Actual source code: partition.c

petsc-3.10.5 2019-03-28
Report Typos and Errors

  2:  #include <petsc/private/matimpl.h>

  4: /* Logging support */
  5: PetscClassId MAT_PARTITIONING_CLASSID;

  7: /*
  8:    Simplest partitioning, keeps the current partitioning.
  9: */
 10: static PetscErrorCode MatPartitioningApply_Current(MatPartitioning part,IS *partitioning)
 11: {
 13:   PetscInt       m;
 14:   PetscMPIInt    rank,size;

 17:   MPI_Comm_size(PetscObjectComm((PetscObject)part),&size);
 18:   if (part->n != size) {
 19:     const char *prefix;
 20:     PetscObjectGetOptionsPrefix((PetscObject)part,&prefix);
 21:     SETERRQ1(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"This is the DEFAULT NO-OP partitioner, it currently only supports one domain per processor\nuse -%smat_partitioning_type parmetis or chaco or ptscotch for more than one subdomain per processor",prefix ? prefix : "");
 22:   }
 23:   MPI_Comm_rank(PetscObjectComm((PetscObject)part),&rank);

 25:   MatGetLocalSize(part->adj,&m,NULL);
 26:   ISCreateStride(PetscObjectComm((PetscObject)part),m,rank,0,partitioning);
 27:   return(0);
 28: }

 30: /*
 31:    partition an index to rebalance the computation
 32: */
 33: static PetscErrorCode MatPartitioningApply_Average(MatPartitioning part,IS *partitioning)
 34: {
 36:   PetscInt       m,M,nparts,*indices,r,d,*parts,i,start,end,loc;

 39:   MatGetSize(part->adj,&M,NULL);
 40:   MatGetLocalSize(part->adj,&m,NULL);
 41:   nparts = part->n;
 42:   PetscCalloc1(nparts,&parts);
 43:   d = M/nparts;
 44:   for (i=0; i<nparts; i++) parts[i] = d;
 45:   r = M%nparts;
 46:   for (i=0; i<r; i++) parts[i] += 1;
 47:   for (i=1; i<nparts; i++) parts[i] += parts[i-1];
 48:   PetscCalloc1(m,&indices);
 49:   MatGetOwnershipRange(part->adj,&start,&end);
 50:   for (i=start; i<end; i++) {
 51:     PetscFindInt(i,nparts,parts,&loc);
 52:     if (loc<0) loc = -(loc+1);
 53:     else loc = loc+1;
 54:     indices[i-start] = loc;
 55:   }
 56:   PetscFree(parts);
 57:   ISCreateGeneral(PetscObjectComm((PetscObject)part),m,indices,PETSC_OWN_POINTER,partitioning);
 58:   return(0);
 59: }

 61: static PetscErrorCode MatPartitioningApply_Square(MatPartitioning part,IS *partitioning)
 62: {
 64:   PetscInt       cell,n,N,p,rstart,rend,*color;
 65:   PetscMPIInt    size;

 68:   MPI_Comm_size(PetscObjectComm((PetscObject)part),&size);
 69:   if (part->n != size) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Currently only supports one domain per processor");
 70:   p = (PetscInt)PetscSqrtReal((PetscReal)part->n);
 71:   if (p*p != part->n) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Square partitioning requires \"perfect square\" number of domains");

 73:   MatGetSize(part->adj,&N,NULL);
 74:   n    = (PetscInt)PetscSqrtReal((PetscReal)N);
 75:   if (n*n != N) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Square partitioning requires square domain");
 76:   if (n%p != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Square partitioning requires p to divide n");
 77:   MatGetOwnershipRange(part->adj,&rstart,&rend);
 78:   PetscMalloc1(rend-rstart,&color);
 79:   /* for (int cell=rstart; cell<rend; cell++) { color[cell-rstart] = ((cell%n) < (n/2)) + 2 * ((cell/n) < (n/2)); } */
 80:   for (cell=rstart; cell<rend; cell++) {
 81:     color[cell-rstart] = ((cell%n) / (n/p)) + p * ((cell/n) / (n/p));
 82:   }
 83:   ISCreateGeneral(PetscObjectComm((PetscObject)part),rend-rstart,color,PETSC_OWN_POINTER,partitioning);
 84:   return(0);
 85: }

