IS[],PetscInt,const IS[],const Mat[]),(A,nr,is_row,nc,is_col,a));
1149: return(0);
1150: }
1152: static PetscErrorCode MatNestCreateAggregateL2G_Private(Mat A,PetscInt n,const IS islocal[],const IS isglobal[],PetscBool colflg,ISLocalToGlobalMapping *ltog)
1153: {
1155: PetscBool flg;
1156: PetscInt i,j,m,mi,*ix;
1159: for (i=0,m=0,flg=PETSC_FALSE; i<n; i++) {
1160: if (islocal[i]) {
1161: ISGetSize(islocal[i],&mi);
1162: flg = PETSC_TRUE; /* We found a non-trivial entry */
1163: } else {
1164: ISGetSize(isglobal[i],&mi);
1165: }
1166: m += mi;
1167: }
1168: if (flg) {
1169: PetscMalloc1(m,&ix);
1170: for (i=0,m=0; i<n; i++) {
1171: ISLocalToGlobalMapping smap = NULL;
1172: Mat sub = NULL;
1173: PetscSF sf;
1174: PetscLayout map;
1175: PetscInt *ix2;
1177: if (!colflg) {
1178: MatNestFindNonzeroSubMatRow(A,i,&sub);
1179: } else {
1180: MatNestFindNonzeroSubMatCol(A,i,&sub);
1181: }
1182: if (sub) {
1183: if (!colflg) {
1184: MatGetLocalToGlobalMapping(sub,&smap,NULL);
1185: } else {
1186: MatGetLocalToGlobalMapping(sub,NULL,&smap);
1187: }
1188: }
1189: if (islocal[i]) {
1190: ISGetSize(islocal[i],&mi);
1191: } else {
1192: ISGetSize(isglobal[i],&mi);
1193: }
1194: for (j=0; j<mi; j++) ix[m+j] = j;
1195: if (smap) {ISLocalToGlobalMappingApply(smap,mi,ix+m,ix+m);}
1197: /*
1198: Now we need to extract the monolithic global indices that correspond to the given split global indices.
1199: In many/most cases, we only want MatGetLocalSubMatrix() to work, in which case we only need to know the size of the local spaces.
1200: */
1201: PetscMalloc1(mi,&ix2);
1202: PetscSFCreate(((PetscObject)isglobal[i])->comm,&sf);
1203: PetscLayoutCreate(((PetscObject)isglobal[i])->comm,&map);
1204: PetscLayoutSetLocalSize(map,mi);
1205: PetscLayoutSetUp(map);
1206: PetscSFSetGraphLayout(sf,map,mi,NULL,PETSC_USE_POINTER,ix+m);
1207: PetscLayoutDestroy(&map);
1208: for (j=0; j<mi; j++) ix2[j] = ix[m+j];
1209: PetscSFBcastBegin(sf,MPIU_INT,ix2,ix + m);
1210: PetscSFBcastEnd(sf,MPIU_INT,ix2,ix + m);
1211: PetscSFDestroy(&sf);
1212: PetscFree(ix2);
1213: m += mi;
1214: }
1215: ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)A),1,m,ix,PETSC_OWN_POINTER,ltog);
1216: } else {
1217: *ltog = NULL;
1218: }
1219: return(0);
1220: }
1223: /* If an IS was provided, there is nothing Nest needs to do, otherwise Nest will build a strided IS */
1224: /*
1225: nprocessors = NP
1226: Nest x^T = ((g_0,g_1,...g_nprocs-1), (h_0,h_1,...h_NP-1))
1227: proc 0: => (g_0,h_0,)
1228: proc 1: => (g_1,h_1,)
1229: ...
