Actual source code: baijfact5.c
petsc-3.10.5 2019-03-28
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include <../src/mat/impls/baij/seq/baij.h>
6: #include <petsc/private/kernels/blockinvert.h>
7: /*
8: Version for when blocks are 7 by 7
9: */
10: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_inplace(Mat C,Mat A,const MatFactorInfo *info)
11: {
12: Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
13: IS isrow = b->row,isicol = b->icol;
15: const PetscInt *r,*ic,*bi = b->i,*bj = b->j,*ajtmp,*diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj,*ajtmpold;
16: PetscInt i,j,n = a->mbs,nz,row,idx;
17: MatScalar *pv,*v,*rtmp,*pc,*w,*x;
18: MatScalar p1,p2,p3,p4,m1,m2,m3,m4,m5,m6,m7,m8,m9,x1,x2,x3,x4;
19: MatScalar p5,p6,p7,p8,p9,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16;
20: MatScalar x17,x18,x19,x20,x21,x22,x23,x24,x25,p10,p11,p12,p13,p14;
21: MatScalar p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,m10,m11,m12;
22: MatScalar m13,m14,m15,m16,m17,m18,m19,m20,m21,m22,m23,m24,m25;
23: MatScalar p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36;
24: MatScalar p37,p38,p39,p40,p41,p42,p43,p44,p45,p46,p47,p48,p49;
25: MatScalar x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36;
26: MatScalar x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49;
27: MatScalar m26,m27,m28,m29,m30,m31,m32,m33,m34,m35,m36;
28: MatScalar m37,m38,m39,m40,m41,m42,m43,m44,m45,m46,m47,m48,m49;
29: MatScalar *ba = b->a,*aa = a->a;
30: PetscReal shift = info->shiftamount;
31: PetscBool allowzeropivot,zeropivotdetected;
34: allowzeropivot = PetscNot(A->erroriffailure);
35: ISGetIndices(isrow,&r);
36: ISGetIndices(isicol,&ic);
37: PetscMalloc1(49*(n+1),&rtmp);
39: for (i=0; i<n; i++) {
40: nz = bi[i+1] - bi[i];
41: ajtmp = bj + bi[i];
42: for (j=0; j<nz; j++) {
43: x = rtmp+49*ajtmp[j];
44: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
45: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
46: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
47: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
48: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
49: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
50: }
51: /* load in initial (unfactored row) */
52: idx = r[i];
53: nz = ai[idx+1] - ai[idx];
54: ajtmpold = aj + ai[idx];
55: v = aa + 49*ai[idx];
56: for (j=0; j<nz; j++) {
57: x = rtmp+49*ic[ajtmpold[j]];
58: x[0] = v[0]; x[1] = v[1]; x[2] = v[2]; x[3] = v[3];
59: x[4] = v[4]; x[5] = v[5]; x[6] = v[6]; x[7] = v[7];
60: x[8] = v[8]; x[9] = v[9]; x[10] = v[10]; x[11] = v[11];
61: x[12] = v[12]; x[13] = v[13]; x[14] = v[14]; x[15] = v[15];
62: x[16] = v[16]; x[17] = v[17]; x[18] = v[18]; x[19] = v[19];
63: x[20] = v[20]; x[21] = v[21]; x[22] = v[22]; x[23] = v[23];
64: x[24] = v[24]; x[25] = v[25]; x[26] = v[26]; x[27] = v[27];
65: x[28] = v[28]; x[29] = v[29]; x[30] = v[30]; x[31] = v[31];
66: x[32] = v[32]; x[33] = v[33]; x[34] = v[34]; x[35] = v[35];
67: x[36] = v[36]; x[37] = v[37]; x[38] = v[38]; x[39] = v[39];
68: x[40] = v[40]; x[41] = v[41]; x[42] = v[42]; x[43] = v[43];
69: x[44] = v[44]; x[45] = v[45]; x[46] = v[46]; x[47] = v[47];
70: x[48] = v[48];
71: v += 49;
72: }
73: row = *ajtmp++;
74: while (row < i) {
75: pc = rtmp + 49*row;
76: p1 = pc[0]; p2 = pc[1]; p3 = pc[2]; p4 = pc[3];
77: p5 = pc[4]; p6 = pc[5]; p7 = pc[6]; p8 = pc[7];
78: p9 = pc[8]; p10 = pc[9]; p11 = pc[10]; p12 = pc[11];
79: p13 = pc[12]; p14 = pc[13]; p15 = pc[14]; p16 = pc[15];
80: p17 = pc[16]; p18 = pc[17]; p19 = pc[18]; p20 = pc[19];
81: p21 = pc[20]; p22 = pc[21]; p23 = pc[22]; p24 = pc[23];
82: p25 = pc[24]; p26 = pc[25]; p27 = pc[26]; p28 = pc[27];
83: p29 = pc[28]; p30 = pc[29]; p31 = pc[30]; p32 = pc[31];
84: p33 = pc[32]; p34 = pc[33]; p35 = pc[34]; p36 = pc[35];
85: p37 = pc[36]; p38 = pc[37]; p39 = pc[38]; p40 = pc[39];
86: p41 = pc[40]; p42 = pc[41]; p43 = pc[42]; p44 = pc[43];
87: p45 = pc[44]; p46 = pc[45]; p47 = pc[46]; p48 = pc[47];
88: p49 = pc[48];
89: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 ||
90: p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 ||
91: p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 ||
92: p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 ||
93: p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 ||
94: p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 ||
95: p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 ||
96: p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 ||
97: p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 ||
98: p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 ||
99: p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 ||
100: p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 ||
101: p49 != 0.0) {
102: pv = ba + 49*diag_offset[row];
103: pj = bj + diag_offset[row] + 1;
104: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
