Actual source code: ex48.c
petsc-3.10.5 2019-03-28
1: static char help[] = "Evolution of magnetic islands.\n\
2: The aim of this model is to self-consistently study the interaction between the tearing mode and small scale drift-wave turbulence.\n\n\n" ;
This is a three field model for the density $\tilde n$, vorticity $\tilde\Omega$, and magnetic flux $\tilde\psi$, using auxiliary variables potential $\tilde\phi$ and current $j_z$.
\begin{equation}
\begin{aligned}
\partial_t \tilde n &= \left\{ \tilde n, \tilde\phi \right\} + \beta \left\{ j_z, \tilde\psi \right\} + \left\{ \ln n_0, \tilde\phi \right\} + \mu \nabla^2_\perp \tilde n \\
\partial_t \tilde\Omega &= \left\{ \tilde\Omega, \tilde\phi \right\} + \beta \left\{ j_z, \tilde\psi \right\} + \mu \nabla^2_\perp \tilde\Omega \\
\partial_t \tilde\psi &= \left\{ \psi_0 + \tilde\psi, \tilde\phi - \tilde n \right\} - \left\{ \ln n_0, \tilde\psi \right\} + \frac{\eta}{\beta} \nabla^2_\perp \tilde\psi \\
\nabla^2_\perp\tilde\phi &= \tilde\Omega \\
j_z &= -\nabla^2_\perp \left(\tilde\psi + \psi_0 \right)\\
\end{aligned}
\end{equation}
17: #include <petscdmplex.h>
18: #include <petscts.h>
19: #include <petscds.h>
20: #include <assert.h>
22: typedef struct {
23: PetscInt debug; /* The debugging level */
24: PetscBool plotRef; /* Plot the reference fields */
25: /* Domain and mesh definition */
26: PetscInt dim; /* The topological mesh dimension */
27: char filename[2048]; /* The optional ExodusII file */
28: PetscBool cell_simplex; /* Simplicial mesh */
29: DMBoundaryType boundary_types[3];
30: PetscInt cells[3];
31: PetscInt refine;
32: /* geometry */
33: PetscReal domain_lo[3], domain_hi[3];
34: DMBoundaryType periodicity[3]; /* The domain periodicity */
35: PetscReal b0[3]; /* not used */
36: /* Problem definition */
37: PetscErrorCode (**initialFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx);
38: PetscReal mu, eta, beta;
39: PetscReal a,b,Jo,Jop,m,ke,kx,ky,DeltaPrime,eps;
40: /* solver */
41: PetscBool implicit;
42: } AppCtx;
44: static AppCtx *s_ctx;
46: static PetscScalar poissonBracket(PetscInt dim, const PetscScalar df[], const PetscScalar dg[])
47: {
48: PetscScalar ret = df[0]*dg[1] - df[1]*dg[0];
49: return ret;
50: }
52: enum field_idx {DENSITY,OMEGA,PSI,PHI,JZ};
54: static void f0_n(PetscInt dim, PetscInt Nf, PetscInt NfAux,
55: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
56: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
57: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
58: {
59: const PetscScalar *pnDer = &u_x[uOff_x[DENSITY]];
60: const PetscScalar *ppsiDer = &u_x[uOff_x[PSI]];
61: const PetscScalar *pphiDer = &u_x[uOff_x[PHI]];
62: const PetscScalar *jzDer = &u_x[uOff_x[JZ]];
63: const PetscScalar *logRefDenDer = &a_x[aOff_x[DENSITY]];
64: f0[0] += - poissonBracket(dim,pnDer, pphiDer) - s_ctx->beta*poissonBracket(dim,jzDer, ppsiDer) - poissonBracket(dim,logRefDenDer, pphiDer);
65: if (u_t) f0[0] += u_t[DENSITY];
66: }
68: static void f1_n(PetscInt dim, PetscInt Nf, PetscInt NfAux,
69: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
70: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
71: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
72: {
73: const PetscScalar *pnDer = &u_x[uOff_x[DENSITY]];
74: PetscInt d;
76: for (d = 0; d < dim-1; ++d) f1[d] = -s_ctx->mu*pnDer[d];
77: }
79: static void f0_Omega(PetscInt dim, PetscInt Nf, PetscInt NfAux,
80: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
81: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