1230: proc nprocs-1: => (g_NP-1,h_NP-1,)
1232: proc 0: proc 1: proc nprocs-1:
1233: is[0] = (0,1,2,...,nlocal(g_0)-1) (0,1,...,nlocal(g_1)-1) (0,1,...,nlocal(g_NP-1))
1235: proc 0:
1236: is[1] = (nlocal(g_0),nlocal(g_0)+1,...,nlocal(g_0)+nlocal(h_0)-1)
1237: proc 1:
1238: is[1] = (nlocal(g_1),nlocal(g_1)+1,...,nlocal(g_1)+nlocal(h_1)-1)
1240: proc NP-1:
1241: is[1] = (nlocal(g_NP-1),nlocal(g_NP-1)+1,...,nlocal(g_NP-1)+nlocal(h_NP-1)-1)
1242: */
1243: static PetscErrorCode MatSetUp_NestIS_Private(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[])
1244: {
1245: Mat_Nest *vs = (Mat_Nest*)A->data;
1246: PetscInt i,j,offset,n,nsum,bs;
1248: Mat sub = NULL;
1251: PetscMalloc1(nr,&vs->isglobal.row);
1252: PetscMalloc1(nc,&vs->isglobal.col);
1253: if (is_row) { /* valid IS is passed in */
1254: /* refs on is[] are incremeneted */
1255: for (i=0; i<vs->nr; i++) {
1256: PetscObjectReference((PetscObject)is_row[i]);
1258: vs->isglobal.row[i] = is_row[i];
1259: }
1260: } else { /* Create the ISs by inspecting sizes of a submatrix in each row */
1261: nsum = 0;
1262: for (i=0; i<vs->nr; i++) { /* Add up the local sizes to compute the aggregate offset */
1263: MatNestFindNonzeroSubMatRow(A,i,&sub);
1264: if (!sub) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"No nonzero submatrix in row %D",i);
1265: MatGetLocalSize(sub,&n,NULL);
1266: if (n < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Sizes have not yet been set for submatrix");
1267: nsum += n;
1268: }
1269: MPI_Scan(&nsum,&offset,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)A));
1270: offset -= nsum;
1271: for (i=0; i<vs->nr; i++) {
1272: MatNestFindNonzeroSubMatRow(A,i,&sub);
1273: MatGetLocalSize(sub,&n,NULL);
1274: MatGetBlockSize(sub,&bs);
1275: ISCreateStride(PetscObjectComm((PetscObject)sub),n,offset,1,&vs->isglobal.row[i]);
1276: ISSetBlockSize(vs->isglobal.row[i],bs);
1277: offset += n;
1278: }
1279: }
1281: if (is_col) { /* valid IS is passed in */
1282: /* refs on is[] are incremeneted */
1283: for (j=0; j<vs->nc; j++) {
1284: PetscObjectReference((PetscObject)is_col[j]);
1286: vs->isglobal.col[j] = is_col[j];
1287: }
1288: } else { /* Create the ISs by inspecting sizes of a submatrix in each column */
1289: offset = A->cmap->rstart;
1290: nsum = 0;
1291: for (j=0; j<vs->nc; j++) {
1292: MatNestFindNonzeroSubMatCol(A,j,&sub);
1293: if (!sub) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"No nonzero submatrix in column %D",i);
1294: MatGetLocalSize(sub,NULL,&n);
1295: if (n < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Sizes have not yet been set for submatrix");
1296: nsum += n;
1297: }
1298: MPI_Scan(&nsum,&offset,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)A));
1299: offset -= nsum;
1300: for (j=0; j<vs->nc; j++) {
1301: MatNestFindNonzeroSubMatCol(A,j,&sub);
1302: MatGetLocalSize(sub,NULL,&n);
1303: MatGetBlockSize(sub,&bs);
1304: ISCreateStride(PetscObjectComm((PetscObject)sub),n,offset,1,&vs->isglobal.col[j]);
1305: ISSetBlockSize(vs->isglobal.col[j],bs);
1306: offset += n;