105: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7];
106: x9 = pv[8]; x10 = pv[9]; x11 = pv[10]; x12 = pv[11];
107: x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
108: x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
109: x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
110: x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
111: x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
112: x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
113: x37 = pv[36]; x38 = pv[37]; x39 = pv[38]; x40 = pv[39];
114: x41 = pv[40]; x42 = pv[41]; x43 = pv[42]; x44 = pv[43];
115: x45 = pv[44]; x46 = pv[45]; x47 = pv[46]; x48 = pv[47];
116: x49 = pv[48];
117: pc[0] = m1 = p1*x1 + p8*x2 + p15*x3 + p22*x4 + p29*x5 + p36*x6 + p43*x7;
118: pc[1] = m2 = p2*x1 + p9*x2 + p16*x3 + p23*x4 + p30*x5 + p37*x6 + p44*x7;
119: pc[2] = m3 = p3*x1 + p10*x2 + p17*x3 + p24*x4 + p31*x5 + p38*x6 + p45*x7;
120: pc[3] = m4 = p4*x1 + p11*x2 + p18*x3 + p25*x4 + p32*x5 + p39*x6 + p46*x7;
121: pc[4] = m5 = p5*x1 + p12*x2 + p19*x3 + p26*x4 + p33*x5 + p40*x6 + p47*x7;
122: pc[5] = m6 = p6*x1 + p13*x2 + p20*x3 + p27*x4 + p34*x5 + p41*x6 + p48*x7;
123: pc[6] = m7 = p7*x1 + p14*x2 + p21*x3 + p28*x4 + p35*x5 + p42*x6 + p49*x7;
125: pc[7] = m8 = p1*x8 + p8*x9 + p15*x10 + p22*x11 + p29*x12 + p36*x13 + p43*x14;
126: pc[8] = m9 = p2*x8 + p9*x9 + p16*x10 + p23*x11 + p30*x12 + p37*x13 + p44*x14;
127: pc[9] = m10 = p3*x8 + p10*x9 + p17*x10 + p24*x11 + p31*x12 + p38*x13 + p45*x14;
128: pc[10] = m11 = p4*x8 + p11*x9 + p18*x10 + p25*x11 + p32*x12 + p39*x13 + p46*x14;
129: pc[11] = m12 = p5*x8 + p12*x9 + p19*x10 + p26*x11 + p33*x12 + p40*x13 + p47*x14;
130: pc[12] = m13 = p6*x8 + p13*x9 + p20*x10 + p27*x11 + p34*x12 + p41*x13 + p48*x14;
131: pc[13] = m14 = p7*x8 + p14*x9 + p21*x10 + p28*x11 + p35*x12 + p42*x13 + p49*x14;
133: pc[14] = m15 = p1*x15 + p8*x16 + p15*x17 + p22*x18 + p29*x19 + p36*x20 + p43*x21;
134: pc[15] = m16 = p2*x15 + p9*x16 + p16*x17 + p23*x18 + p30*x19 + p37*x20 + p44*x21;
135: pc[16] = m17 = p3*x15 + p10*x16 + p17*x17 + p24*x18 + p31*x19 + p38*x20 + p45*x21;
136: pc[17] = m18 = p4*x15 + p11*x16 + p18*x17 + p25*x18 + p32*x19 + p39*x20 + p46*x21;
137: pc[18] = m19 = p5*x15 + p12*x16 + p19*x17 + p26*x18 + p33*x19 + p40*x20 + p47*x21;
138: pc[19] = m20 = p6*x15 + p13*x16 + p20*x17 + p27*x18 + p34*x19 + p41*x20 + p48*x21;
139: pc[20] = m21 = p7*x15 + p14*x16 + p21*x17 + p28*x18 + p35*x19 + p42*x20 + p49*x21;
141: pc[21] = m22 = p1*x22 + p8*x23 + p15*x24 + p22*x25 + p29*x26 + p36*x27 + p43*x28;
142: pc[22] = m23 = p2*x22 + p9*x23 + p16*x24 + p23*x25 + p30*x26 + p37*x27 + p44*x28;
143: pc[23] = m24 = p3*x22 + p10*x23 + p17*x24 + p24*x25 + p31*x26 + p38*x27 + p45*x28;
144: pc[24] = m25 = p4*x22 + p11*x23 + p18*x24 + p25*x25 + p32*x26 + p39*x27 + p46*x28;
145: pc[25] = m26 = p5*x22 + p12*x23 + p19*x24 + p26*x25 + p33*x26 + p40*x27 + p47*x28;
146: pc[26] = m27 = p6*x22 + p13*x23 + p20*x24 + p27*x25 + p34*x26 + p41*x27 + p48*x28;
147: pc[27] = m28 = p7*x22 + p14*x23 + p21*x24 + p28*x25 + p35*x26 + p42*x27 + p49*x28;
149: pc[28] = m29 = p1*x29 + p8*x30 + p15*x31 + p22*x32 + p29*x33 + p36*x34 + p43*x35;
150: pc[29] = m30 = p2*x29 + p9*x30 + p16*x31 + p23*x32 + p30*x33 + p37*x34 + p44*x35;
151: pc[30] = m31 = p3*x29 + p10*x30 + p17*x31 + p24*x32 + p31*x33 + p38*x34 + p45*x35;
152: pc[31] = m32 = p4*x29 + p11*x30 + p18*x31 + p25*x32 + p32*x33 + p39*x34 + p46*x35;
153: pc[32] = m33 = p5*x29 + p12*x30 + p19*x31 + p26*x32 + p33*x33 + p40*x34 + p47*x35;
154: pc[33] = m34 = p6*x29 + p13*x30 + p20*x31 + p27*x32 + p34*x33 + p41*x34 + p48*x35;
155: pc[34] = m35 = p7*x29 + p14*x30 + p21*x31 + p28*x32 + p35*x33 + p42*x34 + p49*x35;
157: pc[35] = m36 = p1*x36 + p8*x37 + p15*x38 + p22*x39 + p29*x40 + p36*x41 + p43*x42;
158: pc[36] = m37 = p2*x36 + p9*x37 + p16*x38 + p23*x39 + p30*x40 + p37*x41 + p44*x42;
159: pc[37] = m38 = p3*x36 + p10*x37 + p17*x38 + p24*x39 + p31*x40 + p38*x41 + p45*x42;
160: pc[38] = m39 = p4*x36 + p11*x37 + p18*x38 + p25*x39 + p32*x40 + p39*x41 + p46*x42;
161: pc[39] = m40 = p5*x36 + p12*x37 + p19*x38 + p26*x39 + p33*x40 + p40*x41 + p47*x42;
162: pc[40] = m41 = p6*x36 + p13*x37 + p20*x38 + p27*x39 + p34*x40 + p41*x41 + p48*x42;
163: pc[41] = m42 = p7*x36 + p14*x37 + p21*x38 + p28*x39 + p35*x40 + p42*x41 + p49*x42;
165: pc[42] = m43 = p1*x43 + p8*x44 + p15*x45 + p22*x46 + p29*x47 + p36*x48 + p43*x49;
166: pc[43] = m44 = p2*x43 + p9*x44 + p16*x45 + p23*x46 + p30*x47 + p37*x48 + p44*x49;
167: pc[44] = m45 = p3*x43 + p10*x44 + p17*x45 + p24*x46 + p31*x47 + p38*x48 + p45*x49;
168: pc[45] = m46 = p4*x43 + p11*x44 + p18*x45 + p25*x46 + p32*x47 + p39*x48 + p46*x49;
169: pc[46] = m47 = p5*x43 + p12*x44 + p19*x45 + p26*x46 + p33*x47 + p40*x48 + p47*x49;
170: pc[47] = m48 = p6*x43 + p13*x44 + p20*x45 + p27*x46 + p34*x47 + p41*x48 + p48*x49;
171: pc[48] = m49 = p7*x43 + p14*x44 + p21*x45 + p28*x46 + p35*x47 + p42*x48 + p49*x49;
