Actual source code: lsqr.c

petsc-3.10.5 2019-03-28
Report Typos and Errors

  2: /* lourens.vanzanen@shell.com contributed the standard error estimates of the solution, Jul 25, 2006 */
  3: /* Bas van't Hof contributed the preconditioned aspects Feb 10, 2010 */

  5: #define SWAP(a,b,c) { c = a; a = b; b = c; }

  7:  #include <petsc/private/kspimpl.h>

  9: typedef struct {
 10:   PetscInt  nwork_n,nwork_m;
 11:   Vec       *vwork_m;   /* work vectors of length m, where the system is size m x n */
 12:   Vec       *vwork_n;   /* work vectors of length n */
 13:   Vec       se;         /* Optional standard error vector */
 14:   PetscBool se_flg;     /* flag for -ksp_lsqr_set_standard_error */
 15:   PetscBool exact_norm; /* flag for -ksp_lsqr_exact_mat_norm */
 16:   PetscReal arnorm;     /* Good estimate of norm((A*inv(Pmat))'*r), where r = A*x - b, used in specific stopping criterion */
 17:   PetscReal anorm;      /* Poor estimate of norm(A*inv(Pmat),'fro') used in specific stopping criterion */
 18: } KSP_LSQR;

 20: static PetscErrorCode  VecSquare(Vec v)
 21: {
 23:   PetscScalar    *x;
 24:   PetscInt       i, n;

 27:   VecGetLocalSize(v, &n);
 28:   VecGetArray(v, &x);
 29:   for (i = 0; i < n; i++) x[i] *= PetscConj(x[i]);
 30:   VecRestoreArray(v, &x);
 31:   return(0);
 32: }

 34: static PetscErrorCode KSPSetUp_LSQR(KSP ksp)
 35: {
 37:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;
 38:   PetscBool      nopreconditioner;

 41:   PetscObjectTypeCompare((PetscObject)ksp->pc,PCNONE,&nopreconditioner);

 43:   if (lsqr->vwork_m) {
 44:     VecDestroyVecs(lsqr->nwork_m,&lsqr->vwork_m);
 45:   }

 47:   if (lsqr->vwork_n) {
 48:     VecDestroyVecs(lsqr->nwork_n,&lsqr->vwork_n);
 49:   }

 51:   lsqr->nwork_m = 2;
 52:   if (nopreconditioner) lsqr->nwork_n = 4;
 53:   else lsqr->nwork_n = 5;
 54:   KSPCreateVecs(ksp,lsqr->nwork_n,&lsqr->vwork_n,lsqr->nwork_m,&lsqr->vwork_m);

 56:   if (lsqr->se_flg && !lsqr->se) {
 57:     VecDuplicate(lsqr->vwork_n[0],&lsqr->se);
 58:     VecSet(lsqr->se,PETSC_INFINITY);
 59:   } else if (!lsqr->se_flg) {
 60:     VecDestroy(&lsqr->se);
 61:   }
 62:   return(0);
 63: }

 65: static PetscErrorCode KSPSolve_LSQR(KSP ksp)
 66: {
 68:   PetscInt       i,size1,size2;
 69:   PetscScalar    rho,rhobar,phi,phibar,theta,c,s,tmp,tau;
 70:   PetscReal      beta,alpha,rnorm;
 71:   Vec            X,B,V,V1,U,U1,TMP,W,W2,Z = NULL;
 72:   Mat            Amat,Pmat;
 73:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;
 74:   PetscBool      diagonalscale,nopreconditioner;

 77:   PCGetDiagonalScale(ksp->pc,&diagonalscale);
 78:   if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);

 80:   PCGetOperators(ksp->pc,&Amat,&Pmat);
 81:   PetscObjectTypeCompare((PetscObject)ksp->pc,PCNONE,&nopreconditioner);

 83:   /* vectors of length m, where system size is mxn */
 84:   B  = ksp->vec_rhs;
 85:   U  = lsqr->vwork_m[0];
 86:   U1 = lsqr->vwork_m[1];

 88:   /* vectors of length n */
 89:   X  = ksp->vec_sol;
 90:   W  = lsqr->vwork_n[0];
 91:   V  = lsqr->vwork_n[1];
 92:   V1 = lsqr->vwork_n[2];
 93:   W2 = lsqr->vwork_n[3];
 94:   if (!nopreconditioner) Z = lsqr->vwork_n[4];

 96:   /* standard error vector */
 97:   if (lsqr->se) {
 98:     VecSet(lsqr->se,0.0);
 99:   }