1307: }
1308: }
1310: /* Set up the local ISs */
1311: PetscMalloc1(vs->nr,&vs->islocal.row);
1312: PetscMalloc1(vs->nc,&vs->islocal.col);
1313: for (i=0,offset=0; i<vs->nr; i++) {
1314: IS isloc;
1315: ISLocalToGlobalMapping rmap = NULL;
1316: PetscInt nlocal,bs;
1317: MatNestFindNonzeroSubMatRow(A,i,&sub);
1318: if (sub) {MatGetLocalToGlobalMapping(sub,&rmap,NULL);}
1319: if (rmap) {
1320: MatGetBlockSize(sub,&bs);
1321: ISLocalToGlobalMappingGetSize(rmap,&nlocal);
1322: ISCreateStride(PETSC_COMM_SELF,nlocal,offset,1,&isloc);
1323: ISSetBlockSize(isloc,bs);
1324: } else {
1325: nlocal = 0;
1326: isloc = NULL;
1327: }
1328: vs->islocal.row[i] = isloc;
1329: offset += nlocal;
1330: }
1331: for (i=0,offset=0; i<vs->nc; i++) {
1332: IS isloc;
1333: ISLocalToGlobalMapping cmap = NULL;
1334: PetscInt nlocal,bs;
1335: MatNestFindNonzeroSubMatCol(A,i,&sub);
1336: if (sub) {MatGetLocalToGlobalMapping(sub,NULL,&cmap);}
1337: if (cmap) {
1338: MatGetBlockSize(sub,&bs);
1339: ISLocalToGlobalMappingGetSize(cmap,&nlocal);
1340: ISCreateStride(PETSC_COMM_SELF,nlocal,offset,1,&isloc);
1341: ISSetBlockSize(isloc,bs);
1342: } else {
1343: nlocal = 0;
1344: isloc = NULL;
1345: }
1346: vs->islocal.col[i] = isloc;
1347: offset += nlocal;
1348: }
1350: /* Set up the aggregate ISLocalToGlobalMapping */
1351: {
1352: ISLocalToGlobalMapping rmap,cmap;
1353: MatNestCreateAggregateL2G_Private(A,vs->nr,vs->islocal.row,vs->isglobal.row,PETSC_FALSE,&rmap);
1354: MatNestCreateAggregateL2G_Private(A,vs->nc,vs->islocal.col,vs->isglobal.col,PETSC_TRUE,&cmap);
1355: if (rmap && cmap) {MatSetLocalToGlobalMapping(A,rmap,cmap);}
1356: ISLocalToGlobalMappingDestroy(&rmap);
1357: ISLocalToGlobalMappingDestroy(&cmap);
1358: }
1360: #if defined(PETSC_USE_DEBUG)
1361: for (i=0; i<vs->nr; i++) {
1362: for (j=0; j<vs->nc; j++) {
1363: PetscInt m,n,M,N,mi,ni,Mi,Ni;
1364: Mat B = vs->m[i][j];
1365: if (!B) continue;
1366: MatGetSize(B,&M,&N);
1367: MatGetLocalSize(B,&m,&n);
1368: ISGetSize(vs->isglobal.row[i],&Mi);
1369: ISGetSize(vs->isglobal.col[j],&Ni);
1370: ISGetLocalSize(vs->isglobal.row[i],&mi);
1371: ISGetLocalSize(vs->isglobal.col[j],&ni);
1372: if (M != Mi || N != Ni) SETERRQ6(PetscObjectComm((PetscObject)sub),PETSC_ERR_ARG_INCOMP,"Global sizes (%D,%D) of nested submatrix (%D,%D) do not agree with space defined by index sets (%D,%D)",M,N,i,j,Mi,Ni);
1373: if (m != mi || n != ni) SETERRQ6(PetscObjectComm((PetscObject)sub),PETSC_ERR_ARG_INCOMP,"Local sizes (%D,%D) of nested submatrix (%D,%D) do not agree with space defined by index sets (%D,%D)",m,n,i,j,mi,ni);
1374: }
1375: }
1376: #endif
1378: /* Set A->assembled if all non-null blocks are currently assembled */
1379: for (i=0; i<vs->nr; i++) {
1380: for (j=0; j<vs->nc; j++) {
1381: if (vs->m[i][j] && !vs->m[i][j]->assembled) return(0);
1382: }
1383: }
1384: A->assembled = PETSC_TRUE;
1385: return(0);
1386: }
1388: /*@C
1389: MatCreateNest - Creates a new matrix containing several nested submatrices, each stored separately
1391: Collective on Mat