173: nz = bi[row+1] - diag_offset[row] - 1;
174: pv += 49;
175: for (j=0; j<nz; j++) {
176: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
177: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7];
178: x9 = pv[8]; x10 = pv[9]; x11 = pv[10]; x12 = pv[11];
179: x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
180: x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
181: x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
182: x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
183: x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
184: x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
185: x37 = pv[36]; x38 = pv[37]; x39 = pv[38]; x40 = pv[39];
186: x41 = pv[40]; x42 = pv[41]; x43 = pv[42]; x44 = pv[43];
187: x45 = pv[44]; x46 = pv[45]; x47 = pv[46]; x48 = pv[47];
188: x49 = pv[48];
189: x = rtmp + 49*pj[j];
190: x[0] -= m1*x1 + m8*x2 + m15*x3 + m22*x4 + m29*x5 + m36*x6 + m43*x7;
191: x[1] -= m2*x1 + m9*x2 + m16*x3 + m23*x4 + m30*x5 + m37*x6 + m44*x7;
192: x[2] -= m3*x1 + m10*x2 + m17*x3 + m24*x4 + m31*x5 + m38*x6 + m45*x7;
193: x[3] -= m4*x1 + m11*x2 + m18*x3 + m25*x4 + m32*x5 + m39*x6 + m46*x7;
194: x[4] -= m5*x1 + m12*x2 + m19*x3 + m26*x4 + m33*x5 + m40*x6 + m47*x7;
195: x[5] -= m6*x1 + m13*x2 + m20*x3 + m27*x4 + m34*x5 + m41*x6 + m48*x7;
196: x[6] -= m7*x1 + m14*x2 + m21*x3 + m28*x4 + m35*x5 + m42*x6 + m49*x7;
198: x[7] -= m1*x8 + m8*x9 + m15*x10 + m22*x11 + m29*x12 + m36*x13 + m43*x14;
199: x[8] -= m2*x8 + m9*x9 + m16*x10 + m23*x11 + m30*x12 + m37*x13 + m44*x14;
200: x[9] -= m3*x8 + m10*x9 + m17*x10 + m24*x11 + m31*x12 + m38*x13 + m45*x14;
201: x[10] -= m4*x8 + m11*x9 + m18*x10 + m25*x11 + m32*x12 + m39*x13 + m46*x14;
202: x[11] -= m5*x8 + m12*x9 + m19*x10 + m26*x11 + m33*x12 + m40*x13 + m47*x14;
203: x[12] -= m6*x8 + m13*x9 + m20*x10 + m27*x11 + m34*x12 + m41*x13 + m48*x14;
204: x[13] -= m7*x8 + m14*x9 + m21*x10 + m28*x11 + m35*x12 + m42*x13 + m49*x14;
206: x[14] -= m1*x15 + m8*x16 + m15*x17 + m22*x18 + m29*x19 + m36*x20 + m43*x21;
207: x[15] -= m2*x15 + m9*x16 + m16*x17 + m23*x18 + m30*x19 + m37*x20 + m44*x21;
208: x[16] -= m3*x15 + m10*x16 + m17*x17 + m24*x18 + m31*x19 + m38*x20 + m45*x21;
209: x[17] -= m4*x15 + m11*x16 + m18*x17 + m25*x18 + m32*x19 + m39*x20 + m46*x21;
210: x[18] -= m5*x15 + m12*x16 + m19*x17 + m26*x18 + m33*x19 + m40*x20 + m47*x21;
211: x[19] -= m6*x15 + m13*x16 + m20*x17 + m27*x18 + m34*x19 + m41*x20 + m48*x21;
212: x[20] -= m7*x15 + m14*x16 + m21*x17 + m28*x18 + m35*x19 + m42*x20 + m49*x21;
214: x[21] -= m1*x22 + m8*x23 + m15*x24 + m22*x25 + m29*x26 + m36*x27 + m43*x28;
215: x[22] -= m2*x22 + m9*x23 + m16*x24 + m23*x25 + m30*x26 + m37*x27 + m44*x28;
216: x[23] -= m3*x22 + m10*x23 + m17*x24 + m24*x25 + m31*x26 + m38*x27 + m45*x28;
217: x[24] -= m4*x22 + m11*x23 + m18*x24 + m25*x25 + m32*x26 + m39*x27 + m46*x28;
218: x[25] -= m5*x22 + m12*x23 + m19*x24 + m26*x25 + m33*x26 + m40*x27 + m47*x28;
219: x[26] -= m6*x22 + m13*x23 + m20*x24 + m27*x25 + m34*x26 + m41*x27 + m48*x28;
220: x[27] -= m7*x22 + m14*x23 + m21*x24 + m28*x25 + m35*x26 + m42*x27 + m49*x28;
222: x[28] -= m1*x29 + m8*x30 + m15*x31 + m22*x32 + m29*x33 + m36*x34 + m43*x35;
223: x[29] -= m2*x29 + m9*x30 + m16*x31 + m23*x32 + m30*x33 + m37*x34 + m44*x35;
224: x[30] -= m3*x29 + m10*x30 + m17*x31 + m24*x32 + m31*x33 + m38*x34 + m45*x35;
225: x[31] -= m4*x29 + m11*x30 + m18*x31 + m25*x32 + m32*x33 + m39*x34 + m46*x35;
226: x[32] -= m5*x29 + m12*x30 + m19*x31 + m26*x32 + m33*x33 + m40*x34 + m47*x35;
227: x[33] -= m6*x29 + m13*x30 + m20*x31 + m27*x32 + m34*x33 + m41*x34 + m48*x35;
228: x[34] -= m7*x29 + m14*x30 + m21*x31 + m28*x32 + m35*x33 + m42*x34 + m49*x35;
230: x[35] -= m1*x36 + m8*x37 + m15*x38 + m22*x39 + m29*x40 + m36*x41 + m43*x42;
231: x[36] -= m2*x36 + m9*x37 + m16*x38 + m23*x39 + m30*x40 + m37*x41 + m44*x42;
232: x[37] -= m3*x36 + m10*x37 + m17*x38 + m24*x39 + m31*x40 + m38*x41 + m45*x42;
233: x[38] -= m4*x36 + m11*x37 + m18*x38 + m25*x39 + m32*x40 + m39*x41 + m46*x42;
234: x[39] -= m5*x36 + m12*x37 + m19*x38 + m26*x39 + m33*x40 + m40*x41 + m47*x42;
235: x[40] -= m6*x36 + m13*x37 + m20*x38 + m27*x39 + m34*x40 + m41*x41 + m48*x42;
236: x[41] -= m7*x36 + m14*x37 + m21*x38 + m28*x39 + m35*x40 + m42*x41 + m49*x42;
238: x[42] -= m1*x43 + m8*x44 + m15*x45 + m22*x46 + m29*x47 + m36*x48 + m43*x49;
239: x[43] -= m2*x43 + m9*x44 + m16*x45 + m23*x46 + m30*x47 + m37*x48 + m44*x49;
240: x[44] -= m3*x43 + m10*x44 + m17*x45 + m24*x46 + m31*x47 + m38*x48 + m45*x49;
241: x[45] -= m4*x43 + m11*x44 + m18*x45 + m25*x46 + m32*x47 + m39*x48 + m46*x49;
242: x[46] -= m5*x43 + m12*x44 + m19*x45 + m26*x46 + m33*x47 + m40*x48 + m47*x49;
243: x[47] -= m6*x43 + m13*x44 + m20*x45 + m27*x46 + m34*x47 + m41*x48 + m48*x49;
244: x[48] -= m7*x43 + m14*x44 + m21*x45 + m28*x46 + m35*x47 + m42*x48 + m49*x49;
245: pv += 49;
246: }
247: PetscLogFlops(686.0*nz+637.0);
248: }
249: row = *ajtmp++;
250: }