82: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
83: {
84: const PetscScalar *pOmegaDer = &u_x[uOff_x[OMEGA]];
85: const PetscScalar *ppsiDer = &u_x[uOff_x[PSI]];
86: const PetscScalar *pphiDer = &u_x[uOff_x[PHI]];
87: const PetscScalar *jzDer = &u_x[uOff_x[JZ]];
89: f0[0] += - poissonBracket(dim,pOmegaDer, pphiDer) - s_ctx->beta*poissonBracket(dim,jzDer, ppsiDer);
90: if (u_t) f0[0] += u_t[OMEGA];
91: }
93: static void f1_Omega(PetscInt dim, PetscInt Nf, PetscInt NfAux,
94: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
95: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
96: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
97: {
98: const PetscScalar *pOmegaDer = &u_x[uOff_x[OMEGA]];
99: PetscInt d;
101: for (d = 0; d < dim-1; ++d) f1[d] = -s_ctx->mu*pOmegaDer[d];
102: }
104: static void f0_psi(PetscInt dim, PetscInt Nf, PetscInt NfAux,
105: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
106: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
107: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
108: {
109: const PetscScalar *pnDer = &u_x[uOff_x[DENSITY]];
110: const PetscScalar *ppsiDer = &u_x[uOff_x[PSI]];
111: const PetscScalar *pphiDer = &u_x[uOff_x[PHI]];
112: const PetscScalar *refPsiDer = &a_x[aOff_x[PSI]];
113: const PetscScalar *logRefDenDer= &a_x[aOff_x[DENSITY]];
114: PetscScalar psiDer[3];
115: PetscScalar phi_n_Der[3];
116: PetscInt d;
117: if (dim < 2) {MPI_Abort (MPI_COMM_WORLD,1); return ;} /* this is needed so that the clang static analyzer does not generate a warning about variables used by not set */
118: for (d = 0; d < dim; ++d) {
119: psiDer[d] = refPsiDer[d] + ppsiDer[d];
120: phi_n_Der[d] = pphiDer[d] - pnDer[d];
121: }
122: f0[0] = - poissonBracket(dim,psiDer, phi_n_Der) + poissonBracket(dim,logRefDenDer, ppsiDer);
123: if (u_t) f0[0] += u_t[PSI];
124: }
126: static void f1_psi(PetscInt dim, PetscInt Nf, PetscInt NfAux,
127: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
128: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
129: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
130: {
131: const PetscScalar *ppsi = &u_x[uOff_x[PSI]];
132: PetscInt d;
134: for (d = 0; d < dim-1; ++d) f1[d] = -(s_ctx->eta/s_ctx->beta)*ppsi[d];
135: }
137: static void f0_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux,
138: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
139: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
140: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
141: {
142: f0[0] = -u[uOff[OMEGA]];
143: }
145: static void f1_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux,
146: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
147: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
148: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
149: {
150: const PetscScalar *pphi = &u_x[uOff_x[PHI]];
151: PetscInt d;
153: for (d = 0; d < dim-1; ++d) f1[d] = pphi[d];
154: }
156: static void f0_jz(PetscInt dim, PetscInt Nf, PetscInt NfAux,
157: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
158: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
159: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
160: {
161: f0[0] = u[uOff[JZ]];
162: }
164: static void f1_jz(PetscInt dim, PetscInt Nf, PetscInt NfAux,
165: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
166: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
167: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
168: {