 87: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Current(MatPartitioning part)
 88: {
 90:   part->ops->apply   = MatPartitioningApply_Current;
 91:   part->ops->view    = 0;
 92:   part->ops->destroy = 0;
 93:   return(0);
 94: }

 96: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Average(MatPartitioning part)
 97: {
 99:   part->ops->apply   = MatPartitioningApply_Average;
100:   part->ops->view    = 0;
101:   part->ops->destroy = 0;
102:   return(0);
103: }

105: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Square(MatPartitioning part)
106: {
108:   part->ops->apply   = MatPartitioningApply_Square;
109:   part->ops->view    = 0;
110:   part->ops->destroy = 0;
111:   return(0);
112: }


115: /* gets as input the "sizes" array computed by ParMetis_*_NodeND and returns
116:        seps[  0 :         2*p) : the start and end node of each subdomain
117:        seps[2*p : 2*p+2*(p-1)) : the start and end node of each separator
118:      levels[  0 :         p-1) : level in the tree for each separator (-1 root, -2 and -3 first level and so on)
119:    The arrays must be large enough
120: */
121: PETSC_INTERN PetscErrorCode MatPartitioningSizesToSep_Private(PetscInt p, PetscInt sizes[], PetscInt seps[], PetscInt level[])
122: {
123:   PetscInt       l2p,i,pTree,pStartTree;

127:   l2p = PetscLog2Real(p);
128:   if (l2p - (PetscInt)PetscLog2Real(p)) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"%D is not a power of 2",p);
129:   if (!p) return(0);
130:   PetscMemzero(seps,(2*p-2)*sizeof(PetscInt));
131:   PetscMemzero(level,(p-1)*sizeof(PetscInt));
132:   seps[2*p-2] = sizes[2*p-2];
133:   pTree = p;
134:   pStartTree = 0;
135:   while (pTree != 1) {
136:     for (i = pStartTree; i < pStartTree + pTree; i++) {
137:       seps[i] += sizes[i];
138:       seps[pStartTree + pTree + (i-pStartTree)/2] += seps[i];
139:     }
140:     pStartTree += pTree;
141:     pTree = pTree/2;
142:   }
143:   seps[2*p-2] -= sizes[2*p-2];

145:   pStartTree = 2*p-2;
146:   pTree      = 1;
147:   while (pStartTree > 0) {
148:     for (i = pStartTree; i < pStartTree + pTree; i++) {
149:       PetscInt k = 2*i - (pStartTree +2*pTree);
150:       PetscInt n = seps[k+1];

152:       seps[k+1]  = seps[i]   - sizes[k+1];
153:       seps[k]    = seps[k+1] + sizes[k+1] - n - sizes[k];
154:       level[i-p] = -pTree - i + pStartTree;
155:     }
156:     pTree *= 2;
157:     pStartTree -= pTree;
158:   }
159:   /* I know there should be a formula */
160:   PetscSortIntWithArrayPair(p-1,seps+p,sizes+p,level);
161:   for (i=2*p-2;i>=0;i--) { seps[2*i] = seps[i]; seps[2*i+1] = seps[i] + sizes[i] - 1; }
162:   return(0);
163: }

165: /* ===========================================================================================*/

167: PetscFunctionList MatPartitioningList              = 0;
168: PetscBool         MatPartitioningRegisterAllCalled = PETSC_FALSE;


171: /*@C
172:    MatPartitioningRegister - Adds a new sparse matrix partitioning to the  matrix package.