251: /* finished row so stick it into b->a */
252: pv = ba + 49*bi[i];
253: pj = bj + bi[i];
254: nz = bi[i+1] - bi[i];
255: for (j=0; j<nz; j++) {
256: x = rtmp+49*pj[j];
257: pv[0] = x[0]; pv[1] = x[1]; pv[2] = x[2]; pv[3] = x[3];
258: pv[4] = x[4]; pv[5] = x[5]; pv[6] = x[6]; pv[7] = x[7];
259: pv[8] = x[8]; pv[9] = x[9]; pv[10] = x[10]; pv[11] = x[11];
260: pv[12] = x[12]; pv[13] = x[13]; pv[14] = x[14]; pv[15] = x[15];
261: pv[16] = x[16]; pv[17] = x[17]; pv[18] = x[18]; pv[19] = x[19];
262: pv[20] = x[20]; pv[21] = x[21]; pv[22] = x[22]; pv[23] = x[23];
263: pv[24] = x[24]; pv[25] = x[25]; pv[26] = x[26]; pv[27] = x[27];
264: pv[28] = x[28]; pv[29] = x[29]; pv[30] = x[30]; pv[31] = x[31];
265: pv[32] = x[32]; pv[33] = x[33]; pv[34] = x[34]; pv[35] = x[35];
266: pv[36] = x[36]; pv[37] = x[37]; pv[38] = x[38]; pv[39] = x[39];
267: pv[40] = x[40]; pv[41] = x[41]; pv[42] = x[42]; pv[43] = x[43];
268: pv[44] = x[44]; pv[45] = x[45]; pv[46] = x[46]; pv[47] = x[47];
269: pv[48] = x[48];
270: pv += 49;
271: }
272: /* invert diagonal block */
273: w = ba + 49*diag_offset[i];
274: PetscKernel_A_gets_inverse_A_7(w,shift,allowzeropivot,&zeropivotdetected);
275: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
276: }
278: PetscFree(rtmp);
279: ISRestoreIndices(isicol,&ic);
280: ISRestoreIndices(isrow,&r);
282: C->ops->solve = MatSolve_SeqBAIJ_7_inplace;
283: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_inplace;
284: C->assembled = PETSC_TRUE;
286: PetscLogFlops(1.333333333333*7*7*7*b->mbs); /* from inverting diagonal blocks */
287: return(0);
288: }
291: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7(Mat B,Mat A,const MatFactorInfo *info)
292: {
293: Mat C =B;
294: Mat_SeqBAIJ *a =(Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)C->data;
295: IS isrow = b->row,isicol = b->icol;
297: const PetscInt *r,*ic;
298: PetscInt i,j,k,nz,nzL,row;
299: const PetscInt n=a->mbs,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j;
300: const PetscInt *ajtmp,*bjtmp,*bdiag=b->diag,*pj,bs2=a->bs2;
301: MatScalar *rtmp,*pc,*mwork,*v,*pv,*aa=a->a;
302: PetscInt flg;
303: PetscReal shift = info->shiftamount;
304: PetscBool allowzeropivot,zeropivotdetected;
307: allowzeropivot = PetscNot(A->erroriffailure);
308: ISGetIndices(isrow,&r);
309: ISGetIndices(isicol,&ic);
311: /* generate work space needed by the factorization */
312: PetscMalloc2(bs2*n,&rtmp,bs2,&mwork);
313: PetscMemzero(rtmp,bs2*n*sizeof(MatScalar));
315: for (i=0; i<n; i++) {
316: /* zero rtmp */
317: /* L part */
318: nz = bi[i+1] - bi[i];
319: bjtmp = bj + bi[i];
320: for (j=0; j<nz; j++) {
321: PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
322: }
324: /* U part */
325: nz = bdiag[i] - bdiag[i+1];
326: bjtmp = bj + bdiag[i+1]+1;
327: for (j=0; j<nz; j++) {
328: PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
329: }
331: /* load in initial (unfactored row) */
332: nz = ai[r[i]+1] - ai[r[i]];
333: ajtmp = aj + ai[r[i]];
334: v = aa + bs2*ai[r[i]];
335: for (j=0; j<nz; j++) {
336: PetscMemcpy(rtmp+bs2*ic[ajtmp[j]],v+bs2*j,bs2*sizeof(MatScalar));
337: }
339: /* elimination */
340: bjtmp = bj + bi[i];
341: nzL = bi[i+1] - bi[i];
342: for (k=0; k < nzL; k++) {
343: row = bjtmp[k];
344: pc = rtmp + bs2*row;
345: for (flg=0,j=0; j<bs2; j++) {
346: if (pc[j]!=0.0) {
347: flg = 1;
348: break;
349: }
350: }
351: if (flg) {
352: pv = b->a + bs2*bdiag[row];
353: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
354: PetscKernel_A_gets_A_times_B_7(pc,pv,mwork);
356: pj = b->j + bdiag[row+1]+1; /* begining of U(row,:) */
357: pv = b->a + bs2*(bdiag[row+1]+1);
358: nz = bdiag[row] - bdiag[row+1] - 1; /* num of entries inU(row,:), excluding diag */
359: for (j=0; j<nz; j++) {
360: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
361: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
362: v = rtmp + bs2*pj[j];
363: PetscKernel_A_gets_A_minus_B_times_C_7(v,pc,pv);
364: pv += bs2;
365: }
366: PetscLogFlops(686*nz+637); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
367: }
368: }
370: /* finished row so stick it into b->a */
371: /* L part */
372: pv = b->a + bs2*bi[i];
373: pj = b->j + bi[i];
374: nz = bi[i+1] - bi[i];
375: for (j=0; j<nz; j++) {
376: PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
377: }
379: /* Mark diagonal and invert diagonal for simplier triangular solves */
380: pv = b->a + bs2*bdiag[i];
381: pj = b->j + bdiag[i];
382: PetscMemcpy(pv,rtmp+bs2*pj[0],bs2*sizeof(MatScalar));
383: PetscKernel_A_gets_inverse_A_7(pv,shift,allowzeropivot,&zeropivotdetected);
384: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
386: /* U part */
387: pv = b->a + bs2*(bdiag[i+1]+1);
388: pj = b->j + bdiag[i+1]+1;
389: nz = bdiag[i] - bdiag[i+1] - 1;
390: for (j=0; j<nz; j++) {
391: PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
392: }
393: }
395: PetscFree2(rtmp,mwork);
396: ISRestoreIndices(isicol,&ic);