101:   /* Compute initial residual, temporarily use work vector u */
102:   if (!ksp->guess_zero) {
103:     KSP_MatMult(ksp,Amat,X,U);       /*   u <- b - Ax     */
104:     VecAYPX(U,-1.0,B);
105:   } else {
106:     VecCopy(B,U);            /*   u <- b (x is 0) */
107:   }

109:   /* Test for nothing to do */
110:   VecNorm(U,NORM_2,&rnorm);
111:   PetscObjectSAWsTakeAccess((PetscObject)ksp);
112:   ksp->its   = 0;
113:   ksp->rnorm = rnorm;
114:   PetscObjectSAWsGrantAccess((PetscObject)ksp);
115:   KSPLogResidualHistory(ksp,rnorm);
116:   KSPMonitor(ksp,0,rnorm);
117:   (*ksp->converged)(ksp,0,rnorm,&ksp->reason,ksp->cnvP);
118:   if (ksp->reason) return(0);

120:   beta = rnorm;
121:   VecScale(U,1.0/beta);
122:   KSP_MatMultTranspose(ksp,Amat,U,V);
123:   if (nopreconditioner) {
124:     VecNorm(V,NORM_2,&alpha);
125:   } else {
126:     /* this is an application of the preconditioner for the normal equations; not the operator, see the manual page */
127:     PCApply(ksp->pc,V,Z);
128:     VecDotRealPart(V,Z,&alpha);
129:     if (alpha <= 0.0) {
130:       ksp->reason = KSP_DIVERGED_BREAKDOWN;
131:       return(0);
132:     }
133:     alpha = PetscSqrtReal(alpha);
134:     VecScale(Z,1.0/alpha);
135:   }
136:   VecScale(V,1.0/alpha);

138:   if (nopreconditioner) {
139:     VecCopy(V,W);
140:   } else {
141:     VecCopy(Z,W);
142:   }

144:   if (lsqr->exact_norm) {
145:     MatNorm(Amat,NORM_FROBENIUS,&lsqr->anorm);
146:   } else lsqr->anorm = 0.0;

148:   lsqr->arnorm = alpha * beta;
149:   phibar       = beta;
150:   rhobar       = alpha;
151:   i            = 0;
152:   do {
153:     if (nopreconditioner) {
154:       KSP_MatMult(ksp,Amat,V,U1);
155:     } else {
156:       KSP_MatMult(ksp,Amat,Z,U1);
157:     }
158:     VecAXPY(U1,-alpha,U);
159:     VecNorm(U1,NORM_2,&beta);
160:     if (beta > 0.0) {
161:       VecScale(U1,1.0/beta); /* beta*U1 = Amat*V - alpha*U */
162:       if (!lsqr->exact_norm) {
163:         lsqr->anorm = PetscSqrtScalar(PetscSqr(lsqr->anorm) + PetscSqr(alpha) + PetscSqr(beta));
164:       }
165:     }

167:     KSP_MatMultTranspose(ksp,Amat,U1,V1);
168:     VecAXPY(V1,-beta,V);
169:     if (nopreconditioner) {
170:       VecNorm(V1,NORM_2,&alpha);
171:     } else {
172:       PCApply(ksp->pc,V1,Z);
173:       VecDotRealPart(V1,Z,&alpha);
174:       if (alpha <= 0.0) {
175:         ksp->reason = KSP_DIVERGED_BREAKDOWN;
176:         break;
177:       }
178:       alpha = PetscSqrtReal(alpha);
179:       VecScale(Z,1.0/alpha);
180:     }
181:     VecScale(V1,1.0/alpha); /* alpha*V1 = Amat^T*U1 - beta*V */
182:     rho    = PetscSqrtScalar(rhobar*rhobar + beta*beta);
183:     c      = rhobar / rho;
184:     s      = beta / rho;
185:     theta  = s * alpha;
186:     rhobar = -c * alpha;
187:     phi    = c * phibar;
188:     phibar = s * phibar;
189:     tau    = s * phi;

191:     VecAXPY(X,phi/rho,W);  /*    x <- x + (phi/rho) w   */

193:     if (lsqr->se) {
194:       VecCopy(W,W2);
195:       VecSquare(W2);
196:       VecScale(W2,1.0/(rho*rho));
197:       VecAXPY(lsqr->se, 1.0, W2); /* lsqr->se <- lsqr->se + (w^2/rho^2) */
198:     }
199:     if (nopreconditioner) {
200:       VecAYPX(W,-theta/rho,V1);  /* w <- v - (theta/rho) w */
201:     } else {
202:       VecAYPX(W,-theta/rho,Z);   /* w <- z - (theta/rho) w */
203:     }