169: const PetscScalar *ppsi = &u_x[uOff_x[PSI]];
170: const PetscScalar *refPsiDer = &a_x[aOff_x[PSI]]; /* aOff_x[PSI] == 2*PSI */
171: PetscInt d;
173: for (d = 0; d < dim-1; ++d) f1[d] = ppsi[d] + refPsiDer[d];
174: }
176: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
177: {
178: PetscBool flg;
180: PetscInt ii, bd;
182: options->debug = 1;
183: options->plotRef = PETSC_FALSE ;
184: options->dim = 2;
185: options->filename[0] = '\0';
186: options->cell_simplex = PETSC_FALSE ;
187: options->implicit = PETSC_FALSE ;
188: options->refine = 2;
189: options->domain_lo[0] = 0.0;
190: options->domain_lo[1] = 0.0;
191: options->domain_lo[2] = 0.0;
192: options->domain_hi[0] = 2.0;
193: options->domain_hi[1] = 2.0*PETSC_PI;
194: options->domain_hi[2] = 2.0;
195: options->periodicity[0] = DM_BOUNDARY_NONE ;
196: options->periodicity[1] = DM_BOUNDARY_NONE ;
197: options->periodicity[2] = DM_BOUNDARY_NONE ;
198: options->mu = 0;
199: options->eta = 0;
200: options->beta = 1;
201: options->a = 1;
202: options->b = PETSC_PI;
203: options->Jop = 0;
204: options->m = 1;
205: options->eps = 1.e-6;
207: for (ii = 0; ii < options->dim; ++ii) options->cells[ii] = 4;
208: PetscOptionsBegin (comm, "" , "Poisson Problem Options" , "DMPLEX " );
209: PetscOptionsInt ("-debug" , "The debugging level" , "ex48.c" , options->debug, &options->debug, NULL);
210: PetscOptionsBool ("-plot_ref" , "Plot the reference fields" , "ex48.c" , options->plotRef, &options->plotRef, NULL);
211: PetscOptionsInt ("-dim" , "The topological mesh dimension" , "ex48.c" , options->dim, &options->dim, NULL);
212: if (options->dim < 2 || options->dim > 3) SETERRQ1 (PETSC_COMM_WORLD ,PETSC_ERR_ARG_OUTOFRANGE,"Dim %D must be 2 or 3" ,options->dim);
213: PetscOptionsInt ("-dm_refine" , "Hack to get refinement level for cylinder" , "ex48.c" , options->refine, &options->refine, NULL);
214: PetscOptionsReal ("-mu" , "mu" , "ex48.c" , options->mu, &options->mu, NULL);
215: PetscOptionsReal ("-eta" , "eta" , "ex48.c" , options->eta, &options->eta, NULL);
216: PetscOptionsReal ("-beta" , "beta" , "ex48.c" , options->beta, &options->beta, NULL);
217: PetscOptionsReal ("-Jop" , "Jop" , "ex48.c" , options->Jop, &options->Jop, NULL);
218: PetscOptionsReal ("-m" , "m" , "ex48.c" , options->m, &options->m, NULL);
219: PetscOptionsReal ("-eps" , "eps" , "ex48.c" , options->eps, &options->eps, NULL);
220: PetscOptionsString ("-f" , "Exodus.II filename to read" , "ex48.c" , options->filename, options->filename, sizeof (options->filename), &flg);
221: PetscOptionsBool ("-cell_simplex" , "Simplicial (true) or tensor (false) mesh" , "ex48.c" , options->cell_simplex, &options->cell_simplex, NULL);
222: PetscOptionsBool ("-implicit" , "Use implicit time integrator" , "ex48.c" , options->implicit, &options->implicit, NULL);
223: ii = options->dim;
224: PetscOptionsRealArray ("-domain_hi" , "Domain size" , "ex48.c" , options->domain_hi, &ii, NULL);
225: ii = options->dim;
226: PetscOptionsRealArray ("-domain_lo" , "Domain size" , "ex48.c" , options->domain_lo, &ii, NULL);
227: ii = options->dim;
228: bd = options->periodicity[0];
229: PetscOptionsEList ("-x_periodicity" , "The x-boundary periodicity" , "ex48.c" , DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[0]], &bd, NULL);
230: options->periodicity[0] = (DMBoundaryType ) bd;
231: bd = options->periodicity[1];
232: PetscOptionsEList ("-y_periodicity" , "The y-boundary periodicity" , "ex48.c" , DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[1]], &bd, NULL);