1393: Input Parameter:
1394: + comm - Communicator for the new Mat
1395: . nr - number of nested row blocks
1396: . is_row - index sets for each nested row block, or NULL to make contiguous
1397: . nc - number of nested column blocks
1398: . is_col - index sets for each nested column block, or NULL to make contiguous
1399: - a - row-aligned array of nr*nc submatrices, empty submatrices can be passed using NULL
1401: Output Parameter:
1402: . B - new matrix
1404: Level: advanced
1406: .seealso: MatCreate(), VecCreateNest(), DMCreateMatrix(), MATNEST
1407: @*/
1408: PetscErrorCode MatCreateNest(MPI_Comm comm,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[],Mat *B)
1409: {
1410: Mat A;
1414: *B = 0;
1415: MatCreate(comm,&A);
1416: MatSetType(A,MATNEST);
1417: A->preallocated = PETSC_TRUE;
1418: MatNestSetSubMats(A,nr,is_row,nc,is_col,a);
1419: *B = A;
1420: return(0);
1421: }
1423: static PetscErrorCode MatConvert_Nest_SeqAIJ_fast(Mat A,MatType newtype,MatReuse reuse,Mat *newmat)
1424: {
1425: Mat_Nest *nest = (Mat_Nest*)A->data;
1426: Mat *trans;
1427: PetscScalar **avv;
1428: PetscScalar *vv;
1429: PetscInt **aii,**ajj;
1430: PetscInt *ii,*jj,*ci;
1431: PetscInt nr,nc,nnz,i,j;
1432: PetscBool done;
1436: MatGetSize(A,&nr,&nc);
1437: if (reuse == MAT_REUSE_MATRIX) {
1438: PetscInt rnr;
1440: MatGetRowIJ(*newmat,0,PETSC_FALSE,PETSC_FALSE,&rnr,(const PetscInt**)&ii,(const PetscInt**)&jj,&done);
1441: if (!done) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_PLIB,"MatGetRowIJ");
1442: if (rnr != nr) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_USER,"Cannot reuse matrix, wrong number of rows");
1443: MatSeqAIJGetArray(*newmat,&vv);
1444: }
1445: /* extract CSR for nested SeqAIJ matrices */
1446: nnz = 0;
1447: PetscCalloc4(nest->nr*nest->nc,&aii,nest->nr*nest->nc,&ajj,nest->nr*nest->nc,&avv,nest->nr*nest->nc,&trans);
1448: for (i=0; i<nest->nr; ++i) {
1449: for (j=0; j<nest->nc; ++j) {
1450: Mat B = nest->m[i][j];
1451: if (B) {
1452: PetscScalar *naa;
1453: PetscInt *nii,*njj,nnr;
1454: PetscBool istrans;
1456: PetscObjectTypeCompare((PetscObject)B,MATTRANSPOSEMAT,&istrans);
1457: if (istrans) {
1458: Mat Bt;
1460: MatTransposeGetMat(B,&Bt);
1461: MatTranspose(Bt,MAT_INITIAL_MATRIX,&trans[i*nest->nc+j]);
1462: B = trans[i*nest->nc+j];
1463: }
1464: MatGetRowIJ(B,0,PETSC_FALSE,PETSC_FALSE,&nnr,(const PetscInt**)&nii,(const PetscInt**)&njj,&done);
1465: if (!done) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_PLIB,"MatGetRowIJ");
1466: MatSeqAIJGetArray(B,&naa);
1467: nnz += nii[nnr];
1469: aii[i*nest->nc+j] = nii;
1470: ajj[i*nest->nc+j] = njj;
1471: avv[i*nest->nc+j] = naa;
1472: }
1473: }
1474: }
1475: if (reuse != MAT_REUSE_MATRIX) {
1476: PetscMalloc1(nr+1,&ii);
1477: PetscMalloc1(nnz,&jj);
1478: PetscMalloc1(nnz,&vv);
1479: } else {
1480: if (nnz != ii[nr]) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_USER,"Cannot reuse matrix, wrong number of nonzeros");
1481: }
1483: /* new row pointer */
1484: PetscMemzero(ii,(nr+1)*sizeof(PetscInt));