205:     lsqr->arnorm = alpha*PetscAbsScalar(tau);
206:     rnorm        = PetscRealPart(phibar);

208:     PetscObjectSAWsTakeAccess((PetscObject)ksp);
209:     ksp->its++;
210:     ksp->rnorm = rnorm;
211:     PetscObjectSAWsGrantAccess((PetscObject)ksp);
212:     KSPLogResidualHistory(ksp,rnorm);
213:     KSPMonitor(ksp,i+1,rnorm);
214:     (*ksp->converged)(ksp,i+1,rnorm,&ksp->reason,ksp->cnvP);
215:     if (ksp->reason) break;
216:     SWAP(U1,U,TMP);
217:     SWAP(V1,V,TMP);

219:     i++;
220:   } while (i<ksp->max_it);
221:   if (i >= ksp->max_it && !ksp->reason) ksp->reason = KSP_DIVERGED_ITS;

223:   /* Finish off the standard error estimates */
224:   if (lsqr->se) {
225:     tmp  = 1.0;
226:     MatGetSize(Amat,&size1,&size2);
227:     if (size1 > size2) tmp = size1 - size2;
228:     tmp  = rnorm / PetscSqrtScalar(tmp);
229:     VecSqrtAbs(lsqr->se);
230:     VecScale(lsqr->se,tmp);
231:   }
232:   return(0);
233: }


236: PetscErrorCode KSPDestroy_LSQR(KSP ksp)
237: {
238:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

242:   /* Free work vectors */
243:   if (lsqr->vwork_n) {
244:     VecDestroyVecs(lsqr->nwork_n,&lsqr->vwork_n);
245:   }
246:   if (lsqr->vwork_m) {
247:     VecDestroyVecs(lsqr->nwork_m,&lsqr->vwork_m);
248:   }
249:   VecDestroy(&lsqr->se);
250:   PetscFree(ksp->data);
251:   return(0);
252: }

254: /*@
255:    KSPLSQRSetComputeStandardErrorVec - Compute vector of standard error estimates during KSPSolve_LSQR().

257:    Not Collective

259:    Input Parameters:
260: +  ksp   - iterative context
261: -  flg   - compute the vector of standard estimates or not

263:    Developer notes:
264:    Vaclav: I'm not sure whether this vector is useful for anything.

266:    Level: intermediate

268: .keywords: KSP, KSPLSQR

270: .seealso: KSPSolve(), KSPLSQR, KSPLSQRGetStandardErrorVec()
271: @*/
272: PetscErrorCode  KSPLSQRSetComputeStandardErrorVec(KSP ksp, PetscBool flg)
273: {
274:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

277:   lsqr->se_flg = flg;
278:   return(0);
279: }

281: /*@
282:    KSPLSQRSetExactMatNorm - Compute exact matrix norm instead of iteratively refined estimate.

284:    Not Collective

286:    Input Parameters:
287: +  ksp   - iterative context
288: -  flg   - compute exact matrix norm or not

290:    Notes:
291:    By default, flg=PETSC_FALSE. This is usually preferred to avoid possibly expensive computation of the norm.
292:    For flg=PETSC_TRUE, we call MatNorm(Amat,NORM_FROBENIUS,&lsqr->anorm) which will work only for some types of explicitly assembled matrices.
293:    This can affect convergence rate as KSPLSQRConvergedDefault() assumes different value of ||A|| used in normal equation stopping criterion.

295:    Level: intermediate

297: .keywords: KSP, KSPLSQR

299: .seealso: KSPSolve(), KSPLSQR, KSPLSQRGetNorms(), KSPLSQRConvergedDefault()
300: @*/
301: PetscErrorCode  KSPLSQRSetExactMatNorm(KSP ksp, PetscBool flg)
302: {
303:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

306:   lsqr->exact_norm = flg;
307:   return(0);
308: }

310: /*@
311:    KSPLSQRGetStandardErrorVec - Get vector of standard error estimates.
312:    Only available if -ksp_lsqr_set_standard_error was set to true
313:    or KSPLSQRSetComputeStandardErrorVec(ksp, PETSC_TRUE) was called.
314:    Otherwise returns NULL.

