Actual source code: baijfact.c

petsc-3.11.4 2019-09-28
Report Typos and Errors

  2: /*
  3:     Factorization code for BAIJ format.
  4: */
  5:  #include <../src/mat/impls/baij/seq/baij.h>
  6:  #include <petsc/private/kernels/blockinvert.h>

  8: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_2(Mat B,Mat A,const MatFactorInfo *info)
  9: {
 10:   Mat            C     =B;
 11:   Mat_SeqBAIJ    *a    =(Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)C->data;
 12:   IS             isrow = b->row,isicol = b->icol;
 14:   const PetscInt *r,*ic;
 15:   PetscInt       i,j,k,nz,nzL,row,*pj;
 16:   const PetscInt n=a->mbs,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j,bs2=a->bs2;
 17:   const PetscInt *ajtmp,*bjtmp,*bdiag=b->diag;
 18:   MatScalar      *rtmp,*pc,*mwork,*pv;
 19:   MatScalar      *aa=a->a,*v;
 20:   PetscInt       flg;
 21:   PetscReal      shift = info->shiftamount;
 22:   PetscBool      allowzeropivot,zeropivotdetected;

 25:   ISGetIndices(isrow,&r);
 26:   ISGetIndices(isicol,&ic);
 27:   allowzeropivot = PetscNot(A->erroriffailure);

 29:   /* generate work space needed by the factorization */
 30:   PetscMalloc2(bs2*n,&rtmp,bs2,&mwork);
 31:   PetscMemzero(rtmp,bs2*n*sizeof(MatScalar));

 33:   for (i=0; i<n; i++) {
 34:     /* zero rtmp */
 35:     /* L part */
 36:     nz    = bi[i+1] - bi[i];
 37:     bjtmp = bj + bi[i];
 38:     for  (j=0; j<nz; j++) {
 39:       PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
 40:     }

 42:     /* U part */
 43:     nz    = bdiag[i] - bdiag[i+1];
 44:     bjtmp = bj + bdiag[i+1]+1;
 45:     for  (j=0; j<nz; j++) {
 46:       PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
 47:     }

 49:     /* load in initial (unfactored row) */
 50:     nz    = ai[r[i]+1] - ai[r[i]];
 51:     ajtmp = aj + ai[r[i]];
 52:     v     = aa + bs2*ai[r[i]];
 53:     for (j=0; j<nz; j++) {
 54:       PetscMemcpy(rtmp+bs2*ic[ajtmp[j]],v+bs2*j,bs2*sizeof(MatScalar));
 55:     }

 57:     /* elimination */
 58:     bjtmp = bj + bi[i];
 59:     nzL   = bi[i+1] - bi[i];
 60:     for (k=0; k < nzL; k++) {
 61:       row = bjtmp[k];
 62:       pc  = rtmp + bs2*row;
 63:       for (flg=0,j=0; j<bs2; j++) {
 64:         if (pc[j] != (PetscScalar)0.0) {
 65:           flg = 1;
 66:           break;
 67:         }
 68:       }
 69:       if (flg) {
 70:         pv = b->a + bs2*bdiag[row];
 71:         /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
 72:         PetscKernel_A_gets_A_times_B_2(pc,pv,mwork);

 74:         pj = b->j + bdiag[row+1]+1; /* begining of U(row,:) */
 75:         pv = b->a + bs2*(bdiag[row+1]+1);
 76:         nz = bdiag[row] - bdiag[row+1] - 1; /* num of entries inU(row,:), excluding diag */
 77:         for (j=0; j<nz; j++) {
 78:           /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
 79:           /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
 80:           v    = rtmp + 4*pj[j];
 81:           PetscKernel_A_gets_A_minus_B_times_C_2(v,pc,pv);
 82:           pv  += 4;
 83:         }
 84:         PetscLogFlops(16*nz+12); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
 85:       }
 86:     }

 88:     /* finished row so stick it into b->a */
 89:     /* L part */
 90:     pv = b->a + bs2*bi[i];
 91:     pj = b->j + bi[i];
 92:     nz = bi[i+1] - bi[i];
 93:     for (j=0; j<nz; j++) {
 94:       PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
 95:     }

 97:     /* Mark diagonal and invert diagonal for simplier triangular solves */
 98:     pv   = b->a + bs2*bdiag[i];
 99:     pj   = b->j + bdiag[i];
100:     PetscMemcpy(pv,rtmp+bs2*pj[0],bs2*sizeof(MatScalar));
101: 
102:     PetscKernel_A_gets_inverse_A_2(pv,shift,allowzeropivot,&zeropivotdetected);
103:     if (zeropivotdetected) B->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;

105:     /* U part */
106:     pv = b->a + bs2*(bdiag[i+1]+1);
107:     pj = b->j + bdiag[i+1]+1;
108:     nz = bdiag[i] - bdiag[i+1] - 1;
109:     for (j=0; j<nz; j++) {
110:       PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
111:     }
112:   }

114:   PetscFree2(rtmp,mwork);
115:   ISRestoreIndices(isicol,&ic);
116:   ISRestoreIndices(isrow,&r);

118:   C->ops->solve          = MatSolve_SeqBAIJ_2;
119:   C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_2;
120:   C->assembled           = PETSC_TRUE;

122:   PetscLogFlops(1.333333333333*2*2*2*n); /* from inverting diagonal blocks */
123:   return(0);
124: }

126: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_2_NaturalOrdering(Mat B,Mat A,const MatFactorInfo *info)
127: {
128:   Mat            C =B;
129:   Mat_SeqBAIJ    *a=(Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)C->data;
131:   PetscInt       i,j,k,nz,nzL,row,*pj;
132:   const PetscInt n=a->mbs,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j,bs2=a->bs2;
133:   const PetscInt *ajtmp,*bjtmp,*bdiag=b->diag;
134:   MatScalar      *rtmp,*pc,*mwork,*pv;
135:   MatScalar      *aa=a->a,*v;
136:   PetscInt       flg;
137:   PetscReal      shift = info->shiftamount;
138:   PetscBool      allowzeropivot,zeropivotdetected;

141:   allowzeropivot = PetscNot(A->erroriffailure);

143:   /* generate work space needed by the factorization */
144:   PetscMalloc2(bs2*n,&rtmp,bs2,&mwork);
145:   PetscMemzero(rtmp,bs2*n*sizeof(MatScalar));

147:   for (i=0; i<n; i++) {
148:     /* zero rtmp */
149:     /* L part */
150:     nz    = bi[i+1] - bi[i];
151:     bjtmp = bj + bi[i];
152:     for  (j=0; j<nz; j++) {
153:       PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
154:     }

156:     /* U part */
157:     nz    = bdiag[i] - bdiag[i+1];
158:     bjtmp = bj + bdiag[i+1]+1;
159:     for  (j=0; j<nz; j++) {
160:       PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
161:     }

163:     /* load in initial (unfactored row) */
164:     nz    = ai[i+1] - ai[i];
165:     ajtmp = aj + ai[i];
166:     v     = aa + bs2*ai[i];
167:     for (j=0; j<nz; j++) {
168:       PetscMemcpy(rtmp+bs2*ajtmp[j],v+bs2*j,bs2*sizeof(MatScalar));
169:     }

171:     /* elimination */
172:     bjtmp = bj + bi[i];
173:     nzL   = bi[i+1] - bi[i];
174:     for (k=0; k < nzL; k++) {
175:       row = bjtmp[k];
176:       pc  = rtmp + bs2*row;
177:       for (flg=0,j=0; j<bs2; j++) {
178:         if (pc[j]!=(PetscScalar)0.0) {
179:           flg = 1;
180:           break;
181:         }
182:       }
183:       if (flg) {
184:         pv = b->a + bs2*bdiag[row];
185:         /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
186:         PetscKernel_A_gets_A_times_B_2(pc,pv,mwork);

188:         pj = b->j + bdiag[row+1]+1; /* beginning of U(row,:) */
189:         pv = b->a + bs2*(bdiag[row+1]+1);
190:         nz = bdiag[row]-bdiag[row+1] - 1; /* num of entries in U(row,:) excluding diag */
191:         for (j=0; j<nz; j++) {
192:           /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
193:           /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
194:           v    = rtmp + 4*pj[j];
195:           PetscKernel_A_gets_A_minus_B_times_C_2(v,pc,pv);
196:           pv  += 4;
197:         }
198:         PetscLogFlops(16*nz+12); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
199:       }
200:     }

202:     /* finished row so stick it into b->a */
203:     /* L part */
204:     pv = b->a + bs2*bi[i];
205:     pj = b->j + bi[i];
206:     nz = bi[i+1] - bi[i];
207:     for (j=0; j<nz; j++) {
208:       PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
209:     }

211:     /* Mark diagonal and invert diagonal for simplier triangular solves */
212:     pv   = b->a + bs2*bdiag[i];
213:     pj   = b->j + bdiag[i];
214:     PetscMemcpy(pv,rtmp+bs2*pj[0],bs2*sizeof(MatScalar));
215: 
216:     PetscKernel_A_gets_inverse_A_2(pv,shift,allowzeropivot,&zeropivotdetected);
217:     if (zeropivotdetected) B->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;

219:     /* U part */
220:     /*
221:     pv = b->a + bs2*bi[2*n-i];
222:     pj = b->j + bi[2*n-i];
223:     nz = bi[2*n-i+1] - bi[2*n-i] - 1;
224:     */
225:     pv = b->a + bs2*(bdiag[i+1]+1);
226:     pj = b->j + bdiag[i+1]+1;
227:     nz = bdiag[i] - bdiag[i+1] - 1;
228:     for (j=0; j<nz; j++) {
229:       PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
230:     }
231:   }
232:   PetscFree2(rtmp,mwork);

234:   C->ops->solve          = MatSolve_SeqBAIJ_2_NaturalOrdering;
235:   C->ops->forwardsolve   = MatForwardSolve_SeqBAIJ_2_NaturalOrdering;
236:   C->ops->backwardsolve  = MatBackwardSolve_SeqBAIJ_2_NaturalOrdering;
237:   C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_2_NaturalOrdering;
238:   C->assembled           = PETSC_TRUE;

240:   PetscLogFlops(1.333333333333*2*2*2*n); /* from inverting diagonal blocks */
241:   return(0);
242: }