397: ISRestoreIndices(isrow,&r);
399: C->ops->solve = MatSolve_SeqBAIJ_7;
400: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7;
401: C->assembled = PETSC_TRUE;
403: PetscLogFlops(1.333333333333*7*7*7*n); /* from inverting diagonal blocks */
404: return(0);
405: }
407: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering_inplace(Mat C,Mat A,const MatFactorInfo *info)
408: {
409: Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
411: PetscInt i,j,n = a->mbs,*bi = b->i,*bj = b->j;
412: PetscInt *ajtmpold,*ajtmp,nz,row;
413: PetscInt *diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj;
414: MatScalar *pv,*v,*rtmp,*pc,*w,*x;
415: MatScalar x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
416: MatScalar x16,x17,x18,x19,x20,x21,x22,x23,x24,x25;
417: MatScalar p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15;
418: MatScalar p16,p17,p18,p19,p20,p21,p22,p23,p24,p25;
419: MatScalar m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15;
420: MatScalar m16,m17,m18,m19,m20,m21,m22,m23,m24,m25;
421: MatScalar p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36;
422: MatScalar p37,p38,p39,p40,p41,p42,p43,p44,p45,p46,p47,p48,p49;
423: MatScalar x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36;
424: MatScalar x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49;
425: MatScalar m26,m27,m28,m29,m30,m31,m32,m33,m34,m35,m36;
426: MatScalar m37,m38,m39,m40,m41,m42,m43,m44,m45,m46,m47,m48,m49;
427: MatScalar *ba = b->a,*aa = a->a;
428: PetscReal shift = info->shiftamount;
429: PetscBool allowzeropivot,zeropivotdetected;
432: allowzeropivot = PetscNot(A->erroriffailure);
433: PetscMalloc1(49*(n+1),&rtmp);
434: for (i=0; i<n; i++) {
435: nz = bi[i+1] - bi[i];
436: ajtmp = bj + bi[i];
437: for (j=0; j<nz; j++) {
438: x = rtmp+49*ajtmp[j];
439: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
440: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
441: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
442: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
443: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
444: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
445: }
446: /* load in initial (unfactored row) */
447: nz = ai[i+1] - ai[i];
448: ajtmpold = aj + ai[i];
449: v = aa + 49*ai[i];
450: for (j=0; j<nz; j++) {
451: x = rtmp+49*ajtmpold[j];
452: x[0] = v[0]; x[1] = v[1]; x[2] = v[2]; x[3] = v[3];
453: x[4] = v[4]; x[5] = v[5]; x[6] = v[6]; x[7] = v[7];
454: x[8] = v[8]; x[9] = v[9]; x[10] = v[10]; x[11] = v[11];
455: x[12] = v[12]; x[13] = v[13]; x[14] = v[14]; x[15] = v[15];
456: x[16] = v[16]; x[17] = v[17]; x[18] = v[18]; x[19] = v[19];
457: x[20] = v[20]; x[21] = v[21]; x[22] = v[22]; x[23] = v[23];
458: x[24] = v[24]; x[25] = v[25]; x[26] = v[26]; x[27] = v[27];
459: x[28] = v[28]; x[29] = v[29]; x[30] = v[30]; x[31] = v[31];
460: x[32] = v[32]; x[33] = v[33]; x[34] = v[34]; x[35] = v[35];
461: x[36] = v[36]; x[37] = v[37]; x[38] = v[38]; x[39] = v[39];
462: x[40] = v[40]; x[41] = v[41]; x[42] = v[42]; x[43] = v[43];
463: x[44] = v[44]; x[45] = v[45]; x[46] = v[46]; x[47] = v[47];
464: x[48] = v[48];
465: v += 49;
466: }
467: row = *ajtmp++;
468: while (row < i) {
469: pc = rtmp + 49*row;
470: p1 = pc[0]; p2 = pc[1]; p3 = pc[2]; p4 = pc[3];
471: p5 = pc[4]; p6 = pc[5]; p7 = pc[6]; p8 = pc[7];
472: p9 = pc[8]; p10 = pc[9]; p11 = pc[10]; p12 = pc[11];
473: p13 = pc[12]; p14 = pc[13]; p15 = pc[14]; p16 = pc[15];
474: p17 = pc[16]; p18 = pc[17]; p19 = pc[18]; p20 = pc[19];
475: p21 = pc[20]; p22 = pc[21]; p23 = pc[22]; p24 = pc[23];
476: p25 = pc[24]; p26 = pc[25]; p27 = pc[26]; p28 = pc[27];
477: p29 = pc[28]; p30 = pc[29]; p31 = pc[30]; p32 = pc[31];
478: p33 = pc[32]; p34 = pc[33]; p35 = pc[34]; p36 = pc[35];
479: p37 = pc[36]; p38 = pc[37]; p39 = pc[38]; p40 = pc[39];
480: p41 = pc[40]; p42 = pc[41]; p43 = pc[42]; p44 = pc[43];
481: p45 = pc[44]; p46 = pc[45]; p47 = pc[46]; p48 = pc[47];
482: p49 = pc[48];
483: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 ||
484: p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 ||
485: p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 ||
486: p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 ||
487: p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 ||
488: p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 ||
489: p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 ||
490: p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 ||
491: p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 ||
492: p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 ||
493: p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 ||
494: p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 ||
495: p49 != 0.0) {
496: pv = ba + 49*diag_offset[row];
497: pj = bj + diag_offset[row] + 1;
498: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
499: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7];