316:    Not Collective

318:    Input Parameters:
319: .  ksp   - iterative context

321:    Output Parameters:
322: .  se - vector of standard estimates

324:    Options Database Keys:
325: .   -ksp_lsqr_set_standard_error  - set standard error estimates of solution

327:    Developer notes:
328:    Vaclav: I'm not sure whether this vector is useful for anything.

330:    Level: intermediate

332: .keywords: KSP, KSPLSQR

334: .seealso: KSPSolve(), KSPLSQR, KSPLSQRSetComputeStandardErrorVec()
335: @*/
336: PetscErrorCode  KSPLSQRGetStandardErrorVec(KSP ksp,Vec *se)
337: {
338:   KSP_LSQR *lsqr = (KSP_LSQR*)ksp->data;

341:   *se = lsqr->se;
342:   return(0);
343: }

345: /*@
346:    KSPLSQRGetNorms - Get norm estimates that LSQR computes internally during KSPSolve().

348:    Not Collective

350:    Input Parameters:
351: .  ksp   - iterative context

353:    Output Parameters:
354: +  arnorm - good estimate of norm((A*inv(Pmat))'*r), where r = A*x - b, used in specific stopping criterion
355: -  anorm - poor estimate of norm(A*inv(Pmat),'fro') used in specific stopping criterion

357:    Notes:
358:    Output parameters are meaningful only after KSPSolve().
359:    These are the same quantities as normar and norma in MATLAB's lsqr(), whose output lsvec is a vector of normar / norma for all iterations.
360:    If -ksp_lsqr_exact_mat_norm is set or KSPLSQRSetExactMatNorm(ksp, PETSC_TRUE) called, then anorm is exact Frobenius norm.

362:    Level: intermediate

364: .keywords: KSP, KSPLSQR

366: .seealso: KSPSolve(), KSPLSQR, KSPLSQRSetExactMatNorm()
367: @*/
368: PetscErrorCode  KSPLSQRGetNorms(KSP ksp,PetscReal *arnorm, PetscReal *anorm)
369: {
370:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

373:   if (arnorm)   *arnorm = lsqr->arnorm;
374:   if (anorm)    *anorm = lsqr->anorm;
375:   return(0);
376: }

378: /*@C
379:    KSPLSQRMonitorDefault - Print the residual norm at each iteration of the LSQR method,
380:    norm of the residual of the normal equations A'*A x = A' b, and estimate of matrix norm ||A||.

382:    Collective on KSP

384:    Input Parameters:
385: +  ksp   - iterative context
386: .  n     - iteration number
387: .  rnorm - 2-norm (preconditioned) residual value (may be estimated).
388: -  dummy - viewer and format context

390:    Level: intermediate

392: .keywords: KSP, KSPLSQR, default, monitor, residual

394: .seealso: KSPLSQR, KSPMonitorSet(), KSPMonitorTrueResidualNorm(), KSPMonitorLGResidualNormCreate(), KSPMonitorDefault()
395: @*/
396: PetscErrorCode  KSPLSQRMonitorDefault(KSP ksp,PetscInt n,PetscReal rnorm,PetscViewerAndFormat *dummy)
397: {
399:   PetscViewer    viewer = dummy->viewer;
400:   KSP_LSQR       *lsqr  = (KSP_LSQR*)ksp->data;

403:   PetscViewerPushFormat(viewer,dummy->format);
404:   PetscViewerASCIIAddTab(viewer,((PetscObject)ksp)->tablevel);
405:   if (!n && ((PetscObject)ksp)->prefix) {
406:     PetscViewerASCIIPrintf(viewer,"  Residual norm, norm of normal equations, and matrix norm for %s solve.\n",((PetscObject)ksp)->prefix);
407:   }

409:   if (!n) {
410:     PetscViewerASCIIPrintf(viewer,"%3D KSP resid norm %14.12e\n",n,(double)rnorm);
411:   } else {
412:     PetscViewerASCIIPrintf(viewer,"%3D KSP resid norm %14.12e normal eq resid norm %14.12e matrix norm %14.12e\n",n,(double)rnorm,(double)lsqr->arnorm,(double)lsqr->anorm);
413:   }

415:   PetscViewerASCIISubtractTab(viewer,((PetscObject)ksp)->tablevel);
416:   PetscViewerPopFormat(viewer);
417:   return(0);
418: }

420: PetscErrorCode KSPSetFromOptions_LSQR(PetscOptionItems *PetscOptionsObject,KSP ksp)
421: {
423:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