233: options->periodicity[1] = (DMBoundaryType ) bd;
234: bd = options->periodicity[2];
235: PetscOptionsEList ("-z_periodicity" , "The z-boundary periodicity" , "ex48.c" , DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[2]], &bd, NULL);
236: options->periodicity[2] = (DMBoundaryType ) bd;
237: ii = options->dim;
238: PetscOptionsIntArray ("-cells" , "Number of cells in each dimension" , "ex48.c" , options->cells, &ii, NULL);
239: PetscOptionsEnd ();
240: options->a = (options->domain_hi[0]-options->domain_lo[0])/2.0;
241: options->b = (options->domain_hi[1]-options->domain_lo[1])/2.0;
242: for (ii = 0; ii < options->dim; ++ii) {
243: if (options->domain_hi[ii] <= options->domain_lo[ii]) SETERRQ3 (comm,PETSC_ERR_ARG_WRONG,"Domain %D lo=%g hi=%g" ,ii,options->domain_lo[ii],options->domain_hi[ii]);
244: }
245: options->ke = PetscSqrtScalar(options->Jop);
246: if (options->Jop==0.0) {
247: options->Jo = 1.0/PetscPowScalar(options->a,2);
248: } else {
249: options->Jo = options->Jop*PetscCosReal(options->ke*options->a)/(1.0-PetscCosReal(options->ke*options->a));
250: }
251: options->ky = PETSC_PI*options->m/options->b;
252: if (PetscPowReal(options->ky, 2) < options->Jop) {
253: options->kx = PetscSqrtScalar(options->Jop-PetscPowScalar(options->ky,2));
254: options->DeltaPrime = -2.0*options->kx*options->a*PetscCosReal(options->kx*options->a)/PetscSinReal(options->kx*options->a);
255: } else if (PetscPowReal(options->ky, 2) > options->Jop) {
256: options->kx = PetscSqrtScalar(PetscPowScalar(options->ky,2)-options->Jop);
257: options->DeltaPrime = -2.0*options->kx*options->a*PetscCoshReal(options->kx*options->a)/PetscSinhReal(options->kx*options->a);
258: } else { /*they're equal (or there's a NaN), lim(x*cot(x))_x->0=1*/
259: options->kx = 0;
260: options->DeltaPrime = -2.0;
261: }
262: PetscPrintf (comm, "DeltaPrime=%g\n" ,options->DeltaPrime);
264: return (0);
265: }
269: static void f_n(PetscInt dim, PetscInt Nf, PetscInt NfAux,
270: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
271: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
272: PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
273: {
274: const PetscScalar *pn = &u[uOff[DENSITY]];
275: *f0 = *pn;
276: }
280: static PetscErrorCode PostStep(TS ts)
281: {
282: PetscErrorCode ierr;
283: DM dm;
284: AppCtx *ctx;
285: PetscInt stepi,num;
286: Vec X;
288: TSGetApplicationContext (ts, &ctx); assert(ctx);
289: if (ctx->debug<1) return (0);
290: TSGetSolution (ts, &X);
291: VecGetDM (X, &dm);
292: TSGetStepNumber (ts, &stepi);
293: DMGetOutputSequenceNumber (dm, &num, NULL);
294: if (num < 0) {DMSetOutputSequenceNumber (dm, 0, 0.0);}
295: PetscObjectSetName ((PetscObject ) X, "u" );
296: VecViewFromOptions(X, NULL, "-vec_view" );
297: /* print integrals */
298: {
299: PetscDS prob;
300: DM plex;
301: PetscScalar den, tt[5];
302: DMConvert (dm, DMPLEX , &plex);
303: DMGetDS (plex, &prob);
304: PetscDSSetObjective(prob, 0, &f_n);
305: DMPlexComputeIntegralFEM (plex,X,tt,ctx);
306: den = tt[0];
307: DMDestroy (&plex);
308: PetscPrintf (PetscObjectComm ((PetscObject )dm), "%D) total perturbed mass = %g\n" , stepi, (double) PetscRealPart (den));
309: }
310: return (0);
311: }
313: static PetscErrorCode CreateBCLabel(DM dm, const char name[])
314: {
315: DMLabel label;
318: DMCreateLabel (dm, name);
319: DMGetLabel (dm, name, &label);
320: DMPlexMarkBoundaryFaces (dm, 1, label);
321: DMPlexLabelComplete (dm, label);
322: return (0);
323: }