244: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_2_inplace(Mat B,Mat A,const MatFactorInfo *info)
245: {
246:   Mat            C     = B;
247:   Mat_SeqBAIJ    *a    = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
248:   IS             isrow = b->row,isicol = b->icol;
250:   const PetscInt *r,*ic;
251:   PetscInt       i,j,n = a->mbs,*bi = b->i,*bj = b->j;
252:   PetscInt       *ajtmpold,*ajtmp,nz,row;
253:   PetscInt       *diag_offset=b->diag,idx,*ai=a->i,*aj=a->j,*pj;
254:   MatScalar      *pv,*v,*rtmp,m1,m2,m3,m4,*pc,*w,*x,x1,x2,x3,x4;
255:   MatScalar      p1,p2,p3,p4;
256:   MatScalar      *ba   = b->a,*aa = a->a;
257:   PetscReal      shift = info->shiftamount;
258:   PetscBool      allowzeropivot,zeropivotdetected;

261:   allowzeropivot = PetscNot(A->erroriffailure);
262:   ISGetIndices(isrow,&r);
263:   ISGetIndices(isicol,&ic);
264:   PetscMalloc1(4*(n+1),&rtmp);

266:   for (i=0; i<n; i++) {
267:     nz    = bi[i+1] - bi[i];
268:     ajtmp = bj + bi[i];
269:     for  (j=0; j<nz; j++) {
270:       x = rtmp+4*ajtmp[j]; x[0] = x[1] = x[2] = x[3] = 0.0;
271:     }
272:     /* load in initial (unfactored row) */
273:     idx      = r[i];
274:     nz       = ai[idx+1] - ai[idx];
275:     ajtmpold = aj + ai[idx];
276:     v        = aa + 4*ai[idx];
277:     for (j=0; j<nz; j++) {
278:       x    = rtmp+4*ic[ajtmpold[j]];
279:       x[0] = v[0]; x[1] = v[1]; x[2] = v[2]; x[3] = v[3];
280:       v   += 4;
281:     }
282:     row = *ajtmp++;
283:     while (row < i) {
284:       pc = rtmp + 4*row;
285:       p1 = pc[0]; p2 = pc[1]; p3 = pc[2]; p4 = pc[3];
286:       if (p1 != (PetscScalar)0.0 || p2 != (PetscScalar)0.0 || p3 != (PetscScalar)0.0 || p4 != (PetscScalar)0.0) {
287:         pv    = ba + 4*diag_offset[row];
288:         pj    = bj + diag_offset[row] + 1;
289:         x1    = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
290:         pc[0] = m1 = p1*x1 + p3*x2;
291:         pc[1] = m2 = p2*x1 + p4*x2;
292:         pc[2] = m3 = p1*x3 + p3*x4;
293:         pc[3] = m4 = p2*x3 + p4*x4;
294:         nz    = bi[row+1] - diag_offset[row] - 1;
295:         pv   += 4;
296:         for (j=0; j<nz; j++) {
297:           x1    = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
298:           x     = rtmp + 4*pj[j];
299:           x[0] -= m1*x1 + m3*x2;
300:           x[1] -= m2*x1 + m4*x2;
301:           x[2] -= m1*x3 + m3*x4;
302:           x[3] -= m2*x3 + m4*x4;
303:           pv   += 4;
304:         }
305:         PetscLogFlops(16.0*nz+12.0);
306:       }
307:       row = *ajtmp++;
308:     }
309:     /* finished row so stick it into b->a */
310:     pv = ba + 4*bi[i];
311:     pj = bj + bi[i];
312:     nz = bi[i+1] - bi[i];
313:     for (j=0; j<nz; j++) {
314:       x     = rtmp+4*pj[j];
315:       pv[0] = x[0]; pv[1] = x[1]; pv[2] = x[2]; pv[3] = x[3];
316:       pv   += 4;
317:     }
318:     /* invert diagonal block */
319:     w    = ba + 4*diag_offset[i];
320:     PetscKernel_A_gets_inverse_A_2(w,shift,allowzeropivot,&zeropivotdetected);
321:     if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
322:   }

324:   PetscFree(rtmp);
325:   ISRestoreIndices(isicol,&ic);
326:   ISRestoreIndices(isrow,&r);

328:   C->ops->solve          = MatSolve_SeqBAIJ_2_inplace;
329:   C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_2_inplace;
330:   C->assembled           = PETSC_TRUE;

332:   PetscLogFlops(1.333333333333*8*b->mbs); /* from inverting diagonal blocks */
333:   return(0);
334: }
335: /*
336:       Version for when blocks are 2 by 2 Using natural ordering
337: */
338: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_2_NaturalOrdering_inplace(Mat C,Mat A,const MatFactorInfo *info)
339: {
340:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
342:   PetscInt       i,j,n = a->mbs,*bi = b->i,*bj = b->j;
343:   PetscInt       *ajtmpold,*ajtmp,nz,row;
344:   PetscInt       *diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj;
345:   MatScalar      *pv,*v,*rtmp,*pc,*w,*x;
346:   MatScalar      p1,p2,p3,p4,m1,m2,m3,m4,x1,x2,x3,x4;
347:   MatScalar      *ba   = b->a,*aa = a->a;
348:   PetscReal      shift = info->shiftamount;
349:   PetscBool      allowzeropivot,zeropivotdetected;

352:   allowzeropivot = PetscNot(A->erroriffailure);
353:   PetscMalloc1(4*(n+1),&rtmp);
354:   for (i=0; i<n; i++) {
355:     nz    = bi[i+1] - bi[i];
356:     ajtmp = bj + bi[i];
357:     for  (j=0; j<nz; j++) {
358:       x    = rtmp+4*ajtmp[j];
359:       x[0] = x[1]  = x[2]  = x[3]  = 0.0;
360:     }
361:     /* load in initial (unfactored row) */
362:     nz       = ai[i+1] - ai[i];
363:     ajtmpold = aj + ai[i];
364:     v        = aa + 4*ai[i];
365:     for (j=0; j<nz; j++) {
366:       x    = rtmp+4*ajtmpold[j];
367:       x[0] = v[0];  x[1]  = v[1];  x[2]  = v[2];  x[3]  = v[3];
368:       v   += 4;
369:     }
370:     row = *ajtmp++;
371:     while (row < i) {
372:       pc = rtmp + 4*row;
373:       p1 = pc[0];  p2  = pc[1];  p3  = pc[2];  p4  = pc[3];
374:       if (p1 != (PetscScalar)0.0 || p2 != (PetscScalar)0.0 || p3 != (PetscScalar)0.0 || p4 != (PetscScalar)0.0) {
375:         pv    = ba + 4*diag_offset[row];
376:         pj    = bj + diag_offset[row] + 1;
377:         x1    = pv[0];  x2  = pv[1];  x3  = pv[2];  x4  = pv[3];
378:         pc[0] = m1 = p1*x1 + p3*x2;
379:         pc[1] = m2 = p2*x1 + p4*x2;
380:         pc[2] = m3 = p1*x3 + p3*x4;
381:         pc[3] = m4 = p2*x3 + p4*x4;
382:         nz    = bi[row+1] - diag_offset[row] - 1;
383:         pv   += 4;
384:         for (j=0; j<nz; j++) {
385:           x1    = pv[0];  x2  = pv[1];   x3 = pv[2];  x4  = pv[3];
386:           x     = rtmp + 4*pj[j];
387:           x[0] -= m1*x1 + m3*x2;
388:           x[1] -= m2*x1 + m4*x2;
389:           x[2] -= m1*x3 + m3*x4;
390:           x[3] -= m2*x3 + m4*x4;
391:           pv   += 4;
392:         }
393:         PetscLogFlops(16.0*nz+12.0);
394:       }
395:       row = *ajtmp++;
396:     }
397:     /* finished row so stick it into b->a */
398:     pv = ba + 4*bi[i];
399:     pj = bj + bi[i];
400:     nz = bi[i+1] - bi[i];
401:     for (j=0; j<nz; j++) {
402:       x     = rtmp+4*pj[j];
403:       pv[0] = x[0];  pv[1]  = x[1];  pv[2]  = x[2];  pv[3]  = x[3];
404:       /*
405:       printf(" col %d:",pj[j]);
406:       PetscInt j1;
407:       for (j1=0; j1<4; j1++) printf(" %g,",*(pv+j1));
408:       printf("\n");
409:       */
410:       pv += 4;
411:     }
412:     /* invert diagonal block */
413:     w = ba + 4*diag_offset[i];
414:     PetscKernel_A_gets_inverse_A_2(w,shift, allowzeropivot,&zeropivotdetected);
415:     if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
416:   }

418:   PetscFree(rtmp);

420:   C->ops->solve          = MatSolve_SeqBAIJ_2_NaturalOrdering_inplace;
421:   C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_2_NaturalOrdering_inplace;
422:   C->assembled           = PETSC_TRUE;

424:   PetscLogFlops(1.333333333333*8*b->mbs); /* from inverting diagonal blocks */
425:   return(0);
426: }

428: /* ----------------------------------------------------------- */
429: /*
430:      Version for when blocks are 1 by 1.
431: */
432: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_1(Mat B,Mat A,const MatFactorInfo *info)
433: {
434:   Mat             C     =B;
435:   Mat_SeqBAIJ     *a    =(Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)C->data;
436:   IS              isrow = b->row,isicol = b->icol;
437:   PetscErrorCode  ierr;
438:   const PetscInt  *r,*ic,*ics;
439:   const PetscInt  n=a->mbs,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j,*bdiag=b->diag;
440:   PetscInt        i,j,k,nz,nzL,row,*pj;
441:   const PetscInt  *ajtmp,*bjtmp;
442:   MatScalar       *rtmp,*pc,multiplier,*pv;
443:   const MatScalar *aa=a->a,*v;
444:   PetscBool       row_identity,col_identity;
445:   FactorShiftCtx  sctx;
446:   const PetscInt  *ddiag;
447:   PetscReal       rs;
448:   MatScalar       d;

451:   /* MatPivotSetUp(): initialize shift context sctx */
452:   PetscMemzero(&sctx,sizeof(FactorShiftCtx));

454:   if (info->shifttype == (PetscReal) MAT_SHIFT_POSITIVE_DEFINITE) { /* set sctx.shift_top=max{rs} */
455:     ddiag          = a->diag;
456:     sctx.shift_top = info->zeropivot;
457:     for (i=0; i<n; i++) {
458:       /* calculate sum(|aij|)-RealPart(aii), amt of shift needed for this row */
459:       d  = (aa)[ddiag[i]];
460:       rs = -PetscAbsScalar(d) - PetscRealPart(d);
461:       v  = aa+ai[i];
462:       nz = ai[i+1] - ai[i];
463:       for (j=0; j<nz; j++) rs += PetscAbsScalar(v[j]);
464:       if (rs>sctx.shift_top) sctx.shift_top = rs;
465:     }
466:     sctx.shift_top *= 1.1;
467:     sctx.nshift_max = 5;
468:     sctx.shift_lo   = 0.;
469:     sctx.shift_hi   = 1.;
470:   }