1485: for (i=0; i<nest->nr; ++i) {
1486: PetscInt ncr,rst;
1488: ISStrideGetInfo(nest->isglobal.row[i],&rst,NULL);
1489: ISGetLocalSize(nest->isglobal.row[i],&ncr);
1490: for (j=0; j<nest->nc; ++j) {
1491: if (aii[i*nest->nc+j]) {
1492: PetscInt *nii = aii[i*nest->nc+j];
1493: PetscInt ir;
1495: for (ir=rst; ir<ncr+rst; ++ir) {
1496: ii[ir+1] += nii[1]-nii[0];
1497: nii++;
1498: }
1499: }
1500: }
1501: }
1502: for (i=0; i<nr; i++) ii[i+1] += ii[i];
1504: /* construct CSR for the new matrix */
1505: PetscCalloc1(nr,&ci);
1506: for (i=0; i<nest->nr; ++i) {
1507: PetscInt ncr,rst;
1509: ISStrideGetInfo(nest->isglobal.row[i],&rst,NULL);
1510: ISGetLocalSize(nest->isglobal.row[i],&ncr);
1511: for (j=0; j<nest->nc; ++j) {
1512: if (aii[i*nest->nc+j]) {
1513: PetscScalar *nvv = avv[i*nest->nc+j];
1514: PetscInt *nii = aii[i*nest->nc+j];
1515: PetscInt *njj = ajj[i*nest->nc+j];
1516: PetscInt ir,cst;
1518: ISStrideGetInfo(nest->isglobal.col[j],&cst,NULL);
1519: for (ir=rst; ir<ncr+rst; ++ir) {
1520: PetscInt ij,rsize = nii[1]-nii[0],ist = ii[ir]+ci[ir];
1522: for (ij=0;ij<rsize;ij++) {
1523: jj[ist+ij] = *njj+cst;
1524: vv[ist+ij] = *nvv;
1525: njj++;
1526: nvv++;
1527: }
1528: ci[ir] += rsize;
1529: nii++;
1530: }
1531: }
1532: }
1533: }
1534: PetscFree(ci);
1536: /* restore info */
1537: for (i=0; i<nest->nr; ++i) {
1538: for (j=0; j<nest->nc; ++j) {
1539: Mat B = nest->m[i][j];
1540: if (B) {
1541: PetscInt nnr = 0, k = i*nest->nc+j;
1543: B = (trans[k] ? trans[k] : B);
1544: MatRestoreRowIJ(B,0,PETSC_FALSE,PETSC_FALSE,&nnr,(const PetscInt**)&aii[k],(const PetscInt**)&ajj[k],&done);
1545: if (!done) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_PLIB,"MatRestoreRowIJ");
1546: MatSeqAIJRestoreArray(B,&avv[k]);
1547: MatDestroy(&trans[k]);
1548: }
1549: }
1550: }
1551: PetscFree4(aii,ajj,avv,trans);
1553: /* finalize newmat */
1554: if (reuse == MAT_INITIAL_MATRIX) {
1555: MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A),nr,nc,ii,jj,vv,newmat);
1556: } else if (reuse == MAT_INPLACE_MATRIX) {
1557: Mat B;
1559: MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A),nr,nc,ii,jj,vv,&B);
1560: MatHeaderReplace(A,&B);
1561: }
1562: MatAssemblyBegin(*newmat,MAT_FINAL_ASSEMBLY);
1563: MatAssemblyEnd(*newmat,MAT_FINAL_ASSEMBLY);
1564: {
1565: Mat_SeqAIJ *a = (Mat_SeqAIJ*)((*newmat)->data);
1566: a->free_a = PETSC_TRUE;
1567: a->free_ij = PETSC_TRUE;
1568: }
1569: return(0);
1570: }
1572: PETSC_INTERN PetscErrorCode MatConvert_Nest_AIJ(Mat A,MatType newtype,MatReuse reuse,Mat *newmat)
1573: {
1575: Mat_Nest *nest = (Mat_Nest*)A->data;
1576: PetscInt m,n,M,N,i,j,k,*dnnz,*onnz,rstart;
1577: PetscInt cstart,cend;
1578: PetscMPIInt size;
1579: Mat C;
1582: MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
1583: if (size == 1) { /* look for a special case with SeqAIJ matrices and strided-1, contiguous, blocks */
1584: PetscInt nf;
1585: PetscBool fast;
1587: PetscStrcmp(newtype,MATAIJ,&fast);
1588: if (!fast) {
1589: PetscStrcmp(newtype,MATSEQAIJ,&fast);
1590: }
1591: for (i=0; i<nest->nr && fast; ++i) {