325: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *ctx, DM *dm)
326: {
327: PetscInt dim = ctx->dim;
328: const char *filename = ctx->filename;
329: size_t len;
330: PetscMPIInt numProcs;
334: MPI_Comm_size (comm, &numProcs);
335: PetscStrlen (filename, &len);
336: if (len) {
337: DMPlexCreateFromFile (comm, filename, PETSC_TRUE , dm);
338: } else {
339: PetscInt d;
341: /* create DM */
342: if (ctx->cell_simplex && dim == 3) SETERRQ (comm, PETSC_ERR_ARG_WRONG, "Cannot mesh a cylinder with simplices" );
343: if (dim==2) {
344: PetscInt refineRatio, totCells = 1;
345: if (ctx->cell_simplex) SETERRQ (comm, PETSC_ERR_ARG_WRONG, "Cannot mesh 2D with simplices" );
346: refineRatio = PetscMax ((PetscInt ) (PetscPowReal(numProcs, 1.0/dim) + 0.1) - 1, 1);
347: for (d = 0; d < dim; ++d) {
348: if (ctx->cells[d] < refineRatio) ctx->cells[d] = refineRatio;
349: if (ctx->periodicity[d]==DM_BOUNDARY_PERIODIC && ctx->cells[d]*refineRatio <= 2) refineRatio = 2;
350: }
351: for (d = 0; d < dim; ++d) {
352: ctx->cells[d] *= refineRatio;
353: totCells *= ctx->cells[d];
354: }
355: if (totCells % numProcs) SETERRQ2 (comm,PETSC_ERR_ARG_WRONG,"Total cells %D not divisible by processes %D" , totCells, numProcs);
356: DMPlexCreateBoxMesh (comm, dim, PETSC_FALSE , ctx->cells, ctx->domain_lo, ctx->domain_hi, ctx->periodicity, PETSC_TRUE , dm);
357: } else {
358: if (ctx->periodicity[0]==DM_BOUNDARY_PERIODIC || ctx->periodicity[1]==DM_BOUNDARY_PERIODIC ) SETERRQ (comm, PETSC_ERR_ARG_WRONG, "Cannot do periodic in x or y in a cylinder" );
359: /* we stole dm_refine so clear it */
360: PetscOptionsClearValue (NULL,"-dm_refine" );
361: DMPlexCreateHexCylinderMesh (comm, ctx->refine, ctx->periodicity[2], dm);
362: }
363: }
364: {
365: DM distributedMesh = NULL;
366: /* Distribute mesh over processes */
367: DMPlexDistribute (*dm, 0, NULL, &distributedMesh);
368: if (distributedMesh) {
369: DMDestroy (dm);
370: *dm = distributedMesh;
371: }
372: }
373: {
374: PetscBool hasLabel;
375: DMHasLabel (*dm, "marker" , &hasLabel);
376: if (!hasLabel) {CreateBCLabel(*dm, "marker" );}
377: }
378: {
379: char convType[256];
380: PetscBool flg;
381: PetscOptionsBegin (comm, "" , "Mesh conversion options" , "DMPLEX " );
382: PetscOptionsFList ("-dm_plex_convert_type" ,"Convert DMPlex to another format" ,"ex48" ,DMList,DMPLEX ,convType,256,&flg);
383: PetscOptionsEnd ();
384: if (flg) {
385: DM dmConv;
386: DMConvert (*dm,convType,&dmConv);
387: if (dmConv) {
388: DMDestroy (dm);
389: *dm = dmConv;
390: }
391: }
392: }
393: PetscObjectSetName ((PetscObject ) *dm, "Mesh" );
394: DMSetFromOptions (*dm);
395: DMLocalizeCoordinates (*dm); /* needed for periodic */
396: return (0);
397: }
399: static PetscErrorCode log_n_0(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
400: {
401: AppCtx *lctx = (AppCtx*)ctx;
402: assert(ctx);
403: u[0] = (lctx->domain_hi-lctx->domain_lo)+x[0];
404: return 0;
405: }
407: static PetscErrorCode Omega_0(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
408: {
409: u[0] = 0.0;
410: return 0;
411: }
413: static PetscErrorCode psi_0(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
414: {
415: AppCtx *lctx = (AppCtx*)ctx;
416: assert(ctx);
417: /* This sets up a symmetrix By flux aroound the mid point in x, which represents a current density flux along z. The stability
418: is analytically known and reported in ProcessOptions. */
419: if (lctx->ke!=0.0) {
420: u[0] = (PetscCosReal(lctx->ke*(x[0]-lctx->a))-PetscCosReal(lctx->ke*lctx->a))/(1.0-PetscCosReal(lctx->ke*lctx->a));