472:   ISGetIndices(isrow,&r);
473:   ISGetIndices(isicol,&ic);
474:   PetscMalloc1(n+1,&rtmp);
475:   ics  = ic;

477:   do {
478:     sctx.newshift = PETSC_FALSE;
479:     for (i=0; i<n; i++) {
480:       /* zero rtmp */
481:       /* L part */
482:       nz    = bi[i+1] - bi[i];
483:       bjtmp = bj + bi[i];
484:       for  (j=0; j<nz; j++) rtmp[bjtmp[j]] = 0.0;

486:       /* U part */
487:       nz    = bdiag[i]-bdiag[i+1];
488:       bjtmp = bj + bdiag[i+1]+1;
489:       for  (j=0; j<nz; j++) rtmp[bjtmp[j]] = 0.0;

491:       /* load in initial (unfactored row) */
492:       nz    = ai[r[i]+1] - ai[r[i]];
493:       ajtmp = aj + ai[r[i]];
494:       v     = aa + ai[r[i]];
495:       for (j=0; j<nz; j++) rtmp[ics[ajtmp[j]]] = v[j];

497:       /* ZeropivotApply() */
498:       rtmp[i] += sctx.shift_amount;  /* shift the diagonal of the matrix */

500:       /* elimination */
501:       bjtmp = bj + bi[i];
502:       row   = *bjtmp++;
503:       nzL   = bi[i+1] - bi[i];
504:       for (k=0; k < nzL; k++) {
505:         pc = rtmp + row;
506:         if (*pc != (PetscScalar)0.0) {
507:           pv         = b->a + bdiag[row];
508:           multiplier = *pc * (*pv);
509:           *pc        = multiplier;

511:           pj = b->j + bdiag[row+1]+1; /* beginning of U(row,:) */
512:           pv = b->a + bdiag[row+1]+1;
513:           nz = bdiag[row]-bdiag[row+1]-1; /* num of entries in U(row,:) excluding diag */
514:           for (j=0; j<nz; j++) rtmp[pj[j]] -= multiplier * pv[j];
515:           PetscLogFlops(2.0*nz);
516:         }
517:         row = *bjtmp++;
518:       }

520:       /* finished row so stick it into b->a */
521:       rs = 0.0;
522:       /* L part */
523:       pv = b->a + bi[i];
524:       pj = b->j + bi[i];
525:       nz = bi[i+1] - bi[i];
526:       for (j=0; j<nz; j++) {
527:         pv[j] = rtmp[pj[j]]; rs += PetscAbsScalar(pv[j]);
528:       }

530:       /* U part */
531:       pv = b->a + bdiag[i+1]+1;
532:       pj = b->j + bdiag[i+1]+1;
533:       nz = bdiag[i] - bdiag[i+1]-1;
534:       for (j=0; j<nz; j++) {
535:         pv[j] = rtmp[pj[j]]; rs += PetscAbsScalar(pv[j]);
536:       }

538:       sctx.rs = rs;
539:       sctx.pv = rtmp[i];
540:       MatPivotCheck(B,A,info,&sctx,i);
541:       if (sctx.newshift) break; /* break for-loop */
542:       rtmp[i] = sctx.pv; /* sctx.pv might be updated in the case of MAT_SHIFT_INBLOCKS */

544:       /* Mark diagonal and invert diagonal for simplier triangular solves */
545:       pv  = b->a + bdiag[i];
546:       *pv = (PetscScalar)1.0/rtmp[i];

548:     } /* endof for (i=0; i<n; i++) { */

550:     /* MatPivotRefine() */
551:     if (info->shifttype == (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE && !sctx.newshift && sctx.shift_fraction>0 && sctx.nshift<sctx.nshift_max) {
552:       /*
553:        * if no shift in this attempt & shifting & started shifting & can refine,
554:        * then try lower shift
555:        */
556:       sctx.shift_hi       = sctx.shift_fraction;
557:       sctx.shift_fraction = (sctx.shift_hi+sctx.shift_lo)/2.;
558:       sctx.shift_amount   = sctx.shift_fraction * sctx.shift_top;
559:       sctx.newshift       = PETSC_TRUE;
560:       sctx.nshift++;
561:     }
562:   } while (sctx.newshift);

564:   PetscFree(rtmp);
565:   ISRestoreIndices(isicol,&ic);
566:   ISRestoreIndices(isrow,&r);

568:   ISIdentity(isrow,&row_identity);
569:   ISIdentity(isicol,&col_identity);
570:   if (row_identity && col_identity) {
571:     C->ops->solve          = MatSolve_SeqBAIJ_1_NaturalOrdering;
572:     C->ops->forwardsolve   = MatForwardSolve_SeqBAIJ_1_NaturalOrdering;
573:     C->ops->backwardsolve  = MatBackwardSolve_SeqBAIJ_1_NaturalOrdering;
574:     C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_1_NaturalOrdering;
575:   } else {
576:     C->ops->solve          = MatSolve_SeqBAIJ_1;
577:     C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_1;
578:   }
579:   C->assembled = PETSC_TRUE;
580:   PetscLogFlops(C->cmap->n);

582:   /* MatShiftView(A,info,&sctx) */
583:   if (sctx.nshift) {
584:     if (info->shifttype == (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE) {
585:       PetscInfo4(A,"number of shift_pd tries %D, shift_amount %g, diagonal shifted up by %e fraction top_value %e\n",sctx.nshift,(double)sctx.shift_amount,(double)sctx.shift_fraction,(double)sctx.shift_top);
586:     } else if (info->shifttype == (PetscReal)MAT_SHIFT_NONZERO) {
587:       PetscInfo2(A,"number of shift_nz tries %D, shift_amount %g\n",sctx.nshift,(double)sctx.shift_amount);
588:     } else if (info->shifttype == (PetscReal)MAT_SHIFT_INBLOCKS) {
589:       PetscInfo2(A,"number of shift_inblocks applied %D, each shift_amount %g\n",sctx.nshift,(double)info->shiftamount);
590:     }
591:   }
592:   return(0);
593: }

595: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_1_inplace(Mat C,Mat A,const MatFactorInfo *info)
596: {
597:   Mat_SeqBAIJ    *a    = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
598:   IS             isrow = b->row,isicol = b->icol;
600:   const PetscInt *r,*ic;
601:   PetscInt       i,j,n = a->mbs,*bi = b->i,*bj = b->j;
602:   PetscInt       *ajtmpold,*ajtmp,nz,row,*ai = a->i,*aj = a->j;
603:   PetscInt       *diag_offset = b->diag,diag,*pj;
604:   MatScalar      *pv,*v,*rtmp,multiplier,*pc;
605:   MatScalar      *ba = b->a,*aa = a->a;
606:   PetscBool      row_identity, col_identity;

609:   ISGetIndices(isrow,&r);
610:   ISGetIndices(isicol,&ic);
611:   PetscMalloc1(n+1,&rtmp);

613:   for (i=0; i<n; i++) {
614:     nz    = bi[i+1] - bi[i];
615:     ajtmp = bj + bi[i];
616:     for  (j=0; j<nz; j++) rtmp[ajtmp[j]] = 0.0;

618:     /* load in initial (unfactored row) */
619:     nz       = ai[r[i]+1] - ai[r[i]];
620:     ajtmpold = aj + ai[r[i]];
621:     v        = aa + ai[r[i]];
622:     for (j=0; j<nz; j++) rtmp[ic[ajtmpold[j]]] =  v[j];

624:     row = *ajtmp++;
625:     while (row < i) {
626:       pc = rtmp + row;
627:       if (*pc != 0.0) {
628:         pv         = ba + diag_offset[row];
629:         pj         = bj + diag_offset[row] + 1;
630:         multiplier = *pc * *pv++;
631:         *pc        = multiplier;
632:         nz         = bi[row+1] - diag_offset[row] - 1;
633:         for (j=0; j<nz; j++) rtmp[pj[j]] -= multiplier * pv[j];
634:         PetscLogFlops(1.0+2.0*nz);
635:       }
636:       row = *ajtmp++;
637:     }
638:     /* finished row so stick it into b->a */
639:     pv = ba + bi[i];
640:     pj = bj + bi[i];
641:     nz = bi[i+1] - bi[i];
642:     for (j=0; j<nz; j++) pv[j] = rtmp[pj[j]];
643:     diag = diag_offset[i] - bi[i];
644:     /* check pivot entry for current row */
645:     if (pv[diag] == 0.0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot: row in original ordering %D in permuted ordering %D",r[i],i);
646:     pv[diag] = 1.0/pv[diag];
647:   }

649:   PetscFree(rtmp);
650:   ISRestoreIndices(isicol,&ic);
651:   ISRestoreIndices(isrow,&r);
652:   ISIdentity(isrow,&row_identity);
653:   ISIdentity(isicol,&col_identity);
654:   if (row_identity && col_identity) {
655:     C->ops->solve          = MatSolve_SeqBAIJ_1_NaturalOrdering_inplace;
656:     C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_1_NaturalOrdering_inplace;
657:   } else {
658:     C->ops->solve          = MatSolve_SeqBAIJ_1_inplace;
659:     C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_1_inplace;
660:   }
661:   C->assembled = PETSC_TRUE;
662:   PetscLogFlops(C->cmap->n);
663:   return(0);
664: }

666: PETSC_INTERN PetscErrorCode MatGetFactor_seqbaij_petsc(Mat A,MatFactorType ftype,Mat *B)
667: {
668:   PetscInt       n = A->rmap->n;

672: #if defined(PETSC_USE_COMPLEX)
673:   if (A->hermitian && (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Hermitian Factor is not supported");
674: #endif
675:   MatCreate(PetscObjectComm((PetscObject)A),B);
676:   MatSetSizes(*B,n,n,n,n);
677:   if (ftype == MAT_FACTOR_LU || ftype == MAT_FACTOR_ILU || ftype == MAT_FACTOR_ILUDT) {
678:     MatSetType(*B,MATSEQBAIJ);