1592: for (j=0; j<nest->nc && fast; ++j) {
1593: Mat B = nest->m[i][j];
1594: if (B) {
1595: PetscObjectTypeCompare((PetscObject)B,MATSEQAIJ,&fast);
1596: if (!fast) {
1597: PetscBool istrans;
1599: PetscObjectTypeCompare((PetscObject)B,MATTRANSPOSEMAT,&istrans);
1600: if (istrans) {
1601: Mat Bt;
1603: MatTransposeGetMat(B,&Bt);
1604: PetscObjectTypeCompare((PetscObject)Bt,MATSEQAIJ,&fast);
1605: }
1606: }
1607: }
1608: }
1609: }
1610: for (i=0, nf=0; i<nest->nr && fast; ++i) {
1611: PetscObjectTypeCompare((PetscObject)nest->isglobal.row[i],ISSTRIDE,&fast);
1612: if (fast) {
1613: PetscInt f,s;
1615: ISStrideGetInfo(nest->isglobal.row[i],&f,&s);
1616: if (f != nf || s != 1) { fast = PETSC_FALSE; }
1617: else {
1618: ISGetSize(nest->isglobal.row[i],&f);
1619: nf += f;
1620: }
1621: }
1622: }
1623: for (i=0, nf=0; i<nest->nc && fast; ++i) {
1624: PetscObjectTypeCompare((PetscObject)nest->isglobal.col[i],ISSTRIDE,&fast);
1625: if (fast) {
1626: PetscInt f,s;
1628: ISStrideGetInfo(nest->isglobal.col[i],&f,&s);
1629: if (f != nf || s != 1) { fast = PETSC_FALSE; }
1630: else {
1631: ISGetSize(nest->isglobal.col[i],&f);
1632: nf += f;
1633: }
1634: }
1635: }
1636: if (fast) {
1637: MatConvert_Nest_SeqAIJ_fast(A,newtype,reuse,newmat);
1638: return(0);
1639: }
1640: }
1641: MatGetSize(A,&M,&N);
1642: MatGetLocalSize(A,&m,&n);
1643: MatGetOwnershipRangeColumn(A,&cstart,&cend);
1644: switch (reuse) {
1645: case MAT_INITIAL_MATRIX:
1646: MatCreate(PetscObjectComm((PetscObject)A),&C);
1647: MatSetType(C,newtype);
1648: MatSetSizes(C,m,n,M,N);
1649: *newmat = C;
1650: break;
1651: case MAT_REUSE_MATRIX:
1652: C = *newmat;
1653: break;
1654: default: SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatReuse");
1655: }
1656: PetscMalloc1(2*m,&dnnz);
1657: onnz = dnnz + m;
1658: for (k=0; k<m; k++) {
1659: dnnz[k] = 0;
1660: onnz[k] = 0;
1661: }
1662: for (j=0; j<nest->nc; ++j) {
1663: IS bNis;
1664: PetscInt bN;
1665: const PetscInt *bNindices;
1666: /* Using global column indices and ISAllGather() is not scalable. */
1667: ISAllGather(nest->isglobal.col[j], &bNis);
1668: ISGetSize(bNis, &bN);
1669: ISGetIndices(bNis,&bNindices);
1670: for (i=0; i<nest->nr; ++i) {
1671: PetscSF bmsf;
1672: PetscSFNode *iremote;
1673: Mat B;
1674: PetscInt bm, *sub_dnnz,*sub_onnz, br;
1675: const PetscInt *bmindices;
1676: B = nest->m[i][j];
1677: if (!B) continue;
1678: ISGetLocalSize(nest->isglobal.row[i],&bm);
1679: ISGetIndices(nest->isglobal.row[i],&bmindices);
1680: PetscSFCreate(PetscObjectComm((PetscObject)A), &bmsf);
1681: PetscMalloc1(bm,&iremote);
1682: PetscMalloc1(bm,&sub_dnnz);
1683: PetscMalloc1(bm,&sub_onnz);
1684: for (k = 0; k < bm; ++k){
1685: sub_dnnz[k] = 0;
1686: sub_onnz[k] = 0;
1687: }
1688: /*
1689: Locate the owners for all of the locally-owned global row indices for this row block.
1690: These determine the roots of PetscSF used to communicate preallocation data to row owners.
1691: The roots correspond to the dnnz and onnz entries; thus, there are two roots per row.