174:    Not Collective

176:    Input Parameters:
177: +  sname - name of partitioning (for example MATPARTITIONINGCURRENT) or parmetis
178: -  function - function pointer that creates the partitioning type

180:    Level: developer

182:    Sample usage:
183: .vb
184:    MatPartitioningRegister("my_part",MyPartCreate);
185: .ve

187:    Then, your partitioner can be chosen with the procedural interface via
188: $     MatPartitioningSetType(part,"my_part")
189:    or at runtime via the option
190: $     -mat_partitioning_type my_part

192: .keywords: matrix, partitioning, register

194: .seealso: MatPartitioningRegisterDestroy(), MatPartitioningRegisterAll()
195: @*/
196: PetscErrorCode  MatPartitioningRegister(const char sname[],PetscErrorCode (*function)(MatPartitioning))
197: {

201:   MatInitializePackage();
202:   PetscFunctionListAdd(&MatPartitioningList,sname,function);
203:   return(0);
204: }

206: /*@C
207:    MatPartitioningGetType - Gets the Partitioning method type and name (as a string)
208:         from the partitioning context.

210:    Not collective

212:    Input Parameter:
213: .  partitioning - the partitioning context

215:    Output Parameter:
216: .  type - partitioner type

218:    Level: intermediate

220:    Not Collective

222: .keywords: Partitioning, get, method, name, type
223: @*/
224: PetscErrorCode  MatPartitioningGetType(MatPartitioning partitioning,MatPartitioningType *type)
225: {
229:   *type = ((PetscObject)partitioning)->type_name;
230:   return(0);
231: }

233: /*@C
234:    MatPartitioningSetNParts - Set how many partitions need to be created;
235:         by default this is one per processor. Certain partitioning schemes may
236:         in fact only support that option.

238:    Not collective

240:    Input Parameter:
241: .  partitioning - the partitioning context
242: .  n - the number of partitions

244:    Level: intermediate

246:    Not Collective

248: .keywords: Partitioning, set

250: .seealso: MatPartitioningCreate(), MatPartitioningApply()
251: @*/
252: PetscErrorCode  MatPartitioningSetNParts(MatPartitioning part,PetscInt n)
253: {
255:   part->n = n;
256:   return(0);
257: }

259: /*@
260:    MatPartitioningApplyND - Gets a nested dissection partitioning for a matrix.

262:    Collective on Mat

264:    Input Parameters:
265: .  matp - the matrix partitioning object

267:    Output Parameters:
268: .   partitioning - the partitioning. For each local node, a positive value indicates the processor
269:                    number the node has been assigned to. Negative x values indicate the separator level -(x+1).

271:    Level: beginner

273:    The user can define additional partitionings; see MatPartitioningRegister().

275: .keywords: matrix, get, partitioning

277: .seealso:  MatPartitioningRegister(), MatPartitioningCreate(),
278:            MatPartitioningDestroy(), MatPartitioningSetAdjacency(), ISPartitioningToNumbering(),
279:            ISPartitioningCount()
280: @*/
281: PetscErrorCode  MatPartitioningApplyND(MatPartitioning matp,IS *partitioning)
282: {

288:   if (!matp->adj->assembled) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
289:   if (matp->adj->factortype) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
290:   if (!matp->ops->applynd) SETERRQ1(PetscObjectComm((PetscObject)matp),PETSC_ERR_SUP,"Nested dissection not provided by MatPartitioningType %s",((PetscObject)matp)->type_name);
291:   PetscLogEventBegin(MAT_PartitioningND,matp,0,0,0);
292:   (*matp->ops->applynd)(matp,partitioning);
293:   PetscLogEventEnd(MAT_PartitioningND,matp,0,0,0);

295:   MatPartitioningViewFromOptions(matp,NULL,"-mat_partitioning_view");
296:   ISViewFromOptions(*partitioning,NULL,"-mat_partitioning_view");
297:   return(0);
298: }

300: /*@
301:    MatPartitioningApply - Gets a partitioning for a matrix.