680:     (*B)->ops->lufactorsymbolic  = MatLUFactorSymbolic_SeqBAIJ;
681:     (*B)->ops->ilufactorsymbolic = MatILUFactorSymbolic_SeqBAIJ;
682:   } else if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
683:     MatSetType(*B,MATSEQSBAIJ);
684:     MatSeqSBAIJSetPreallocation(*B,A->rmap->bs,MAT_SKIP_ALLOCATION,NULL);

686:     (*B)->ops->iccfactorsymbolic      = MatICCFactorSymbolic_SeqBAIJ;
687:     (*B)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqBAIJ;
688:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");
689:   (*B)->factortype = ftype;

691:   PetscFree((*B)->solvertype);
692:   PetscStrallocpy(MATSOLVERPETSC,&(*B)->solvertype);
693:   return(0);
694: }

696: /* ----------------------------------------------------------- */
697: PetscErrorCode MatLUFactor_SeqBAIJ(Mat A,IS row,IS col,const MatFactorInfo *info)
698: {
700:   Mat            C;

703:   MatGetFactor(A,MATSOLVERPETSC,MAT_FACTOR_LU,&C);
704:   MatLUFactorSymbolic(C,A,row,col,info);
705:   MatLUFactorNumeric(C,A,info);

707:   A->ops->solve          = C->ops->solve;
708:   A->ops->solvetranspose = C->ops->solvetranspose;

710:   MatHeaderMerge(A,&C);
711:   PetscLogObjectParent((PetscObject)A,(PetscObject)((Mat_SeqBAIJ*)(A->data))->icol);
712:   return(0);
713: }

715:  #include <../src/mat/impls/sbaij/seq/sbaij.h>
716: PetscErrorCode MatCholeskyFactorNumeric_SeqBAIJ_N(Mat C,Mat A,const MatFactorInfo *info)
717: {
719:   Mat_SeqBAIJ    *a=(Mat_SeqBAIJ*)A->data;
720:   Mat_SeqSBAIJ   *b=(Mat_SeqSBAIJ*)C->data;
721:   IS             ip=b->row;
722:   const PetscInt *rip;
723:   PetscInt       i,j,mbs=a->mbs,bs=A->rmap->bs,*bi=b->i,*bj=b->j,*bcol;
724:   PetscInt       *ai=a->i,*aj=a->j;
725:   PetscInt       k,jmin,jmax,*jl,*il,col,nexti,ili,nz;
726:   MatScalar      *rtmp,*ba=b->a,*bval,*aa=a->a,dk,uikdi;
727:   PetscReal      rs;
728:   FactorShiftCtx sctx;

731:   if (bs > 1) { /* convert A to a SBAIJ matrix and apply Cholesky factorization from it */
732:     if (!a->sbaijMat) {
733:       MatConvert(A,MATSEQSBAIJ,MAT_INITIAL_MATRIX,&a->sbaijMat);
734:     }
735:     (a->sbaijMat)->ops->choleskyfactornumeric(C,a->sbaijMat,info);
736:     MatDestroy(&a->sbaijMat);
737:     return(0);
738:   }

740:   /* MatPivotSetUp(): initialize shift context sctx */
741:   PetscMemzero(&sctx,sizeof(FactorShiftCtx));

743:   ISGetIndices(ip,&rip);
744:   PetscMalloc3(mbs,&rtmp,mbs,&il,mbs,&jl);

746:   sctx.shift_amount = 0.;
747:   sctx.nshift       = 0;
748:   do {
749:     sctx.newshift = PETSC_FALSE;
750:     for (i=0; i<mbs; i++) {
751:       rtmp[i] = 0.0; jl[i] = mbs; il[0] = 0;
752:     }

754:     for (k = 0; k<mbs; k++) {
755:       bval = ba + bi[k];
756:       /* initialize k-th row by the perm[k]-th row of A */
757:       jmin = ai[rip[k]]; jmax = ai[rip[k]+1];
758:       for (j = jmin; j < jmax; j++) {
759:         col = rip[aj[j]];
760:         if (col >= k) { /* only take upper triangular entry */
761:           rtmp[col] = aa[j];
762:           *bval++   = 0.0; /* for in-place factorization */
763:         }
764:       }

766:       /* shift the diagonal of the matrix */
767:       if (sctx.nshift) rtmp[k] += sctx.shift_amount;

769:       /* modify k-th row by adding in those rows i with U(i,k)!=0 */
770:       dk = rtmp[k];
771:       i  = jl[k]; /* first row to be added to k_th row  */

773:       while (i < k) {
774:         nexti = jl[i]; /* next row to be added to k_th row */

776:         /* compute multiplier, update diag(k) and U(i,k) */
777:         ili     = il[i]; /* index of first nonzero element in U(i,k:bms-1) */
778:         uikdi   = -ba[ili]*ba[bi[i]]; /* diagonal(k) */
779:         dk     += uikdi*ba[ili];
780:         ba[ili] = uikdi; /* -U(i,k) */

782:         /* add multiple of row i to k-th row */
783:         jmin = ili + 1; jmax = bi[i+1];
784:         if (jmin < jmax) {
785:           for (j=jmin; j<jmax; j++) rtmp[bj[j]] += uikdi*ba[j];
786:           /* update il and jl for row i */
787:           il[i] = jmin;
788:           j     = bj[jmin]; jl[i] = jl[j]; jl[j] = i;
789:         }
790:         i = nexti;
791:       }

793:       /* shift the diagonals when zero pivot is detected */
794:       /* compute rs=sum of abs(off-diagonal) */
795:       rs   = 0.0;
796:       jmin = bi[k]+1;
797:       nz   = bi[k+1] - jmin;
798:       if (nz) {
799:         bcol = bj + jmin;
800:         while (nz--) {
801:           rs += PetscAbsScalar(rtmp[*bcol]);
802:           bcol++;
803:         }
804:       }

806:       sctx.rs = rs;
807:       sctx.pv = dk;
808:       MatPivotCheck(C,A,info,&sctx,k);
809:       if (sctx.newshift) break;
810:       dk = sctx.pv;

812:       /* copy data into U(k,:) */
813:       ba[bi[k]] = 1.0/dk; /* U(k,k) */
814:       jmin      = bi[k]+1; jmax = bi[k+1];
815:       if (jmin < jmax) {
816:         for (j=jmin; j<jmax; j++) {
817:           col = bj[j]; ba[j] = rtmp[col]; rtmp[col] = 0.0;
818:         }
819:         /* add the k-th row into il and jl */
820:         il[k] = jmin;
821:         i     = bj[jmin]; jl[k] = jl[i]; jl[i] = k;
822:       }
823:     }
824:   } while (sctx.newshift);
825:   PetscFree3(rtmp,il,jl);

827:   ISRestoreIndices(ip,&rip);

829:   C->assembled    = PETSC_TRUE;
830:   C->preallocated = PETSC_TRUE;

832:   PetscLogFlops(C->rmap->N);
833:   if (sctx.nshift) {
834:     if (info->shifttype == (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE) {
835:       PetscInfo2(A,"number of shiftpd tries %D, shift_amount %g\n",sctx.nshift,(double)sctx.shift_amount);
836:     } else if (info->shifttype == (PetscReal)MAT_SHIFT_NONZERO) {
837:       PetscInfo2(A,"number of shiftnz tries %D, shift_amount %g\n",sctx.nshift,(double)sctx.shift_amount);
838:     }
839:   }
840:   return(0);
841: }

843: PetscErrorCode MatCholeskyFactorNumeric_SeqBAIJ_N_NaturalOrdering(Mat C,Mat A,const MatFactorInfo *info)
844: {
845:   Mat_SeqBAIJ    *a=(Mat_SeqBAIJ*)A->data;
846:   Mat_SeqSBAIJ   *b=(Mat_SeqSBAIJ*)C->data;
848:   PetscInt       i,j,am=a->mbs;
849:   PetscInt       *ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j;
850:   PetscInt       k,jmin,*jl,*il,nexti,ili,*acol,*bcol,nz;
851:   MatScalar      *rtmp,*ba=b->a,*aa=a->a,dk,uikdi,*aval,*bval;
852:   PetscReal      rs;
853:   FactorShiftCtx sctx;

856:   /* MatPivotSetUp(): initialize shift context sctx */
857:   PetscMemzero(&sctx,sizeof(FactorShiftCtx));

859:   PetscMalloc3(am,&rtmp,am,&il,am,&jl);

861:   do {
862:     sctx.newshift = PETSC_FALSE;
863:     for (i=0; i<am; i++) {
864:       rtmp[i] = 0.0; jl[i] = am; il[0] = 0;
865:     }

867:     for (k = 0; k<am; k++) {
868:       /* initialize k-th row with elements nonzero in row perm(k) of A */
869:       nz   = ai[k+1] - ai[k];
870:       acol = aj + ai[k];
871:       aval = aa + ai[k];
872:       bval = ba + bi[k];
873:       while (nz--) {
874:         if (*acol < k) { /* skip lower triangular entries */
875:           acol++; aval++;
876:         } else {
877:           rtmp[*acol++] = *aval++;
878:           *bval++       = 0.0; /* for in-place factorization */
879:         }
880:       }

882:       /* shift the diagonal of the matrix */
883:       if (sctx.nshift) rtmp[k] += sctx.shift_amount;

885:       /* modify k-th row by adding in those rows i with U(i,k)!=0 */
886:       dk = rtmp[k];
887:       i  = jl[k]; /* first row to be added to k_th row  */

889:       while (i < k) {
890:         nexti = jl[i]; /* next row to be added to k_th row */
891:         /* compute multiplier, update D(k) and U(i,k) */
892:         ili     = il[i]; /* index of first nonzero element in U(i,k:bms-1) */
893:         uikdi   = -ba[ili]*ba[bi[i]];
894:         dk     += uikdi*ba[ili];
895:         ba[ili] = uikdi; /* -U(i,k) */

897:         /* add multiple of row i to k-th row ... */
898:         jmin = ili + 1;
899:         nz   = bi[i+1] - jmin;
900:         if (nz > 0) {
901:           bcol = bj + jmin;
902:           bval = ba + jmin;
903:           while (nz--) rtmp[*bcol++] += uikdi*(*bval++);
904:           /* update il and jl for i-th row */
905:           il[i] = jmin;
906:           j     = bj[jmin]; jl[i] = jl[j]; jl[j] = i;
907:         }
908:         i = nexti;
909:       }