500: x9 = pv[8]; x10 = pv[9]; x11 = pv[10]; x12 = pv[11];
501: x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
502: x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
503: x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
504: x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
505: x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
506: x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
507: x37 = pv[36]; x38 = pv[37]; x39 = pv[38]; x40 = pv[39];
508: x41 = pv[40]; x42 = pv[41]; x43 = pv[42]; x44 = pv[43];
509: x45 = pv[44]; x46 = pv[45]; x47 = pv[46]; x48 = pv[47];
510: x49 = pv[48];
511: pc[0] = m1 = p1*x1 + p8*x2 + p15*x3 + p22*x4 + p29*x5 + p36*x6 + p43*x7;
512: pc[1] = m2 = p2*x1 + p9*x2 + p16*x3 + p23*x4 + p30*x5 + p37*x6 + p44*x7;
513: pc[2] = m3 = p3*x1 + p10*x2 + p17*x3 + p24*x4 + p31*x5 + p38*x6 + p45*x7;
514: pc[3] = m4 = p4*x1 + p11*x2 + p18*x3 + p25*x4 + p32*x5 + p39*x6 + p46*x7;
515: pc[4] = m5 = p5*x1 + p12*x2 + p19*x3 + p26*x4 + p33*x5 + p40*x6 + p47*x7;
516: pc[5] = m6 = p6*x1 + p13*x2 + p20*x3 + p27*x4 + p34*x5 + p41*x6 + p48*x7;
517: pc[6] = m7 = p7*x1 + p14*x2 + p21*x3 + p28*x4 + p35*x5 + p42*x6 + p49*x7;
519: pc[7] = m8 = p1*x8 + p8*x9 + p15*x10 + p22*x11 + p29*x12 + p36*x13 + p43*x14;
520: pc[8] = m9 = p2*x8 + p9*x9 + p16*x10 + p23*x11 + p30*x12 + p37*x13 + p44*x14;
521: pc[9] = m10 = p3*x8 + p10*x9 + p17*x10 + p24*x11 + p31*x12 + p38*x13 + p45*x14;
522: pc[10] = m11 = p4*x8 + p11*x9 + p18*x10 + p25*x11 + p32*x12 + p39*x13 + p46*x14;
523: pc[11] = m12 = p5*x8 + p12*x9 + p19*x10 + p26*x11 + p33*x12 + p40*x13 + p47*x14;
524: pc[12] = m13 = p6*x8 + p13*x9 + p20*x10 + p27*x11 + p34*x12 + p41*x13 + p48*x14;
525: pc[13] = m14 = p7*x8 + p14*x9 + p21*x10 + p28*x11 + p35*x12 + p42*x13 + p49*x14;
527: pc[14] = m15 = p1*x15 + p8*x16 + p15*x17 + p22*x18 + p29*x19 + p36*x20 + p43*x21;
528: pc[15] = m16 = p2*x15 + p9*x16 + p16*x17 + p23*x18 + p30*x19 + p37*x20 + p44*x21;
529: pc[16] = m17 = p3*x15 + p10*x16 + p17*x17 + p24*x18 + p31*x19 + p38*x20 + p45*x21;
530: pc[17] = m18 = p4*x15 + p11*x16 + p18*x17 + p25*x18 + p32*x19 + p39*x20 + p46*x21;
531: pc[18] = m19 = p5*x15 + p12*x16 + p19*x17 + p26*x18 + p33*x19 + p40*x20 + p47*x21;
532: pc[19] = m20 = p6*x15 + p13*x16 + p20*x17 + p27*x18 + p34*x19 + p41*x20 + p48*x21;
533: pc[20] = m21 = p7*x15 + p14*x16 + p21*x17 + p28*x18 + p35*x19 + p42*x20 + p49*x21;
535: pc[21] = m22 = p1*x22 + p8*x23 + p15*x24 + p22*x25 + p29*x26 + p36*x27 + p43*x28;
536: pc[22] = m23 = p2*x22 + p9*x23 + p16*x24 + p23*x25 + p30*x26 + p37*x27 + p44*x28;
537: pc[23] = m24 = p3*x22 + p10*x23 + p17*x24 + p24*x25 + p31*x26 + p38*x27 + p45*x28;
538: pc[24] = m25 = p4*x22 + p11*x23 + p18*x24 + p25*x25 + p32*x26 + p39*x27 + p46*x28;
539: pc[25] = m26 = p5*x22 + p12*x23 + p19*x24 + p26*x25 + p33*x26 + p40*x27 + p47*x28;
540: pc[26] = m27 = p6*x22 + p13*x23 + p20*x24 + p27*x25 + p34*x26 + p41*x27 + p48*x28;
541: pc[27] = m28 = p7*x22 + p14*x23 + p21*x24 + p28*x25 + p35*x26 + p42*x27 + p49*x28;
543: pc[28] = m29 = p1*x29 + p8*x30 + p15*x31 + p22*x32 + p29*x33 + p36*x34 + p43*x35;
544: pc[29] = m30 = p2*x29 + p9*x30 + p16*x31 + p23*x32 + p30*x33 + p37*x34 + p44*x35;
545: pc[30] = m31 = p3*x29 + p10*x30 + p17*x31 + p24*x32 + p31*x33 + p38*x34 + p45*x35;
546: pc[31] = m32 = p4*x29 + p11*x30 + p18*x31 + p25*x32 + p32*x33 + p39*x34 + p46*x35;
547: pc[32] = m33 = p5*x29 + p12*x30 + p19*x31 + p26*x32 + p33*x33 + p40*x34 + p47*x35;
548: pc[33] = m34 = p6*x29 + p13*x30 + p20*x31 + p27*x32 + p34*x33 + p41*x34 + p48*x35;
549: pc[34] = m35 = p7*x29 + p14*x30 + p21*x31 + p28*x32 + p35*x33 + p42*x34 + p49*x35;
551: pc[35] = m36 = p1*x36 + p8*x37 + p15*x38 + p22*x39 + p29*x40 + p36*x41 + p43*x42;
552: pc[36] = m37 = p2*x36 + p9*x37 + p16*x38 + p23*x39 + p30*x40 + p37*x41 + p44*x42;
553: pc[37] = m38 = p3*x36 + p10*x37 + p17*x38 + p24*x39 + p31*x40 + p38*x41 + p45*x42;
554: pc[38] = m39 = p4*x36 + p11*x37 + p18*x38 + p25*x39 + p32*x40 + p39*x41 + p46*x42;
555: pc[39] = m40 = p5*x36 + p12*x37 + p19*x38 + p26*x39 + p33*x40 + p40*x41 + p47*x42;
556: pc[40] = m41 = p6*x36 + p13*x37 + p20*x38 + p27*x39 + p34*x40 + p41*x41 + p48*x42;
557: pc[41] = m42 = p7*x36 + p14*x37 + p21*x38 + p28*x39 + p35*x40 + p42*x41 + p49*x42;
559: pc[42] = m43 = p1*x43 + p8*x44 + p15*x45 + p22*x46 + p29*x47 + p36*x48 + p43*x49;
560: pc[43] = m44 = p2*x43 + p9*x44 + p16*x45 + p23*x46 + p30*x47 + p37*x48 + p44*x49;
561: pc[44] = m45 = p3*x43 + p10*x44 + p17*x45 + p24*x46 + p31*x47 + p38*x48 + p45*x49;
562: pc[45] = m46 = p4*x43 + p11*x44 + p18*x45 + p25*x46 + p32*x47 + p39*x48 + p46*x49;
563: pc[46] = m47 = p5*x43 + p12*x44 + p19*x45 + p26*x46 + p33*x47 + p40*x48 + p47*x49;
564: pc[47] = m48 = p6*x43 + p13*x44 + p20*x45 + p27*x46 + p34*x47 + p41*x48 + p48*x49;
565: pc[48] = m49 = p7*x43 + p14*x44 + p21*x45 + p28*x46 + p35*x47 + p42*x48 + p49*x49;
567: nz = bi[row+1] - diag_offset[row] - 1;