421: } else {
422: u[0] = 1.0-PetscPowScalar((x[0]-lctx->a)/lctx->a,2);
423: }
424: return 0;
425: }
427: static PetscErrorCode initialSolution_n(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
428: {
429: u[0] = 0.0;
430: return 0;
431: }
433: static PetscErrorCode initialSolution_Omega(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
434: {
435: u[0] = 0.0;
436: return 0;
437: }
439: static PetscErrorCode initialSolution_psi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *a_ctx)
440: {
441: AppCtx *ctx = (AppCtx*)a_ctx;
442: PetscScalar r = ctx->eps*(PetscScalar ) (rand()) / (PetscScalar ) (RAND_MAX);
443: assert(ctx);
444: if (x[0] == ctx->domain_lo[0] || x[0] == ctx->domain_hi[0]) r = 0;
445: u[0] = r;
446: /* PetscPrintf (PETSC_COMM_WORLD , "rand psi %lf\n",u[0]); */
447: return 0;
448: }
450: static PetscErrorCode initialSolution_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
451: {
452: u[0] = 0.0;
453: return 0;
454: }
456: static PetscErrorCode initialSolution_jz(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
457: {
458: u[0] = 0.0;
459: return 0;
460: }
462: static PetscErrorCode SetupProblem(PetscDS prob, AppCtx *ctx)
463: {
464: const PetscInt id = 1;
465: PetscErrorCode ierr, f;
468: PetscDSSetResidual (prob, 0, f0_n, f1_n);
469: PetscDSSetResidual (prob, 1, f0_Omega, f1_Omega);
470: PetscDSSetResidual (prob, 2, f0_psi, f1_psi);
471: PetscDSSetResidual (prob, 3, f0_phi, f1_phi);
472: PetscDSSetResidual (prob, 4, f0_jz, f1_jz);
473: ctx->initialFuncs[0] = initialSolution_n;
474: ctx->initialFuncs[1] = initialSolution_Omega;
475: ctx->initialFuncs[2] = initialSolution_psi;
476: ctx->initialFuncs[3] = initialSolution_phi;
477: ctx->initialFuncs[4] = initialSolution_jz;
478: for (f = 0; f < 5; ++f) {
479: PetscDSSetImplicit ( prob, f, ctx->implicit);
480: PetscDSAddBoundary ( prob, DM_BC_ESSENTIAL , "wall" , "marker" , f, 0, NULL, (void (*)(void)) ctx->initialFuncs[f], 1, &id, ctx);
481: }
482: PetscDSSetContext(prob, 0, ctx);
483: PetscDSSetFromOptions (prob);
484: return (0);
485: }
487: static PetscErrorCode SetupEquilibriumFields(DM dm, DM dmAux, AppCtx *ctx)
488: {
489: PetscErrorCode (*eqFuncs[3])(PetscInt , PetscReal , const PetscReal [], PetscInt , PetscScalar [], void *) = {log_n_0, Omega_0, psi_0};
490: Vec eq;
492: AppCtx *ctxarr[3];
494: ctxarr[0] = ctxarr[1] = ctxarr[2] = ctx; /* each variable could have a different context */
496: DMCreateLocalVector (dmAux, &eq);
497: DMProjectFunctionLocal(dmAux, 0.0, eqFuncs, (void **)ctxarr, INSERT_ALL_VALUES , eq);
498: PetscObjectCompose ((PetscObject ) dm, "A" , (PetscObject ) eq);
499: if (ctx->plotRef) { /* plot reference functions */
500: PetscViewer viewer = NULL;
501: PetscBool isHDF5,isVTK;
502: char buf[256];
503: Vec global;
504: DMCreateGlobalVector (dmAux,&global);
505: VecSet (global,.0); /* BCs! */
506: DMLocalToGlobalBegin (dmAux,eq,INSERT_VALUES ,global);
507: DMLocalToGlobalEnd (dmAux,eq,INSERT_VALUES ,global);
508: PetscViewerCreate (PetscObjectComm ((PetscObject )dmAux),&viewer);
509: #ifdef PETSC_HAVE_HDF5
510: PetscViewerSetType (viewer,PETSCVIEWERHDF5 );
511: #else
512: PetscViewerSetType (viewer,PETSCVIEWERVTK );
513: #endif
514: PetscViewerSetFromOptions (viewer);
515: PetscObjectTypeCompare ((PetscObject )viewer,PETSCVIEWERHDF5 ,&isHDF5);
516: PetscObjectTypeCompare ((PetscObject )viewer,PETSCVIEWERVTK ,&isVTK);
517: if (isHDF5) {
518: PetscSNPrintf (buf, 256, "uEquilibrium-%dD.h5" , ctx->dim);