911:       /* shift the diagonals when zero pivot is detected */
912:       /* compute rs=sum of abs(off-diagonal) */
913:       rs   = 0.0;
914:       jmin = bi[k]+1;
915:       nz   = bi[k+1] - jmin;
916:       if (nz) {
917:         bcol = bj + jmin;
918:         while (nz--) {
919:           rs += PetscAbsScalar(rtmp[*bcol]);
920:           bcol++;
921:         }
922:       }

924:       sctx.rs = rs;
925:       sctx.pv = dk;
926:       MatPivotCheck(C,A,info,&sctx,k);
927:       if (sctx.newshift) break;    /* sctx.shift_amount is updated */
928:       dk = sctx.pv;

930:       /* copy data into U(k,:) */
931:       ba[bi[k]] = 1.0/dk;
932:       jmin      = bi[k]+1;
933:       nz        = bi[k+1] - jmin;
934:       if (nz) {
935:         bcol = bj + jmin;
936:         bval = ba + jmin;
937:         while (nz--) {
938:           *bval++       = rtmp[*bcol];
939:           rtmp[*bcol++] = 0.0;
940:         }
941:         /* add k-th row into il and jl */
942:         il[k] = jmin;
943:         i     = bj[jmin]; jl[k] = jl[i]; jl[i] = k;
944:       }
945:     }
946:   } while (sctx.newshift);
947:   PetscFree3(rtmp,il,jl);

949:   C->ops->solve          = MatSolve_SeqSBAIJ_1_NaturalOrdering_inplace;
950:   C->ops->solvetranspose = MatSolve_SeqSBAIJ_1_NaturalOrdering_inplace;
951:   C->assembled           = PETSC_TRUE;
952:   C->preallocated        = PETSC_TRUE;

954:   PetscLogFlops(C->rmap->N);
955:   if (sctx.nshift) {
956:     if (info->shifttype == (PetscReal)MAT_SHIFT_NONZERO) {
957:       PetscInfo2(A,"number of shiftnz tries %D, shift_amount %g\n",sctx.nshift,(double)sctx.shift_amount);
958:     } else if (info->shifttype == (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE) {
959:       PetscInfo2(A,"number of shiftpd tries %D, shift_amount %g\n",sctx.nshift,(double)sctx.shift_amount);
960:     }
961:   }
962:   return(0);
963: }

965:  #include <petscbt.h>
966:  #include <../src/mat/utils/freespace.h>
967: PetscErrorCode MatICCFactorSymbolic_SeqBAIJ(Mat fact,Mat A,IS perm,const MatFactorInfo *info)
968: {
969:   Mat_SeqBAIJ        *a = (Mat_SeqBAIJ*)A->data;
970:   Mat_SeqSBAIJ       *b;
971:   Mat                B;
972:   PetscErrorCode     ierr;
973:   PetscBool          perm_identity,missing;
974:   PetscInt           reallocs=0,i,*ai=a->i,*aj=a->j,am=a->mbs,bs=A->rmap->bs,*ui;
975:   const PetscInt     *rip;
976:   PetscInt           jmin,jmax,nzk,k,j,*jl,prow,*il,nextprow;
977:   PetscInt           nlnk,*lnk,*lnk_lvl=NULL,ncols,ncols_upper,*cols,*cols_lvl,*uj,**uj_ptr,**uj_lvl_ptr;
978:   PetscReal          fill          =info->fill,levels=info->levels;
979:   PetscFreeSpaceList free_space    =NULL,current_space=NULL;
980:   PetscFreeSpaceList free_space_lvl=NULL,current_space_lvl=NULL;
981:   PetscBT            lnkbt;

984:   MatMissingDiagonal(A,&missing,&i);
985:   if (missing) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix is missing diagonal entry %D",i);

987:   if (bs > 1) {
988:     if (!a->sbaijMat) {
989:       MatConvert(A,MATSEQSBAIJ,MAT_INITIAL_MATRIX,&a->sbaijMat);
990:     }
991:     (fact)->ops->iccfactorsymbolic = MatICCFactorSymbolic_SeqSBAIJ;  /* undue the change made in MatGetFactor_seqbaij_petsc */

993:     MatICCFactorSymbolic(fact,a->sbaijMat,perm,info);
994:     return(0);
995:   }

997:   ISIdentity(perm,&perm_identity);
998:   ISGetIndices(perm,&rip);

1000:   /* special case that simply copies fill pattern */
1001:   if (!levels && perm_identity) {
1002:     PetscMalloc1(am+1,&ui);
1003:     for (i=0; i<am; i++) ui[i] = ai[i+1] - a->diag[i]; /* ui: rowlengths - changes when !perm_identity */
1004:     B    = fact;
1005:     MatSeqSBAIJSetPreallocation(B,1,0,ui);


1008:     b  = (Mat_SeqSBAIJ*)B->data;
1009:     uj = b->j;
1010:     for (i=0; i<am; i++) {
1011:       aj = a->j + a->diag[i];
1012:       for (j=0; j<ui[i]; j++) *uj++ = *aj++;
1013:       b->ilen[i] = ui[i];
1014:     }
1015:     PetscFree(ui);

1017:     B->factortype = MAT_FACTOR_NONE;

1019:     MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1020:     MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1021:     B->factortype = MAT_FACTOR_ICC;

1023:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqBAIJ_N_NaturalOrdering;
1024:     return(0);
1025:   }

1027:   /* initialization */
1028:   PetscMalloc1(am+1,&ui);
1029:   ui[0] = 0;
1030:   PetscMalloc1(2*am+1,&cols_lvl);

1032:   /* jl: linked list for storing indices of the pivot rows
1033:      il: il[i] points to the 1st nonzero entry of U(i,k:am-1) */
1034:   PetscMalloc4(am,&uj_ptr,am,&uj_lvl_ptr,am,&il,am,&jl);
1035:   for (i=0; i<am; i++) {
1036:     jl[i] = am; il[i] = 0;
1037:   }

1039:   /* create and initialize a linked list for storing column indices of the active row k */
1040:   nlnk = am + 1;
1041:   PetscIncompleteLLCreate(am,am,nlnk,lnk,lnk_lvl,lnkbt);

1043:   /* initial FreeSpace size is fill*(ai[am]+am)/2 */
1044:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am]/2,am/2)),&free_space);

1046:   current_space = free_space;

1048:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am]/2,am/2)),&free_space_lvl);
1049:   current_space_lvl = free_space_lvl;

1051:   for (k=0; k<am; k++) {  /* for each active row k */
1052:     /* initialize lnk by the column indices of row rip[k] of A */
1053:     nzk         = 0;
1054:     ncols       = ai[rip[k]+1] - ai[rip[k]];
1055:     ncols_upper = 0;
1056:     cols        = cols_lvl + am;
1057:     for (j=0; j<ncols; j++) {
1058:       i = rip[*(aj + ai[rip[k]] + j)];
1059:       if (i >= k) { /* only take upper triangular entry */
1060:         cols[ncols_upper]     = i;
1061:         cols_lvl[ncols_upper] = -1;  /* initialize level for nonzero entries */
1062:         ncols_upper++;
1063:       }
1064:     }
1065:     PetscIncompleteLLAdd(ncols_upper,cols,levels,cols_lvl,am,nlnk,lnk,lnk_lvl,lnkbt);
1066:     nzk += nlnk;

1068:     /* update lnk by computing fill-in for each pivot row to be merged in */
1069:     prow = jl[k]; /* 1st pivot row */

1071:     while (prow < k) {
1072:       nextprow = jl[prow];

1074:       /* merge prow into k-th row */
1075:       jmin  = il[prow] + 1; /* index of the 2nd nzero entry in U(prow,k:am-1) */
1076:       jmax  = ui[prow+1];
1077:       ncols = jmax-jmin;
1078:       i     = jmin - ui[prow];
1079:       cols  = uj_ptr[prow] + i; /* points to the 2nd nzero entry in U(prow,k:am-1) */
1080:       for (j=0; j<ncols; j++) cols_lvl[j] = *(uj_lvl_ptr[prow] + i + j);
1081:       PetscIncompleteLLAddSorted(ncols,cols,levels,cols_lvl,am,nlnk,lnk,lnk_lvl,lnkbt);
1082:       nzk += nlnk;

1084:       /* update il and jl for prow */
1085:       if (jmin < jmax) {
1086:         il[prow] = jmin;

1088:         j = *cols; jl[prow] = jl[j]; jl[j] = prow;
1089:       }
1090:       prow = nextprow;
1091:     }

1093:     /* if free space is not available, make more free space */
1094:     if (current_space->local_remaining<nzk) {
1095:       i    = am - k + 1; /* num of unfactored rows */
1096:       i    = PetscMin(PetscIntMultTruncate(i,nzk), PetscIntMultTruncate(i,i-1)); /* i*nzk, i*(i-1): estimated and max additional space needed */
1097:       PetscFreeSpaceGet(i,&current_space);
1098:       PetscFreeSpaceGet(i,&current_space_lvl);
1099:       reallocs++;
1100:     }

1102:     /* copy data into free_space and free_space_lvl, then initialize lnk */
1103:     PetscIncompleteLLClean(am,am,nzk,lnk,lnk_lvl,current_space->array,current_space_lvl->array,lnkbt);

1105:     /* add the k-th row into il and jl */
1106:     if (nzk-1 > 0) {
1107:       i     = current_space->array[1]; /* col value of the first nonzero element in U(k, k+1:am-1) */
1108:       jl[k] = jl[i]; jl[i] = k;
1109:       il[k] = ui[k] + 1;
1110:     }
1111:     uj_ptr[k]     = current_space->array;
1112:     uj_lvl_ptr[k] = current_space_lvl->array;

1114:     current_space->array           += nzk;
1115:     current_space->local_used      += nzk;
1116:     current_space->local_remaining -= nzk;

1118:     current_space_lvl->array           += nzk;
1119:     current_space_lvl->local_used      += nzk;
1120:     current_space_lvl->local_remaining -= nzk;

1122:     ui[k+1] = ui[k] + nzk;
1123:   }

1125:   ISRestoreIndices(perm,&rip);
1126:   PetscFree4(uj_ptr,uj_lvl_ptr,il,jl);
1127:   PetscFree(cols_lvl);

1129:   /* copy free_space into uj and free free_space; set uj in new datastructure; */
1130:   PetscMalloc1(ui[am]+1,&uj);
1131:   PetscFreeSpaceContiguous(&free_space,uj);
1132:   PetscIncompleteLLDestroy(lnk,lnkbt);
1133:   PetscFreeSpaceDestroy(free_space_lvl);