303:    Collective on Mat

305:    Input Parameters:
306: .  matp - the matrix partitioning object

308:    Output Parameters:
309: .   partitioning - the partitioning. For each local node this tells the processor
310:                    number that that node is assigned to.

312:    Options Database Keys:
313:    To specify the partitioning through the options database, use one of
314:    the following
315: $    -mat_partitioning_type parmetis, -mat_partitioning current
316:    To see the partitioning result
317: $    -mat_partitioning_view

319:    Level: beginner

321:    The user can define additional partitionings; see MatPartitioningRegister().

323: .keywords: matrix, get, partitioning

325: .seealso:  MatPartitioningRegister(), MatPartitioningCreate(),
326:            MatPartitioningDestroy(), MatPartitioningSetAdjacency(), ISPartitioningToNumbering(),
327:            ISPartitioningCount()
328: @*/
329: PetscErrorCode  MatPartitioningApply(MatPartitioning matp,IS *partitioning)
330: {

336:   if (!matp->adj->assembled) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
337:   if (matp->adj->factortype) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
338:   if (!matp->ops->apply) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Must set type with MatPartitioningSetFromOptions() or MatPartitioningSetType()");
339:   PetscLogEventBegin(MAT_Partitioning,matp,0,0,0);
340:   (*matp->ops->apply)(matp,partitioning);
341:   PetscLogEventEnd(MAT_Partitioning,matp,0,0,0);

343:   MatPartitioningViewFromOptions(matp,NULL,"-mat_partitioning_view");
344:   ISViewFromOptions(*partitioning,NULL,"-mat_partitioning_view");
345:   return(0);
346: }

348: /*@
349:    MatPartitioningSetAdjacency - Sets the adjacency graph (matrix) of the thing to be
350:       partitioned.

352:    Collective on MatPartitioning and Mat

354:    Input Parameters:
355: +  part - the partitioning context
356: -  adj - the adjacency matrix

358:    Level: beginner

360: .keywords: Partitioning, adjacency

362: .seealso: MatPartitioningCreate()
363: @*/
364: PetscErrorCode  MatPartitioningSetAdjacency(MatPartitioning part,Mat adj)
365: {
369:   part->adj = adj;
370:   return(0);
371: }

373: /*@
374:    MatPartitioningDestroy - Destroys the partitioning context.

376:    Collective on Partitioning

378:    Input Parameters:
379: .  part - the partitioning context

381:    Level: beginner

383: .keywords: Partitioning, destroy, context

385: .seealso: MatPartitioningCreate()
386: @*/
387: PetscErrorCode  MatPartitioningDestroy(MatPartitioning *part)
388: {

392:   if (!*part) return(0);
394:   if (--((PetscObject)(*part))->refct > 0) {*part = 0; return(0);}

396:   if ((*part)->ops->destroy) {
397:     (*(*part)->ops->destroy)((*part));
398:   }
399:   PetscFree((*part)->vertex_weights);
400:   PetscFree((*part)->part_weights);
401:   PetscHeaderDestroy(part);
402:   return(0);
403: }

405: /*@C
406:    MatPartitioningSetVertexWeights - Sets the weights for vertices for a partitioning.

408:    Logically Collective on Partitioning

410:    Input Parameters:
411: +  part - the partitioning context
412: -  weights - the weights, on each process this array must have the same size as the number of local rows

414:    Level: beginner

416:    Notes:
417:       The array weights is freed by PETSc so the user should not free the array. In C/C++
418:    the array must be obtained with a call to PetscMalloc(), not malloc().

420: .keywords: Partitioning, destroy, context

422: .seealso: MatPartitioningCreate(), MatPartitioningSetType(), MatPartitioningSetPartitionWeights()
423: @*/
424: PetscErrorCode  MatPartitioningSetVertexWeights(MatPartitioning part,const PetscInt weights[])
425: {


431:   PetscFree(part->vertex_weights);

433:   part->vertex_weights = (PetscInt*)weights;
434:   return(0);
435: }

437: /*@C
438:    MatPartitioningSetPartitionWeights - Sets the weights for each partition.