1692: */
1693: MatGetOwnershipRange(B,&rstart,NULL);
1694: for (br = 0; br < bm; ++br) {
1695: PetscInt row = bmindices[br], rowowner = 0, brncols, col;
1696: const PetscInt *brcols;
1697: PetscInt rowrel = 0; /* row's relative index on its owner rank */
1698: PetscLayoutFindOwnerIndex(A->rmap,row,&rowowner,&rowrel);
1699: /* how many roots */
1700: iremote[br].rank = rowowner; iremote[br].index = rowrel; /* edge from bmdnnz to dnnz */
1701: /* get nonzero pattern */
1702: MatGetRow(B,br+rstart,&brncols,&brcols,NULL);
1703: for (k=0; k<brncols; k++) {
1704: col = bNindices[brcols[k]];
1705: if (col>=A->cmap->range[rowowner] && col<A->cmap->range[rowowner+1]) {
1706: sub_dnnz[br]++;
1707: } else {
1708: sub_onnz[br]++;
1709: }
1710: }
1711: MatRestoreRow(B,br+rstart,&brncols,&brcols,NULL);
1712: }
1713: ISRestoreIndices(nest->isglobal.row[i],&bmindices);
1714: /* bsf will have to take care of disposing of bedges. */
1715: PetscSFSetGraph(bmsf,m,bm,NULL,PETSC_OWN_POINTER,iremote,PETSC_OWN_POINTER);
1716: PetscSFReduceBegin(bmsf,MPIU_INT,sub_dnnz,dnnz,MPI_SUM);
1717: PetscSFReduceEnd(bmsf,MPIU_INT,sub_dnnz,dnnz,MPI_SUM);
1718: PetscSFReduceBegin(bmsf,MPIU_INT,sub_onnz,onnz,MPI_SUM);
1719: PetscSFReduceEnd(bmsf,MPIU_INT,sub_onnz,onnz,MPI_SUM);
1720: PetscFree(sub_dnnz);
1721: PetscFree(sub_onnz);
1722: PetscSFDestroy(&bmsf);
1723: }
1724: ISRestoreIndices(bNis,&bNindices);
1725: ISDestroy(&bNis);
1726: }
1727: /* Resize preallocation if overestimated */
1728: for (i=0;i<m;i++) {
1729: dnnz[i] = PetscMin(dnnz[i],A->cmap->n);
1730: onnz[i] = PetscMin(onnz[i],A->cmap->N - A->cmap->n);
1731: }
1732: MatSeqAIJSetPreallocation(C,0,dnnz);
1733: MatMPIAIJSetPreallocation(C,0,dnnz,0,onnz);
1734: PetscFree(dnnz);
1736: /* Fill by row */
1737: for (j=0; j<nest->nc; ++j) {
1738: /* Using global column indices and ISAllGather() is not scalable. */
1739: IS bNis;
1740: PetscInt bN;
1741: const PetscInt *bNindices;
1742: ISAllGather(nest->isglobal.col[j], &bNis);
1743: ISGetSize(bNis,&bN);
1744: ISGetIndices(bNis,&bNindices);
1745: for (i=0; i<nest->nr; ++i) {
1746: Mat B;
1747: PetscInt bm, br;
1748: const PetscInt *bmindices;
1749: B = nest->m[i][j];
1750: if (!B) continue;
1751: ISGetLocalSize(nest->isglobal.row[i],&bm);
1752: ISGetIndices(nest->isglobal.row[i],&bmindices);
1753: MatGetOwnershipRange(B,&rstart,NULL);
1754: for (br = 0; br < bm; ++br) {
1755: PetscInt row = bmindices[br], brncols, *cols;
1756: const PetscInt *brcols;
1757: const PetscScalar *brcoldata;
1758: MatGetRow(B,br+rstart,&brncols,&brcols,&brcoldata);
1759: PetscMalloc1(brncols,&cols);
1760: for (k=0; k<brncols; k++) cols[k] = bNindices[brcols[k]];
1761: /*
1762: Nest blocks are required to be nonoverlapping -- otherwise nest and monolithic index layouts wouldn't match.
1763: Thus, we could use INSERT_VALUES, but I prefer ADD_VALUES.
1764: */
1765: MatSetValues(C,1,&row,brncols,cols,brcoldata,ADD_VALUES);
1766: MatRestoreRow(B,br+rstart,&brncols,&brcols,&brcoldata);
1767: PetscFree(cols);
1768: }
1769: ISRestoreIndices(nest->isglobal.row[i],&bmindices);
1770: }
1771: ISRestoreIndices(bNis,&bNindices);
1772: ISDestroy(&bNis);
1773: }
1774: MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
1775: MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
1776: return(0);
1777: }
1779: PetscErrorCode MatHasOperation_Nest(Mat mat,MatOperation op,PetscBool *has)
1780: {
1782: *has = PETSC_FALSE;
1783: if (op == MATOP_MULT_TRANSPOSE) {
1784: Mat_Nest *bA = (Mat_Nest*)mat->data;
1785: PetscInt i,j,nr = bA->nr,nc = bA->nc;
1787: PetscBool flg;
1789: for (j=0; j<nc; j++) {
1790: for (i=0; i<nr; i++) {
1791: if (!bA->m[i][j]) continue;
1792: MatHasOperation(bA->m[i][j],MATOP_MULT_TRANSPOSE_ADD,&flg);
1793: if (!flg) return(0);
1794: }
1795: }
1796: }
1797: if (((void**)mat->ops)[op]) *has = PETSC_TRUE;
1798: return(0);
1799: }
1801: /*MC
1802: MATNEST - MATNEST = "nest" - Matrix type consisting of nested submatrices, each stored separately.