519: } else if (isVTK) {
520: PetscSNPrintf (buf, 256, "uEquilibrium-%dD.vtu" , ctx->dim);
521: PetscViewerPushFormat (viewer,PETSC_VIEWER_VTK_VTU );
522: }
523: PetscViewerFileSetMode (viewer,FILE_MODE_WRITE );
524: PetscViewerFileSetName (viewer,buf);
525: if (isHDF5) {DMView (dmAux,viewer);}
526: /* view equilibrium fields, this will overwrite fine grids with coarse grids! */
527: PetscObjectSetName ((PetscObject ) global, "u0" );
528: VecView (global,viewer);
529: PetscViewerDestroy (&viewer);
530: VecDestroy (&global);
531: }
532: VecDestroy (&eq);
533: return (0);
534: }
536: static PetscErrorCode SetupDiscretization(DM dm, AppCtx *ctx)
537: {
538: DM cdm = dm;
539: const PetscInt dim = ctx->dim;
540: PetscQuadrature q;
541: PetscFE fe[5], feAux[3];
542: PetscDS prob, probAux;
543: PetscInt Nf = 5, NfAux = 3, f;
544: PetscBool cell_simplex = ctx->cell_simplex;
545: MPI_Comm comm;
546: PetscErrorCode ierr;
549: /* Create finite element */
550: PetscObjectGetComm ((PetscObject ) dm, &comm);
551: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &fe[0]);
552: PetscObjectSetName ((PetscObject ) fe[0], "density" );
553: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &fe[1]);
554: PetscObjectSetName ((PetscObject ) fe[1], "vorticity" );
555: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &fe[2]);
556: PetscObjectSetName ((PetscObject ) fe[2], "flux" );
557: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &fe[3]);
558: PetscObjectSetName ((PetscObject ) fe[3], "potential" );
559: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &fe[4]);
560: PetscObjectSetName ((PetscObject ) fe[4], "current" );
562: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &feAux[0]);
563: PetscFEGetQuadrature (fe[0], &q);
564: PetscFESetQuadrature (feAux[0], q);
565: PetscObjectSetName ((PetscObject ) feAux[0], "n_0" );
566: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &feAux[1]);
567: PetscFEGetQuadrature (fe[1], &q);
568: PetscFESetQuadrature (feAux[1], q);
569: PetscObjectSetName ((PetscObject ) feAux[1], "vorticity_0" );
570: PetscFECreateDefault (comm, dim, 1, cell_simplex, NULL, -1, &feAux[2]);
571: PetscFEGetQuadrature (fe[2], &q);
572: PetscFESetQuadrature (feAux[2], q);
573: PetscObjectSetName ((PetscObject ) feAux[2], "flux_0" );
574: /* Set discretization and boundary conditions for each mesh */
575: DMGetDS (dm, &prob);
576: for (f = 0; f < Nf; ++f) {PetscDSSetDiscretization (prob, f, (PetscObject ) fe[f]);}
577: PetscDSCreate (PetscObjectComm ((PetscObject ) dm), &probAux);
578: for (f = 0; f < NfAux; ++f) {PetscDSSetDiscretization (probAux, f, (PetscObject ) feAux[f]);}
579: SetupProblem(prob, ctx);
580: while (cdm) {
581: DM coordDM, dmAux;
583: DMSetDS (cdm,prob);
584: DMGetCoordinateDM (cdm,&coordDM);
585: {
586: PetscBool hasLabel;
588: DMHasLabel (cdm, "marker" , &hasLabel);
589: if (!hasLabel) {CreateBCLabel(cdm, "marker" );}
590: }
592: DMClone (cdm, &dmAux);
593: DMSetCoordinateDM (dmAux, coordDM);
594: DMSetDS (dmAux, probAux);
595: PetscObjectCompose ((PetscObject ) dm, "dmAux" , (PetscObject ) dmAux);
596: SetupEquilibriumFields(cdm, dmAux, ctx);
597: DMDestroy (&dmAux);
599: DMGetCoarseDM (cdm, &cdm);
600: }
601: for (f = 0; f < Nf; ++f) {PetscFEDestroy (&fe[f]);}
602: for (f = 0; f < NfAux; ++f) {PetscFEDestroy (&feAux[f]);}
603: PetscDSDestroy (&probAux);
604: return (0);
605: }
607: int main(int argc, char **argv)
608: {
609: DM dm;
610: TS ts;
611: Vec u, r;
612: AppCtx ctx;
613: PetscReal t = 0.0;