1135:   /* put together the new matrix in MATSEQSBAIJ format */
1136:   B    = fact;
1137:   MatSeqSBAIJSetPreallocation(B,1,MAT_SKIP_ALLOCATION,NULL);

1139:   b                = (Mat_SeqSBAIJ*)B->data;
1140:   b->singlemalloc  = PETSC_FALSE;
1141:   b->free_a        = PETSC_TRUE;
1142:   b->free_ij       = PETSC_TRUE;

1144:   PetscMalloc1(ui[am]+1,&b->a);

1146:   b->j             = uj;
1147:   b->i             = ui;
1148:   b->diag          = 0;
1149:   b->ilen          = 0;
1150:   b->imax          = 0;
1151:   b->row           = perm;
1152:   b->pivotinblocks = PETSC_FALSE; /* need to get from MatFactorInfo */

1154:   PetscObjectReference((PetscObject)perm);

1156:   b->icol = perm;

1158:   PetscObjectReference((PetscObject)perm);
1159:   PetscMalloc1(am+1,&b->solve_work);
1160:   PetscLogObjectMemory((PetscObject)B,(ui[am]-am)*(sizeof(PetscInt)+sizeof(MatScalar)));

1162:   b->maxnz = b->nz = ui[am];

1164:   B->info.factor_mallocs   = reallocs;
1165:   B->info.fill_ratio_given = fill;
1166:   if (ai[am] != 0.) {
1167:     /* nonzeros in lower triangular part of A (includign diagonals)= (ai[am]+am)/2 */
1168:     B->info.fill_ratio_needed = ((PetscReal)2*ui[am])/(ai[am]+am);
1169:   } else {
1170:     B->info.fill_ratio_needed = 0.0;
1171:   }
1172: #if defined(PETSC_USE_INFO)
1173:   if (ai[am] != 0) {
1174:     PetscReal af = B->info.fill_ratio_needed;
1175:     PetscInfo3(A,"Reallocs %D Fill ratio:given %g needed %g\n",reallocs,(double)fill,(double)af);
1176:     PetscInfo1(A,"Run with -pc_factor_fill %g or use \n",(double)af);
1177:     PetscInfo1(A,"PCFactorSetFill(pc,%g) for best performance.\n",(double)af);
1178:   } else {
1179:     PetscInfo(A,"Empty matrix.\n");
1180:   }
1181: #endif
1182:   if (perm_identity) {
1183:     B->ops->solve                 = MatSolve_SeqSBAIJ_1_NaturalOrdering_inplace;
1184:     B->ops->solvetranspose        = MatSolve_SeqSBAIJ_1_NaturalOrdering_inplace;
1185:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqBAIJ_N_NaturalOrdering;
1186:   } else {
1187:     (fact)->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqBAIJ_N;
1188:   }
1189:   return(0);
1190: }

1192: PetscErrorCode MatCholeskyFactorSymbolic_SeqBAIJ(Mat fact,Mat A,IS perm,const MatFactorInfo *info)
1193: {
1194:   Mat_SeqBAIJ        *a = (Mat_SeqBAIJ*)A->data;
1195:   Mat_SeqSBAIJ       *b;
1196:   Mat                B;
1197:   PetscErrorCode     ierr;
1198:   PetscBool          perm_identity,missing;
1199:   PetscReal          fill = info->fill;
1200:   const PetscInt     *rip;
1201:   PetscInt           i,mbs=a->mbs,bs=A->rmap->bs,*ai=a->i,*aj=a->j,reallocs=0,prow;
1202:   PetscInt           *jl,jmin,jmax,nzk,*ui,k,j,*il,nextprow;
1203:   PetscInt           nlnk,*lnk,ncols,ncols_upper,*cols,*uj,**ui_ptr,*uj_ptr;
1204:   PetscFreeSpaceList free_space=NULL,current_space=NULL;
1205:   PetscBT            lnkbt;

1208:   if (bs > 1) { /* convert to seqsbaij */
1209:     if (!a->sbaijMat) {
1210:       MatConvert(A,MATSEQSBAIJ,MAT_INITIAL_MATRIX,&a->sbaijMat);
1211:     }
1212:     (fact)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqSBAIJ; /* undue the change made in MatGetFactor_seqbaij_petsc */

1214:     MatCholeskyFactorSymbolic(fact,a->sbaijMat,perm,info);
1215:     return(0);
1216:   }

1218:   MatMissingDiagonal(A,&missing,&i);
1219:   if (missing) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix is missing diagonal entry %D",i);

1221:   /* check whether perm is the identity mapping */
1222:   ISIdentity(perm,&perm_identity);
1223:   if (!perm_identity) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix reordering is not supported");
1224:   ISGetIndices(perm,&rip);

1226:   /* initialization */
1227:   PetscMalloc1(mbs+1,&ui);
1228:   ui[0] = 0;

1230:   /* jl: linked list for storing indices of the pivot rows
1231:      il: il[i] points to the 1st nonzero entry of U(i,k:mbs-1) */
1232:   PetscMalloc4(mbs,&ui_ptr,mbs,&il,mbs,&jl,mbs,&cols);
1233:   for (i=0; i<mbs; i++) {
1234:     jl[i] = mbs; il[i] = 0;
1235:   }

1237:   /* create and initialize a linked list for storing column indices of the active row k */
1238:   nlnk = mbs + 1;
1239:   PetscLLCreate(mbs,mbs,nlnk,lnk,lnkbt);

1241:   /* initial FreeSpace size is fill* (ai[mbs]+mbs)/2 */
1242:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[mbs]/2,mbs/2)),&free_space);

1244:   current_space = free_space;

1246:   for (k=0; k<mbs; k++) {  /* for each active row k */
1247:     /* initialize lnk by the column indices of row rip[k] of A */
1248:     nzk         = 0;
1249:     ncols       = ai[rip[k]+1] - ai[rip[k]];
1250:     ncols_upper = 0;
1251:     for (j=0; j<ncols; j++) {
1252:       i = rip[*(aj + ai[rip[k]] + j)];
1253:       if (i >= k) { /* only take upper triangular entry */
1254:         cols[ncols_upper] = i;
1255:         ncols_upper++;
1256:       }
1257:     }
1258:     PetscLLAdd(ncols_upper,cols,mbs,nlnk,lnk,lnkbt);
1259:     nzk += nlnk;

1261:     /* update lnk by computing fill-in for each pivot row to be merged in */
1262:     prow = jl[k]; /* 1st pivot row */

1264:     while (prow < k) {
1265:       nextprow = jl[prow];
1266:       /* merge prow into k-th row */
1267:       jmin   = il[prow] + 1; /* index of the 2nd nzero entry in U(prow,k:mbs-1) */
1268:       jmax   = ui[prow+1];
1269:       ncols  = jmax-jmin;
1270:       uj_ptr = ui_ptr[prow] + jmin - ui[prow]; /* points to the 2nd nzero entry in U(prow,k:mbs-1) */
1271:       PetscLLAddSorted(ncols,uj_ptr,mbs,nlnk,lnk,lnkbt);
1272:       nzk   += nlnk;

1274:       /* update il and jl for prow */
1275:       if (jmin < jmax) {
1276:         il[prow] = jmin;
1277:         j        = *uj_ptr;
1278:         jl[prow] = jl[j];
1279:         jl[j]    = prow;
1280:       }
1281:       prow = nextprow;
1282:     }

1284:     /* if free space is not available, make more free space */
1285:     if (current_space->local_remaining<nzk) {
1286:       i    = mbs - k + 1; /* num of unfactored rows */
1287:       i    = PetscMin(PetscIntMultTruncate(i,nzk), PetscIntMultTruncate(i,i-1)); /* i*nzk, i*(i-1): estimated and max additional space needed */
1288:       PetscFreeSpaceGet(i,&current_space);
1289:       reallocs++;
1290:     }

1292:     /* copy data into free space, then initialize lnk */
1293:     PetscLLClean(mbs,mbs,nzk,lnk,current_space->array,lnkbt);

1295:     /* add the k-th row into il and jl */
1296:     if (nzk-1 > 0) {
1297:       i     = current_space->array[1]; /* col value of the first nonzero element in U(k, k+1:mbs-1) */
1298:       jl[k] = jl[i]; jl[i] = k;
1299:       il[k] = ui[k] + 1;
1300:     }
1301:     ui_ptr[k]                       = current_space->array;
1302:     current_space->array           += nzk;
1303:     current_space->local_used      += nzk;
1304:     current_space->local_remaining -= nzk;

1306:     ui[k+1] = ui[k] + nzk;
1307:   }

1309:   ISRestoreIndices(perm,&rip);
1310:   PetscFree4(ui_ptr,il,jl,cols);

1312:   /* copy free_space into uj and free free_space; set uj in new datastructure; */
1313:   PetscMalloc1(ui[mbs]+1,&uj);
1314:   PetscFreeSpaceContiguous(&free_space,uj);
1315:   PetscLLDestroy(lnk,lnkbt);

1317:   /* put together the new matrix in MATSEQSBAIJ format */
1318:   B    = fact;
1319:   MatSeqSBAIJSetPreallocation(B,bs,MAT_SKIP_ALLOCATION,NULL);

1321:   b               = (Mat_SeqSBAIJ*)B->data;
1322:   b->singlemalloc = PETSC_FALSE;
1323:   b->free_a       = PETSC_TRUE;
1324:   b->free_ij      = PETSC_TRUE;

1326:   PetscMalloc1(ui[mbs]+1,&b->a);

1328:   b->j             = uj;
1329:   b->i             = ui;
1330:   b->diag          = 0;
1331:   b->ilen          = 0;
1332:   b->imax          = 0;
1333:   b->row           = perm;
1334:   b->pivotinblocks = PETSC_FALSE; /* need to get from MatFactorInfo */

1336:   PetscObjectReference((PetscObject)perm);
1337:   b->icol  = perm;
1338:   PetscObjectReference((PetscObject)perm);
1339:   PetscMalloc1(mbs+1,&b->solve_work);
1340:   PetscLogObjectMemory((PetscObject)B,(ui[mbs]-mbs)*(sizeof(PetscInt)+sizeof(MatScalar)));
1341:   b->maxnz = b->nz = ui[mbs];