440:    Logically Collective on Partitioning

442:    Input Parameters:
443: +  part - the partitioning context
444: -  weights - An array of size nparts that is used to specify the fraction of
445:              vertex weight that should be distributed to each sub-domain for
446:              the balance constraint. If all of the sub-domains are to be of
447:              the same size, then each of the nparts elements should be set
448:              to a value of 1/nparts. Note that the sum of all of the weights
449:              should be one.

451:    Level: beginner

453:    Notes:
454:       The array weights is freed by PETSc so the user should not free the array. In C/C++
455:    the array must be obtained with a call to PetscMalloc(), not malloc().

457: .keywords: Partitioning, destroy, context

459: .seealso: MatPartitioningCreate(), MatPartitioningSetType(), MatPartitioningSetVertexWeights()
460: @*/
461: PetscErrorCode  MatPartitioningSetPartitionWeights(MatPartitioning part,const PetscReal weights[])
462: {


468:   PetscFree(part->part_weights);

470:   part->part_weights = (PetscReal*)weights;
471:   return(0);
472: }

474: /*@
475:    MatPartitioningCreate - Creates a partitioning context.

477:    Collective on MPI_Comm

479:    Input Parameter:
480: .   comm - MPI communicator

482:    Output Parameter:
483: .  newp - location to put the context

485:    Level: beginner

487: .keywords: Partitioning, create, context

489: .seealso: MatPartitioningSetType(), MatPartitioningApply(), MatPartitioningDestroy(),
490:           MatPartitioningSetAdjacency()

492: @*/
493: PetscErrorCode  MatPartitioningCreate(MPI_Comm comm,MatPartitioning *newp)
494: {
495:   MatPartitioning part;
496:   PetscErrorCode  ierr;
497:   PetscMPIInt     size;

500:   *newp = 0;

502:   MatInitializePackage();
503:   PetscHeaderCreate(part,MAT_PARTITIONING_CLASSID,"MatPartitioning","Matrix/graph partitioning","MatOrderings",comm,MatPartitioningDestroy,MatPartitioningView);
504:   part->vertex_weights = NULL;
505:   part->part_weights   = NULL;

507:   MPI_Comm_size(comm,&size);
508:   part->n = (PetscInt)size;

510:   *newp = part;
511:   return(0);
512: }

514: /*@C
515:    MatPartitioningView - Prints the partitioning data structure.

517:    Collective on MatPartitioning

519:    Input Parameters:
520: .  part - the partitioning context
521: .  viewer - optional visualization context

523:    Level: intermediate

525:    Note:
526:    The available visualization contexts include
527: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
528: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
529:          output where only the first processor opens
530:          the file.  All other processors send their
531:          data to the first processor to print.

533:    The user can open alternative visualization contexts with
534: .     PetscViewerASCIIOpen() - output to a specified file

536: .keywords: Partitioning, view

538: .seealso: PetscViewerASCIIOpen()
539: @*/
540: PetscErrorCode  MatPartitioningView(MatPartitioning part,PetscViewer viewer)
541: {
543:   PetscBool      iascii;

547:   if (!viewer) {
548:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)part),&viewer);
549:   }

553:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
554:   if (iascii) {
555:     PetscObjectPrintClassNamePrefixType((PetscObject)part,viewer);
556:     if (part->vertex_weights) {
557:       PetscViewerASCIIPrintf(viewer,"  Using vertex weights\n");
558:     }
559:   }
560:   if (part->ops->view) {
561:     PetscViewerASCIIPushTab(viewer);
562:     (*part->ops->view)(part,viewer);
563:     PetscViewerASCIIPopTab(viewer);
564:   }
565:   return(0);
566: }