1804: Level: intermediate
1806: Notes:
1807: This matrix type permits scalable use of PCFieldSplit and avoids the large memory costs of extracting submatrices.
1808: It allows the use of symmetric and block formats for parts of multi-physics simulations.
1809: It is usually used with DMComposite and DMCreateMatrix()
1811: Each of the submatrices lives on the same MPI communicator as the original nest matrix (though they can have zero
1812: rows/columns on some processes.) Thus this is not meant for cases where the submatrices live on far fewer processes
1813: than the nest matrix.
1815: .seealso: MatCreate(), MatType, MatCreateNest()
1816: M*/
1817: PETSC_EXTERN PetscErrorCode MatCreate_Nest(Mat A)
1818: {
1819: Mat_Nest *s;
1823: PetscNewLog(A,&s);
1824: A->data = (void*)s;
1826: s->nr = -1;
1827: s->nc = -1;
1828: s->m = NULL;
1829: s->splitassembly = PETSC_FALSE;
1831: PetscMemzero(A->ops,sizeof(*A->ops));
1833: A->ops->mult = MatMult_Nest;
1834: A->ops->multadd = MatMultAdd_Nest;
1835: A->ops->multtranspose = MatMultTranspose_Nest;
1836: A->ops->multtransposeadd = MatMultTransposeAdd_Nest;
1837: A->ops->transpose = MatTranspose_Nest;
1838: A->ops->assemblybegin = MatAssemblyBegin_Nest;
1839: A->ops->assemblyend = MatAssemblyEnd_Nest;
1840: A->ops->zeroentries = MatZeroEntries_Nest;
1841: A->ops->copy = MatCopy_Nest;
1842: A->ops->axpy = MatAXPY_Nest;
1843: A->ops->duplicate = MatDuplicate_Nest;
1844: A->ops->createsubmatrix = MatCreateSubMatrix_Nest;
1845: A->ops->destroy = MatDestroy_Nest;
1846: A->ops->view = MatView_Nest;
1847: A->ops->getvecs = 0; /* Use VECNEST by calling MatNestSetVecType(A,VECNEST) */
1848: A->ops->getlocalsubmatrix = MatGetLocalSubMatrix_Nest;
1849: A->ops->restorelocalsubmatrix = MatRestoreLocalSubMatrix_Nest;
1850: A->ops->getdiagonal = MatGetDiagonal_Nest;
1851: A->ops->diagonalscale = MatDiagonalScale_Nest;
1852: A->ops->scale = MatScale_Nest;
1853: A->ops->shift = MatShift_Nest;
1854: A->ops->diagonalset = MatDiagonalSet_Nest;
1855: A->ops->setrandom = MatSetRandom_Nest;
1856: A->ops->hasoperation = MatHasOperation_Nest;
1858: A->spptr = 0;
1859: A->assembled = PETSC_FALSE;
1861: /* expose Nest api's */
1862: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMat_C", MatNestGetSubMat_Nest);
1863: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMat_C", MatNestSetSubMat_Nest);
1864: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMats_C", MatNestGetSubMats_Nest);
1865: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSize_C", MatNestGetSize_Nest);
1866: PetscObjectComposeFunction((PetscObject)A,"MatNestGetISs_C", MatNestGetISs_Nest);
1867: PetscObjectComposeFunction((PetscObject)A,"MatNestGetLocalISs_C", MatNestGetLocalISs_Nest);
1868: PetscObjectComposeFunction((PetscObject)A,"MatNestSetVecType_C", MatNestSetVecType_Nest);
1869: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMats_C", MatNestSetSubMats_Nest);
1870: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_mpiaij_C",MatConvert_Nest_AIJ);
1871: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_seqaij_C",MatConvert_Nest_AIJ);
1872: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_aij_C", MatConvert_Nest_AIJ);
1873: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_is_C", MatConvert_Nest_IS);
1875: PetscObjectChangeTypeName((PetscObject)A,MATNEST);
1876: return(0);
1877: }