1343:   B->info.factor_mallocs   = reallocs;
1344:   B->info.fill_ratio_given = fill;
1345:   if (ai[mbs] != 0.) {
1346:     /* nonzeros in lower triangular part of A = (ai[mbs]+mbs)/2 */
1347:     B->info.fill_ratio_needed = ((PetscReal)2*ui[mbs])/(ai[mbs]+mbs);
1348:   } else {
1349:     B->info.fill_ratio_needed = 0.0;
1350:   }
1351: #if defined(PETSC_USE_INFO)
1352:   if (ai[mbs] != 0.) {
1353:     PetscReal af = B->info.fill_ratio_needed;
1354:     PetscInfo3(A,"Reallocs %D Fill ratio:given %g needed %g\n",reallocs,(double)fill,(double)af);
1355:     PetscInfo1(A,"Run with -pc_factor_fill %g or use \n",(double)af);
1356:     PetscInfo1(A,"PCFactorSetFill(pc,%g) for best performance.\n",(double)af);
1357:   } else {
1358:     PetscInfo(A,"Empty matrix.\n");
1359:   }
1360: #endif
1361:   if (perm_identity) {
1362:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqBAIJ_N_NaturalOrdering;
1363:   } else {
1364:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqBAIJ_N;
1365:   }
1366:   return(0);
1367: }

1369: PetscErrorCode MatSolve_SeqBAIJ_N_NaturalOrdering(Mat A,Vec bb,Vec xx)
1370: {
1371:   Mat_SeqBAIJ       *a=(Mat_SeqBAIJ*)A->data;
1372:   PetscErrorCode    ierr;
1373:   const PetscInt    *ai=a->i,*aj=a->j,*adiag=a->diag,*vi;
1374:   PetscInt          i,k,n=a->mbs;
1375:   PetscInt          nz,bs=A->rmap->bs,bs2=a->bs2;
1376:   const MatScalar   *aa=a->a,*v;
1377:   PetscScalar       *x,*s,*t,*ls;
1378:   const PetscScalar *b;

1381:   VecGetArrayRead(bb,&b);
1382:   VecGetArray(xx,&x);
1383:   t    = a->solve_work;

1385:   /* forward solve the lower triangular */
1386:   PetscMemcpy(t,b,bs*sizeof(PetscScalar)); /* copy 1st block of b to t */

1388:   for (i=1; i<n; i++) {
1389:     v    = aa + bs2*ai[i];
1390:     vi   = aj + ai[i];
1391:     nz   = ai[i+1] - ai[i];
1392:     s    = t + bs*i;
1393:     PetscMemcpy(s,b+bs*i,bs*sizeof(PetscScalar)); /* copy i_th block of b to t */
1394:     for (k=0;k<nz;k++) {
1395:       PetscKernel_v_gets_v_minus_A_times_w(bs,s,v,t+bs*vi[k]);
1396:       v += bs2;
1397:     }
1398:   }

1400:   /* backward solve the upper triangular */
1401:   ls = a->solve_work + A->cmap->n;
1402:   for (i=n-1; i>=0; i--) {
1403:     v    = aa + bs2*(adiag[i+1]+1);
1404:     vi   = aj + adiag[i+1]+1;
1405:     nz   = adiag[i] - adiag[i+1]-1;
1406:     PetscMemcpy(ls,t+i*bs,bs*sizeof(PetscScalar));
1407:     for (k=0; k<nz; k++) {
1408:       PetscKernel_v_gets_v_minus_A_times_w(bs,ls,v,t+bs*vi[k]);
1409:       v += bs2;
1410:     }
1411:     PetscKernel_w_gets_A_times_v(bs,ls,aa+bs2*adiag[i],t+i*bs); /* *inv(diagonal[i]) */
1412:     PetscMemcpy(x+i*bs,t+i*bs,bs*sizeof(PetscScalar));
1413:   }

1415:   VecRestoreArrayRead(bb,&b);
1416:   VecRestoreArray(xx,&x);
1417:   PetscLogFlops(2.0*(a->bs2)*(a->nz) - A->rmap->bs*A->cmap->n);
1418:   return(0);
1419: }

1421: PetscErrorCode MatSolve_SeqBAIJ_N(Mat A,Vec bb,Vec xx)
1422: {
1423:   Mat_SeqBAIJ        *a   =(Mat_SeqBAIJ*)A->data;
1424:   IS                 iscol=a->col,isrow=a->row;
1425:   PetscErrorCode     ierr;
1426:   const PetscInt     *r,*c,*rout,*cout,*ai=a->i,*aj=a->j,*adiag=a->diag,*vi;
1427:   PetscInt           i,m,n=a->mbs;
1428:   PetscInt           nz,bs=A->rmap->bs,bs2=a->bs2;
1429:   const MatScalar    *aa=a->a,*v;
1430:   PetscScalar        *x,*s,*t,*ls;
1431:   const PetscScalar  *b;

1434:   VecGetArrayRead(bb,&b);
1435:   VecGetArray(xx,&x);
1436:   t    = a->solve_work;

1438:   ISGetIndices(isrow,&rout); r = rout;
1439:   ISGetIndices(iscol,&cout); c = cout;

1441:   /* forward solve the lower triangular */
1442:   PetscMemcpy(t,b+bs*r[0],bs*sizeof(PetscScalar));
1443:   for (i=1; i<n; i++) {
1444:     v    = aa + bs2*ai[i];
1445:     vi   = aj + ai[i];
1446:     nz   = ai[i+1] - ai[i];
1447:     s    = t + bs*i;
1448:     PetscMemcpy(s,b+bs*r[i],bs*sizeof(PetscScalar));
1449:     for (m=0; m<nz; m++) {
1450:       PetscKernel_v_gets_v_minus_A_times_w(bs,s,v,t+bs*vi[m]);
1451:       v += bs2;
1452:     }
1453:   }

1455:   /* backward solve the upper triangular */
1456:   ls = a->solve_work + A->cmap->n;
1457:   for (i=n-1; i>=0; i--) {
1458:     v    = aa + bs2*(adiag[i+1]+1);
1459:     vi   = aj + adiag[i+1]+1;
1460:     nz   = adiag[i] - adiag[i+1] - 1;
1461:     PetscMemcpy(ls,t+i*bs,bs*sizeof(PetscScalar));
1462:     for (m=0; m<nz; m++) {
1463:       PetscKernel_v_gets_v_minus_A_times_w(bs,ls,v,t+bs*vi[m]);
1464:       v += bs2;
1465:     }
1466:     PetscKernel_w_gets_A_times_v(bs,ls,v,t+i*bs); /* *inv(diagonal[i]) */
1467:     PetscMemcpy(x + bs*c[i],t+i*bs,bs*sizeof(PetscScalar));
1468:   }
1469:   ISRestoreIndices(isrow,&rout);
1470:   ISRestoreIndices(iscol,&cout);
1471:   VecRestoreArrayRead(bb,&b);
1472:   VecRestoreArray(xx,&x);
1473:   PetscLogFlops(2.0*(a->bs2)*(a->nz) - A->rmap->bs*A->cmap->n);
1474:   return(0);
1475: }

1477: /*
1478:     For each block in an block array saves the largest absolute value in the block into another array
1479: */
1480: static PetscErrorCode MatBlockAbs_private(PetscInt nbs,PetscInt bs2,PetscScalar *blockarray,PetscReal *absarray)
1481: {
1483:   PetscInt       i,j;

1486:   PetscMemzero(absarray,(nbs+1)*sizeof(PetscReal));
1487:   for (i=0; i<nbs; i++) {
1488:     for (j=0; j<bs2; j++) {
1489:       if (absarray[i] < PetscAbsScalar(blockarray[i*nbs+j])) absarray[i] = PetscAbsScalar(blockarray[i*nbs+j]);
1490:     }
1491:   }
1492:   return(0);
1493: }

1495: /*
1496:      This needs to be renamed and called by the regular MatILUFactor_SeqBAIJ when drop tolerance is used
1497: */
1498: PetscErrorCode MatILUDTFactor_SeqBAIJ(Mat A,IS isrow,IS iscol,const MatFactorInfo *info,Mat *fact)
1499: {
1500:   Mat            B = *fact;
1501:   Mat_SeqBAIJ    *a=(Mat_SeqBAIJ*)A->data,*b;
1502:   IS             isicol;
1504:   const PetscInt *r,*ic;
1505:   PetscInt       i,mbs=a->mbs,bs=A->rmap->bs,bs2=a->bs2,*ai=a->i,*aj=a->j,*ajtmp,*adiag;
1506:   PetscInt       *bi,*bj,*bdiag;

1508:   PetscInt  row,nzi,nzi_bl,nzi_bu,*im,dtcount,nzi_al,nzi_au;
1509:   PetscInt  nlnk,*lnk;
1510:   PetscBT   lnkbt;
1511:   PetscBool row_identity,icol_identity;
1512:   MatScalar *aatmp,*pv,*batmp,*ba,*rtmp,*pc,*multiplier,*vtmp;
1513:   PetscInt  j,nz,*pj,*bjtmp,k,ncut,*jtmp;

1515:   PetscReal dt=info->dt;          /* shift=info->shiftamount; */
1516:   PetscInt  nnz_max;
1517:   PetscBool missing;
1518:   PetscReal *vtmp_abs;
1519:   MatScalar *v_work;
1520:   PetscInt  *v_pivots;
1521:   PetscBool allowzeropivot,zeropivotdetected=PETSC_FALSE;

1524:   /* ------- symbolic factorization, can be reused ---------*/
1525:   MatMissingDiagonal(A,&missing,&i);
1526:   if (missing) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix is missing diagonal entry %D",i);
1527:   adiag=a->diag;

1529:   ISInvertPermutation(iscol,PETSC_DECIDE,&isicol);

1531:   /* bdiag is location of diagonal in factor */
1532:   PetscMalloc1(mbs+1,&bdiag);

1534:   /* allocate row pointers bi */
1535:   PetscMalloc1(2*mbs+2,&bi);

1537:   /* allocate bj and ba; max num of nonzero entries is (ai[n]+2*n*dtcount+2) */
1538:   dtcount = (PetscInt)info->dtcount;
1539:   if (dtcount > mbs-1) dtcount = mbs-1;
1540:   nnz_max = ai[mbs]+2*mbs*dtcount +2;
1541:   /* printf("MatILUDTFactor_SeqBAIJ, bs %d, ai[mbs] %d, nnz_max  %d, dtcount %d\n",bs,ai[mbs],nnz_max,dtcount); */
1542:   PetscMalloc1(nnz_max,&bj);
1543:   nnz_max = nnz_max*bs2;
1544:   PetscMalloc1(nnz_max,&ba);