568: pv += 49;
569: for (j=0; j<nz; j++) {
570: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
571: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7];
572: x9 = pv[8]; x10 = pv[9]; x11 = pv[10]; x12 = pv[11];
573: x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
574: x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
575: x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
576: x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
577: x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
578: x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
579: x37 = pv[36]; x38 = pv[37]; x39 = pv[38]; x40 = pv[39];
580: x41 = pv[40]; x42 = pv[41]; x43 = pv[42]; x44 = pv[43];
581: x45 = pv[44]; x46 = pv[45]; x47 = pv[46]; x48 = pv[47];
582: x49 = pv[48];
583: x = rtmp + 49*pj[j];
584: x[0] -= m1*x1 + m8*x2 + m15*x3 + m22*x4 + m29*x5 + m36*x6 + m43*x7;
585: x[1] -= m2*x1 + m9*x2 + m16*x3 + m23*x4 + m30*x5 + m37*x6 + m44*x7;
586: x[2] -= m3*x1 + m10*x2 + m17*x3 + m24*x4 + m31*x5 + m38*x6 + m45*x7;
587: x[3] -= m4*x1 + m11*x2 + m18*x3 + m25*x4 + m32*x5 + m39*x6 + m46*x7;
588: x[4] -= m5*x1 + m12*x2 + m19*x3 + m26*x4 + m33*x5 + m40*x6 + m47*x7;
589: x[5] -= m6*x1 + m13*x2 + m20*x3 + m27*x4 + m34*x5 + m41*x6 + m48*x7;
590: x[6] -= m7*x1 + m14*x2 + m21*x3 + m28*x4 + m35*x5 + m42*x6 + m49*x7;
592: x[7] -= m1*x8 + m8*x9 + m15*x10 + m22*x11 + m29*x12 + m36*x13 + m43*x14;
593: x[8] -= m2*x8 + m9*x9 + m16*x10 + m23*x11 + m30*x12 + m37*x13 + m44*x14;
594: x[9] -= m3*x8 + m10*x9 + m17*x10 + m24*x11 + m31*x12 + m38*x13 + m45*x14;
595: x[10] -= m4*x8 + m11*x9 + m18*x10 + m25*x11 + m32*x12 + m39*x13 + m46*x14;
596: x[11] -= m5*x8 + m12*x9 + m19*x10 + m26*x11 + m33*x12 + m40*x13 + m47*x14;
597: x[12] -= m6*x8 + m13*x9 + m20*x10 + m27*x11 + m34*x12 + m41*x13 + m48*x14;
598: x[13] -= m7*x8 + m14*x9 + m21*x10 + m28*x11 + m35*x12 + m42*x13 + m49*x14;
600: x[14] -= m1*x15 + m8*x16 + m15*x17 + m22*x18 + m29*x19 + m36*x20 + m43*x21;
601: x[15] -= m2*x15 + m9*x16 + m16*x17 + m23*x18 + m30*x19 + m37*x20 + m44*x21;
602: x[16] -= m3*x15 + m10*x16 + m17*x17 + m24*x18 + m31*x19 + m38*x20 + m45*x21;
603: x[17] -= m4*x15 + m11*x16 + m18*x17 + m25*x18 + m32*x19 + m39*x20 + m46*x21;
604: x[18] -= m5*x15 + m12*x16 + m19*x17 + m26*x18 + m33*x19 + m40*x20 + m47*x21;
605: x[19] -= m6*x15 + m13*x16 + m20*x17 + m27*x18 + m34*x19 + m41*x20 + m48*x21;
606: x[20] -= m7*x15 + m14*x16 + m21*x17 + m28*x18 + m35*x19 + m42*x20 + m49*x21;
608: x[21] -= m1*x22 + m8*x23 + m15*x24 + m22*x25 + m29*x26 + m36*x27 + m43*x28;
609: x[22] -= m2*x22 + m9*x23 + m16*x24 + m23*x25 + m30*x26 + m37*x27 + m44*x28;
610: x[23] -= m3*x22 + m10*x23 + m17*x24 + m24*x25 + m31*x26 + m38*x27 + m45*x28;
611: x[24] -= m4*x22 + m11*x23 + m18*x24 + m25*x25 + m32*x26 + m39*x27 + m46*x28;
612: x[25] -= m5*x22 + m12*x23 + m19*x24 + m26*x25 + m33*x26 + m40*x27 + m47*x28;
613: x[26] -= m6*x22 + m13*x23 + m20*x24 + m27*x25 + m34*x26 + m41*x27 + m48*x28;
614: x[27] -= m7*x22 + m14*x23 + m21*x24 + m28*x25 + m35*x26 + m42*x27 + m49*x28;
616: x[28] -= m1*x29 + m8*x30 + m15*x31 + m22*x32 + m29*x33 + m36*x34 + m43*x35;
617: x[29] -= m2*x29 + m9*x30 + m16*x31 + m23*x32 + m30*x33 + m37*x34 + m44*x35;
618: x[30] -= m3*x29 + m10*x30 + m17*x31 + m24*x32 + m31*x33 + m38*x34 + m45*x35;
619: x[31] -= m4*x29 + m11*x30 + m18*x31 + m25*x32 + m32*x33 + m39*x34 + m46*x35;
620: x[32] -= m5*x29 + m12*x30 + m19*x31 + m26*x32 + m33*x33 + m40*x34 + m47*x35;
621: x[33] -= m6*x29 + m13*x30 + m20*x31 + m27*x32 + m34*x33 + m41*x34 + m48*x35;
622: x[34] -= m7*x29 + m14*x30 + m21*x31 + m28*x32 + m35*x33 + m42*x34 + m49*x35;
624: x[35] -= m1*x36 + m8*x37 + m15*x38 + m22*x39 + m29*x40 + m36*x41 + m43*x42;
625: x[36] -= m2*x36 + m9*x37 + m16*x38 + m23*x39 + m30*x40 + m37*x41 + m44*x42;
626: x[37] -= m3*x36 + m10*x37 + m17*x38 + m24*x39 + m31*x40 + m38*x41 + m45*x42;
627: x[38] -= m4*x36 + m11*x37 + m18*x38 + m25*x39 + m32*x40 + m39*x41 + m46*x42;
628: x[39] -= m5*x36 + m12*x37 + m19*x38 + m26*x39 + m33*x40 + m40*x41 + m47*x42;
629: x[40] -= m6*x36 + m13*x37 + m20*x38 + m27*x39 + m34*x40 + m41*x41 + m48*x42;
630: x[41] -= m7*x36 + m14*x37 + m21*x38 + m28*x39 + m35*x40 + m42*x41 + m49*x42;
632: x[42] -= m1*x43 + m8*x44 + m15*x45 + m22*x46 + m29*x47 + m36*x48 + m43*x49;
633: x[43] -= m2*x43 + m9*x44 + m16*x45 + m23*x46 + m30*x47 + m37*x48 + m44*x49;
634: x[44] -= m3*x43 + m10*x44 + m17*x45 + m24*x46 + m31*x47 + m38*x48 + m45*x49;
635: x[45] -= m4*x43 + m11*x44 + m18*x45 + m25*x46 + m32*x47 + m39*x48 + m46*x49;
636: x[46] -= m5*x43 + m12*x44 + m19*x45 + m26*x46 + m33*x47 + m40*x48 + m47*x49;
637: x[47] -= m6*x43 + m13*x44 + m20*x45 + m27*x46 + m34*x47 + m41*x48 + m48*x49;
638: x[48] -= m7*x43 + m14*x44 + m21*x45 + m28*x46 + m35*x47 + m42*x48 + m49*x49;
639: pv += 49;
640: }
641: PetscLogFlops(686.0*nz+637.0);
642: }
643: row = *ajtmp++;
644: }
645: /* finished row so stick it into b->a */