568: /*@C
569:    MatPartitioningSetType - Sets the type of partitioner to use

571:    Collective on MatPartitioning

573:    Input Parameter:
574: .  part - the partitioning context.
575: .  type - a known method

577:    Options Database Command:
578: $  -mat_partitioning_type  <type>
579: $      Use -help for a list of available methods
580: $      (for instance, parmetis)

582:    Level: intermediate

584: .keywords: partitioning, set, method, type

586: .seealso: MatPartitioningCreate(), MatPartitioningApply(), MatPartitioningType

588: @*/
589: PetscErrorCode  MatPartitioningSetType(MatPartitioning part,MatPartitioningType type)
590: {
591:   PetscErrorCode ierr,(*r)(MatPartitioning);
592:   PetscBool      match;


598:   PetscObjectTypeCompare((PetscObject)part,type,&match);
599:   if (match) return(0);

601:   if (part->ops->destroy) {
602:      (*part->ops->destroy)(part);

604:     part->ops->destroy = NULL;
605:     part->data         = 0;
606:     part->setupcalled  = 0;
607:   }

609:   PetscFunctionListFind(MatPartitioningList,type,&r);
610:   if (!r) SETERRQ1(PetscObjectComm((PetscObject)part),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown partitioning type %s",type);

612:   part->ops->destroy = (PetscErrorCode (*)(MatPartitioning)) 0;
613:   part->ops->view    = (PetscErrorCode (*)(MatPartitioning,PetscViewer)) 0;

615:   (*r)(part);

617:   PetscFree(((PetscObject)part)->type_name);
618:   PetscStrallocpy(type,&((PetscObject)part)->type_name);
619:   return(0);
620: }

622: /*@
623:    MatPartitioningSetFromOptions - Sets various partitioning options from the
624:         options database.

626:    Collective on MatPartitioning

628:    Input Parameter:
629: .  part - the partitioning context.

631:    Options Database Command:
632: $  -mat_partitioning_type  <type>
633: $      Use -help for a list of available methods
634: $      (for instance, parmetis)


637:    Notes:
638:     If the partitioner has not been set by the user it uses one of the installed partitioner such as ParMetis. If there are
639:    no installed partitioners it uses current which means no repartioning.

641:    Level: beginner

643: .keywords: partitioning, set, method, type
644: @*/
645: PetscErrorCode  MatPartitioningSetFromOptions(MatPartitioning part)
646: {
648:   PetscBool      flag;
649:   char           type[256];
650:   const char     *def;

653:   PetscObjectOptionsBegin((PetscObject)part);
654:   if (!((PetscObject)part)->type_name) {
655: #if defined(PETSC_HAVE_PARMETIS)
656:     def = MATPARTITIONINGPARMETIS;
657: #elif defined(PETSC_HAVE_CHACO)
658:     def = MATPARTITIONINGCHACO;
659: #elif defined(PETSC_HAVE_PARTY)
660:     def = MATPARTITIONINGPARTY;
661: #elif defined(PETSC_HAVE_PTSCOTCH)
662:     def = MATPARTITIONINGPTSCOTCH;
663: #else
664:     def = MATPARTITIONINGCURRENT;
665: #endif
666:   } else {
667:     def = ((PetscObject)part)->type_name;
668:   }
669:   PetscOptionsFList("-mat_partitioning_type","Type of partitioner","MatPartitioningSetType",MatPartitioningList,def,type,256,&flag);
670:   if (flag) {
671:     MatPartitioningSetType(part,type);
672:   }
673:   /*
674:     Set the type if it was never set.
675:   */
676:   if (!((PetscObject)part)->type_name) {
677:     MatPartitioningSetType(part,def);
678:   }

680:   if (part->ops->setfromoptions) {
681:     (*part->ops->setfromoptions)(PetscOptionsObject,part);
682:   }
683:   PetscOptionsEnd();
684:   return(0);
685: }