1546:   /* put together the new matrix */
1547:   MatSeqBAIJSetPreallocation(B,bs,MAT_SKIP_ALLOCATION,NULL);
1548:   PetscLogObjectParent((PetscObject)B,(PetscObject)isicol);

1550:   b               = (Mat_SeqBAIJ*)(B)->data;
1551:   b->free_a       = PETSC_TRUE;
1552:   b->free_ij      = PETSC_TRUE;
1553:   b->singlemalloc = PETSC_FALSE;

1555:   b->a    = ba;
1556:   b->j    = bj;
1557:   b->i    = bi;
1558:   b->diag = bdiag;
1559:   b->ilen = 0;
1560:   b->imax = 0;
1561:   b->row  = isrow;
1562:   b->col  = iscol;

1564:   PetscObjectReference((PetscObject)isrow);
1565:   PetscObjectReference((PetscObject)iscol);

1567:   b->icol  = isicol;
1568:   PetscMalloc1(bs*(mbs+1),&b->solve_work);
1569:   PetscLogObjectMemory((PetscObject)B,nnz_max*(sizeof(PetscInt)+sizeof(MatScalar)));
1570:   b->maxnz = nnz_max/bs2;

1572:   (B)->factortype            = MAT_FACTOR_ILUDT;
1573:   (B)->info.factor_mallocs   = 0;
1574:   (B)->info.fill_ratio_given = ((PetscReal)nnz_max)/((PetscReal)(ai[mbs]*bs2));
1575:   /* ------- end of symbolic factorization ---------*/
1576:   ISGetIndices(isrow,&r);
1577:   ISGetIndices(isicol,&ic);

1579:   /* linked list for storing column indices of the active row */
1580:   nlnk = mbs + 1;
1581:   PetscLLCreate(mbs,mbs,nlnk,lnk,lnkbt);

1583:   /* im: used by PetscLLAddSortedLU(); jtmp: working array for column indices of active row */
1584:   PetscMalloc2(mbs,&im,mbs,&jtmp);
1585:   /* rtmp, vtmp: working arrays for sparse and contiguous row entries of active row */
1586:   PetscMalloc2(mbs*bs2,&rtmp,mbs*bs2,&vtmp);
1587:   PetscMalloc1(mbs+1,&vtmp_abs);
1588:   PetscMalloc3(bs,&v_work,bs2,&multiplier,bs,&v_pivots);

1590:   allowzeropivot = PetscNot(A->erroriffailure);
1591:   bi[0]       = 0;
1592:   bdiag[0]    = (nnz_max/bs2)-1; /* location of diagonal in factor B */
1593:   bi[2*mbs+1] = bdiag[0]+1; /* endof bj and ba array */
1594:   for (i=0; i<mbs; i++) {
1595:     /* copy initial fill into linked list */
1596:     nzi = ai[r[i]+1] - ai[r[i]];
1597:     if (!nzi) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Empty row in matrix: row in original ordering %D in permuted ordering %D",r[i],i);
1598:     nzi_al = adiag[r[i]] - ai[r[i]];
1599:     nzi_au = ai[r[i]+1] - adiag[r[i]] -1;

1601:     /* load in initial unfactored row */
1602:     ajtmp = aj + ai[r[i]];
1603:     PetscLLAddPerm(nzi,ajtmp,ic,mbs,nlnk,lnk,lnkbt);
1604:     PetscMemzero(rtmp,mbs*bs2*sizeof(PetscScalar));
1605:     aatmp = a->a + bs2*ai[r[i]];
1606:     for (j=0; j<nzi; j++) {
1607:       PetscMemcpy(rtmp+bs2*ic[ajtmp[j]],aatmp+bs2*j,bs2*sizeof(MatScalar));
1608:     }

1610:     /* add pivot rows into linked list */
1611:     row = lnk[mbs];
1612:     while (row < i) {
1613:       nzi_bl = bi[row+1] - bi[row] + 1;
1614:       bjtmp  = bj + bdiag[row+1]+1; /* points to 1st column next to the diagonal in U */
1615:       PetscLLAddSortedLU(bjtmp,row,nlnk,lnk,lnkbt,i,nzi_bl,im);
1616:       nzi   += nlnk;
1617:       row    = lnk[row];
1618:     }

1620:     /* copy data from lnk into jtmp, then initialize lnk */
1621:     PetscLLClean(mbs,mbs,nzi,lnk,jtmp,lnkbt);

1623:     /* numerical factorization */
1624:     bjtmp = jtmp;
1625:     row   = *bjtmp++; /* 1st pivot row */

1627:     while  (row < i) {
1628:       pc = rtmp + bs2*row;
1629:       pv = ba + bs2*bdiag[row]; /* inv(diag) of the pivot row */
1630:       PetscKernel_A_gets_A_times_B(bs,pc,pv,multiplier); /* pc= multiplier = pc*inv(diag[row]) */
1631:       MatBlockAbs_private(1,bs2,pc,vtmp_abs);
1632:       if (vtmp_abs[0] > dt) { /* apply tolerance dropping rule */
1633:         pj = bj + bdiag[row+1] + 1;         /* point to 1st entry of U(row,:) */
1634:         pv = ba + bs2*(bdiag[row+1] + 1);
1635:         nz = bdiag[row] - bdiag[row+1] - 1;         /* num of entries in U(row,:), excluding diagonal */
1636:         for (j=0; j<nz; j++) {
1637:           PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j);
1638:         }
1639:         /* PetscLogFlops(bslog*(nz+1.0)-bs); */
1640:       }
1641:       row = *bjtmp++;
1642:     }

1644:     /* copy sparse rtmp into contiguous vtmp; separate L and U part */
1645:     nzi_bl = 0; j = 0;
1646:     while (jtmp[j] < i) { /* L-part. Note: jtmp is sorted */
1647:       PetscMemcpy(vtmp+bs2*j,rtmp+bs2*jtmp[j],bs2*sizeof(MatScalar));
1648:       nzi_bl++; j++;
1649:     }
1650:     nzi_bu = nzi - nzi_bl -1;

1652:     while (j < nzi) { /* U-part */
1653:       PetscMemcpy(vtmp+bs2*j,rtmp+bs2*jtmp[j],bs2*sizeof(MatScalar));
1654:       j++;
1655:     }

1657:     MatBlockAbs_private(nzi,bs2,vtmp,vtmp_abs);
1658: 
1659:     bjtmp = bj + bi[i];
1660:     batmp = ba + bs2*bi[i];
1661:     /* apply level dropping rule to L part */
1662:     ncut = nzi_al + dtcount;
1663:     if (ncut < nzi_bl) {
1664:       PetscSortSplitReal(ncut,nzi_bl,vtmp_abs,jtmp);
1665:       PetscSortIntWithScalarArray(ncut,jtmp,vtmp);
1666:     } else {
1667:       ncut = nzi_bl;
1668:     }
1669:     for (j=0; j<ncut; j++) {
1670:       bjtmp[j] = jtmp[j];
1671:       PetscMemcpy(batmp+bs2*j,rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
1672:     }
1673:     bi[i+1] = bi[i] + ncut;
1674:     nzi     = ncut + 1;

1676:     /* apply level dropping rule to U part */
1677:     ncut = nzi_au + dtcount;
1678:     if (ncut < nzi_bu) {
1679:       PetscSortSplitReal(ncut,nzi_bu,vtmp_abs+nzi_bl+1,jtmp+nzi_bl+1);
1680:       PetscSortIntWithScalarArray(ncut,jtmp+nzi_bl+1,vtmp+nzi_bl+1);
1681:     } else {
1682:       ncut = nzi_bu;
1683:     }
1684:     nzi += ncut;

1686:     /* mark bdiagonal */
1687:     bdiag[i+1]    = bdiag[i] - (ncut + 1);
1688:     bi[2*mbs - i] = bi[2*mbs - i +1] - (ncut + 1);

1690:     bjtmp  = bj + bdiag[i];
1691:     batmp  = ba + bs2*bdiag[i];
1692:     PetscMemcpy(batmp,rtmp+bs2*i,bs2*sizeof(MatScalar));
1693:     *bjtmp = i;
1694: 
1695:     bjtmp = bj + bdiag[i+1]+1;
1696:     batmp = ba + (bdiag[i+1]+1)*bs2;

1698:     for (k=0; k<ncut; k++) {
1699:       bjtmp[k] = jtmp[nzi_bl+1+k];
1700:       PetscMemcpy(batmp+bs2*k,rtmp+bs2*bjtmp[k],bs2*sizeof(MatScalar));
1701:     }

1703:     im[i] = nzi; /* used by PetscLLAddSortedLU() */

1705:     /* invert diagonal block for simplier triangular solves - add shift??? */
1706:     batmp = ba + bs2*bdiag[i];

1708:     PetscKernel_A_gets_inverse_A(bs,batmp,v_pivots,v_work,allowzeropivot,&zeropivotdetected);
1709:     if (zeropivotdetected) B->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1710:   } /* for (i=0; i<mbs; i++) */
1711:   PetscFree3(v_work,multiplier,v_pivots);

1713:   /* printf("end of L %d, beginning of U %d\n",bi[mbs],bdiag[mbs]); */
1714:   if (bi[mbs] >= bdiag[mbs]) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"end of L array %d cannot >= the beginning of U array %d",bi[mbs],bdiag[mbs]);

1716:   ISRestoreIndices(isrow,&r);
1717:   ISRestoreIndices(isicol,&ic);

1719:   PetscLLDestroy(lnk,lnkbt);

1721:   PetscFree2(im,jtmp);
1722:   PetscFree2(rtmp,vtmp);

1724:   PetscLogFlops(bs2*B->cmap->n);
1725:   b->maxnz = b->nz = bi[mbs] + bdiag[0] - bdiag[mbs];

1727:   ISIdentity(isrow,&row_identity);
1728:   ISIdentity(isicol,&icol_identity);
1729:   if (row_identity && icol_identity) {
1730:     B->ops->solve = MatSolve_SeqBAIJ_N_NaturalOrdering;
1731:   } else {
1732:     B->ops->solve = MatSolve_SeqBAIJ_N;
1733:   }

1735:   B->ops->solveadd          = 0;
1736:   B->ops->solvetranspose    = 0;
1737:   B->ops->solvetransposeadd = 0;
1738:   B->ops->matsolve          = 0;
1739:   B->assembled              = PETSC_TRUE;
1740:   B->preallocated           = PETSC_TRUE;
1741:   return(0);
1742: }