614: PetscReal L2error = 0.0;
616: AppCtx *ctxarr[5];
618: ctxarr[0] = ctxarr[1] = ctxarr[2] = ctxarr[3] = ctxarr[4] = &ctx; /* each variable could have a different context */
619: s_ctx = &ctx;
620: PetscInitialize (&argc, &argv, NULL,help);if (ierr) return ierr;
621: ProcessOptions(PETSC_COMM_WORLD , &ctx);
622: /* create mesh and problem */
623: CreateMesh(PETSC_COMM_WORLD , &ctx, &dm);
624: DMSetApplicationContext (dm, &ctx);
625: PetscMalloc1 (5, &ctx.initialFuncs);
626: SetupDiscretization(dm, &ctx);
627: DMCreateGlobalVector (dm, &u);
628: PetscObjectSetName ((PetscObject ) u, "u" );
629: VecDuplicate (u, &r);
630: PetscObjectSetName ((PetscObject ) r, "r" );
631: /* create TS */
632: TSCreate (PETSC_COMM_WORLD , &ts);
633: TSSetDM (ts, dm);
634: TSSetApplicationContext (ts, &ctx);
635: DMTSSetBoundaryLocal (dm, DMPlexTSComputeBoundary , &ctx);
636: if (ctx.implicit) {
637: DMTSSetIFunctionLocal (dm, DMPlexTSComputeIFunctionFEM , &ctx);
638: DMTSSetIJacobianLocal (dm, DMPlexTSComputeIJacobianFEM , &ctx);
639: } else {
640: DMTSSetRHSFunctionLocal (dm, DMPlexTSComputeRHSFunctionFVM , &ctx);
641: }
642: TSSetExactFinalTime (ts, TS_EXACTFINALTIME_STEPOVER );
643: TSSetFromOptions (ts);
644: TSSetPostStep (ts, PostStep);
645: /* make solution & solve */
646: DMProjectFunction (dm, t, ctx.initialFuncs, (void **)ctxarr, INSERT_ALL_VALUES , u);
647: TSSetSolution (ts,u);
648: DMViewFromOptions(dm, NULL, "-dm_view" );
649: PostStep(ts); /* print the initial state */
650: TSSolve (ts, u);
651: TSGetTime (ts, &t);
652: DMComputeL2Diff (dm, t, ctx.initialFuncs, (void **)ctxarr, u, &L2error);
653: if (L2error < 1.0e-11) {PetscPrintf (PETSC_COMM_WORLD , "L_2 Error: < 1.0e-11\n" );}
654: else {PetscPrintf (PETSC_COMM_WORLD , "L_2 Error: %g\n" , L2error);}
655: #if 0
656: {
657: PetscReal res = 0.0;
658: /* Check discretization error */
659: VecViewFromOptions(u, NULL, "-initial_guess_view" );
660: DMComputeL2Diff (dm, 0.0, ctx.exactFuncs, NULL, u, &error);
661: if (error < 1.0e-11) {PetscPrintf (PETSC_COMM_WORLD , "L_2 Error: < 1.0e-11\n" );}
662: else {PetscPrintf (PETSC_COMM_WORLD , "L_2 Error: %g\n" , error);}
663: /* Check residual */
664: SNESComputeFunction (snes, u, r);
665: VecChop (r, 1.0e-10);
666: VecViewFromOptions(r, NULL, "-initial_residual_view" );
667: VecNorm (r, NORM_2 , &res);
668: PetscPrintf (PETSC_COMM_WORLD , "L_2 Residual: %g\n" , res);
669: /* Check Jacobian */
670: {
671: Mat A;
672: Vec b;
674: SNESGetJacobian (snes, &A, NULL, NULL, NULL);
675: SNESComputeJacobian (snes, u, A, A);
676: VecDuplicate (u, &b);
677: VecSet (r, 0.0);
678: SNESComputeFunction (snes, r, b);
679: MatMult (A, u, r);
680: VecAXPY (r, 1.0, b);
681: VecDestroy (&b);
682: PetscPrintf (PETSC_COMM_WORLD , "Au - b = Au + F(0)\n" );
683: VecChop (r, 1.0e-10);
684: VecViewFromOptions(r, NULL, "-linear_residual_view" );
685: VecNorm (r, NORM_2 , &res);
686: PetscPrintf (PETSC_COMM_WORLD , "Linear L_2 Residual: %g\n" , res);
687: }
688: }
689: #endif
690: VecDestroy (&u);
691: VecDestroy (&r);
692: TSDestroy (&ts);
693: DMDestroy (&dm);
694: PetscFree (ctx.initialFuncs);
695: PetscFinalize ();
696: return ierr;
697: }
699: /*TEST
701: test:
702: suffix: 0
703: args: -debug 1 -dim 2 -dm_refine 1 -x_periodicity PERIODIC -ts_max_steps 1 -ts_final_time 10. -ts_dt 1.0
704: test:
705: suffix: 1
706: args: -debug 1 -dim 3 -dm_refine 1 -z_periodicity PERIODIC -ts_max_steps 1 -ts_final_time 10. -ts_dt 1.0 -domain_lo -2,-1,-1 -domain_hi 2,1,1
708: TEST*/