646: pv = ba + 49*bi[i];
647: pj = bj + bi[i];
648: nz = bi[i+1] - bi[i];
649: for (j=0; j<nz; j++) {
650: x = rtmp+49*pj[j];
651: pv[0] = x[0]; pv[1] = x[1]; pv[2] = x[2]; pv[3] = x[3];
652: pv[4] = x[4]; pv[5] = x[5]; pv[6] = x[6]; pv[7] = x[7];
653: pv[8] = x[8]; pv[9] = x[9]; pv[10] = x[10]; pv[11] = x[11];
654: pv[12] = x[12]; pv[13] = x[13]; pv[14] = x[14]; pv[15] = x[15];
655: pv[16] = x[16]; pv[17] = x[17]; pv[18] = x[18]; pv[19] = x[19];
656: pv[20] = x[20]; pv[21] = x[21]; pv[22] = x[22]; pv[23] = x[23];
657: pv[24] = x[24]; pv[25] = x[25]; pv[26] = x[26]; pv[27] = x[27];
658: pv[28] = x[28]; pv[29] = x[29]; pv[30] = x[30]; pv[31] = x[31];
659: pv[32] = x[32]; pv[33] = x[33]; pv[34] = x[34]; pv[35] = x[35];
660: pv[36] = x[36]; pv[37] = x[37]; pv[38] = x[38]; pv[39] = x[39];
661: pv[40] = x[40]; pv[41] = x[41]; pv[42] = x[42]; pv[43] = x[43];
662: pv[44] = x[44]; pv[45] = x[45]; pv[46] = x[46]; pv[47] = x[47];
663: pv[48] = x[48];
664: pv += 49;
665: }
666: /* invert diagonal block */
667: w = ba + 49*diag_offset[i];
668: PetscKernel_A_gets_inverse_A_7(w,shift,allowzeropivot,&zeropivotdetected);
669: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
670: }
672: PetscFree(rtmp);
674: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering_inplace;
675: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering_inplace;
676: C->assembled = PETSC_TRUE;
678: PetscLogFlops(1.333333333333*7*7*7*b->mbs); /* from inverting diagonal blocks */
679: return(0);
680: }
682: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering(Mat B,Mat A,const MatFactorInfo *info)
683: {
684: Mat C =B;
685: Mat_SeqBAIJ *a=(Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)C->data;
687: PetscInt i,j,k,nz,nzL,row;
688: const PetscInt n=a->mbs,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j;
689: const PetscInt *ajtmp,*bjtmp,*bdiag=b->diag,*pj,bs2=a->bs2;
690: MatScalar *rtmp,*pc,*mwork,*v,*pv,*aa=a->a;
691: PetscInt flg;
692: PetscReal shift = info->shiftamount;
693: PetscBool allowzeropivot,zeropivotdetected;
696: allowzeropivot = PetscNot(A->erroriffailure);
698: /* generate work space needed by the factorization */
699: PetscMalloc2(bs2*n,&rtmp,bs2,&mwork);
700: PetscMemzero(rtmp,bs2*n*sizeof(MatScalar));
702: for (i=0; i<n; i++) {
703: /* zero rtmp */
704: /* L part */
705: nz = bi[i+1] - bi[i];
706: bjtmp = bj + bi[i];
707: for (j=0; j<nz; j++) {
708: PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
709: }
711: /* U part */
712: nz = bdiag[i] - bdiag[i+1];
713: bjtmp = bj + bdiag[i+1]+1;
714: for (j=0; j<nz; j++) {
715: PetscMemzero(rtmp+bs2*bjtmp[j],bs2*sizeof(MatScalar));
716: }
718: /* load in initial (unfactored row) */
719: nz = ai[i+1] - ai[i];
720: ajtmp = aj + ai[i];
721: v = aa + bs2*ai[i];
722: for (j=0; j<nz; j++) {
723: PetscMemcpy(rtmp+bs2*ajtmp[j],v+bs2*j,bs2*sizeof(MatScalar));
724: }
726: /* elimination */
727: bjtmp = bj + bi[i];
728: nzL = bi[i+1] - bi[i];
729: for (k=0; k < nzL; k++) {
730: row = bjtmp[k];
731: pc = rtmp + bs2*row;
732: for (flg=0,j=0; j<bs2; j++) {
733: if (pc[j]!=0.0) {
734: flg = 1;
735: break;
736: }
737: }
738: if (flg) {
739: pv = b->a + bs2*bdiag[row];
740: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
741: PetscKernel_A_gets_A_times_B_7(pc,pv,mwork);
743: pj = b->j + bdiag[row+1]+1; /* begining of U(row,:) */
744: pv = b->a + bs2*(bdiag[row+1]+1);
745: nz = bdiag[row] - bdiag[row+1] - 1; /* num of entries inU(row,:), excluding diag */
746: for (j=0; j<nz; j++) {
747: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
748: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
749: v = rtmp + bs2*pj[j];
750: PetscKernel_A_gets_A_minus_B_times_C_7(v,pc,pv);
751: pv += bs2;
752: }
753: PetscLogFlops(686*nz+637); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
754: }
755: }
757: /* finished row so stick it into b->a */
758: /* L part */
759: pv = b->a + bs2*bi[i];
760: pj = b->j + bi[i];
761: nz = bi[i+1] - bi[i];
762: for (j=0; j<nz; j++) {
763: PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
764: }
766: /* Mark diagonal and invert diagonal for simplier triangular solves */
767: pv = b->a + bs2*bdiag[i];
768: pj = b->j + bdiag[i];
769: PetscMemcpy(pv,rtmp+bs2*pj[0],bs2*sizeof(MatScalar));
770: PetscKernel_A_gets_inverse_A_7(pv,shift,allowzeropivot,&zeropivotdetected);
771: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
773: /* U part */
774: pv = b->a + bs2*(bdiag[i+1]+1);
775: pj = b->j + bdiag[i+1]+1;
776: nz = bdiag[i] - bdiag[i+1] - 1;
777: for (j=0; j<nz; j++) {
778: PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
779: }
780: }
781: PetscFree2(rtmp,mwork);
783: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering;
784: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering;
785: C->assembled = PETSC_TRUE;
787: PetscLogFlops(1.333333333333*7*7*7*n); /* from inverting diagonal blocks */
788: return(0);
789: }