426:   PetscOptionsHead(PetscOptionsObject,"KSP LSQR Options");
427:   PetscOptionsBool("-ksp_lsqr_compute_standard_error","Set Standard Error Estimates of Solution","KSPLSQRSetComputeStandardErrorVec",lsqr->se_flg,&lsqr->se_flg,NULL);
428:   PetscOptionsBool("-ksp_lsqr_exact_mat_norm","Compute exact matrix norm instead of iteratively refined estimate","KSPLSQRSetExactMatNorm",lsqr->exact_norm,&lsqr->exact_norm,NULL);
429:   KSPMonitorSetFromOptions(ksp,"-ksp_lsqr_monitor","Monitor residual norm and norm of residual of normal equations","KSPMonitorSet",KSPLSQRMonitorDefault);
430:   PetscOptionsTail();
431:   return(0);
432: }

434: PetscErrorCode KSPView_LSQR(KSP ksp,PetscViewer viewer)
435: {
436:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;
438:   PetscBool      iascii;

441:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
442:   if (iascii) {
443:     if (lsqr->se) {
444:       PetscReal rnorm;
445:       VecNorm(lsqr->se,NORM_2,&rnorm);
446:       PetscViewerASCIIPrintf(viewer,"  norm of standard error %g, iterations %d\n",(double)rnorm,ksp->its);
447:     } else {
448:       PetscViewerASCIIPrintf(viewer,"  standard error not computed\n");
449:     }
450:     if (lsqr->exact_norm) {
451:       PetscViewerASCIIPrintf(viewer,"  using exact matrix norm\n");
452:     } else {
453:       PetscViewerASCIIPrintf(viewer,"  using inexact matrix norm\n");
454:     }
455:   }
456:   return(0);
457: }

459: /*@C
460:    KSPLSQRConvergedDefault - Determines convergence of the LSQR Krylov method.

462:    Collective on KSP

464:    Input Parameters:
465: +  ksp   - iterative context
466: .  n     - iteration number
467: .  rnorm - 2-norm residual value (may be estimated)
468: -  ctx - convergence context which must be created by KSPConvergedDefaultCreate()

470:    reason is set to:
471: +   positive - if the iteration has converged;
472: .   negative - if residual norm exceeds divergence threshold;
473: -   0 - otherwise.

475:    Notes:
476:    KSPConvergedDefault() is called first to check for convergence in A*x=b.
477:    If that does not determine convergence then checks convergence for the least squares problem, i.e. in min{|b-A*x|}.
478:    Possible convergence for the least squares problem (which is based on the residual of the normal equations) are KSP_CONVERGED_RTOL_NORMAL norm and KSP_CONVERGED_ATOL_NORMAL.
479:    KSP_CONVERGED_RTOL_NORMAL is returned if ||A'*r|| < rtol * ||A|| * ||r||.
480:    Matrix norm ||A|| is iteratively refined estimate, see KSPLSQRGetNorms().
481:    This criterion is now largely compatible with that in MATLAB lsqr().

483:    Level: intermediate

485: .keywords: KSP, KSPLSQR, default, convergence, residual

487: .seealso: KSPLSQR, KSPSetConvergenceTest(), KSPSetTolerances(), KSPConvergedSkip(), KSPConvergedReason, KSPGetConvergedReason(),
488:           KSPConvergedDefaultSetUIRNorm(), KSPConvergedDefaultSetUMIRNorm(), KSPConvergedDefaultCreate(), KSPConvergedDefaultDestroy(), KSPConvergedDefault(), KSPLSQRGetNorms(), KSPLSQRSetExactMatNorm()
489: @*/
490: PetscErrorCode  KSPLSQRConvergedDefault(KSP ksp,PetscInt n,PetscReal rnorm,KSPConvergedReason *reason,void *ctx)
491: {
493:   KSP_LSQR       *lsqr = (KSP_LSQR*)ksp->data;

496:   /* check for convergence in A*x=b */
497:   KSPConvergedDefault(ksp,n,rnorm,reason,ctx);
498:   if (!n || *reason) return(0);

500:   /* check for convergence in min{|b-A*x|} */
501:   if (lsqr->arnorm < ksp->abstol) {
502:     PetscInfo3(ksp,"LSQR solver has converged. Normal equation residual %14.12e is less than absolute tolerance %14.12e at iteration %D\n",(double)lsqr->arnorm,(double)ksp->abstol,n);
503:     *reason = KSP_CONVERGED_ATOL_NORMAL;
504:   } else if (lsqr->arnorm < ksp->rtol * lsqr->anorm * rnorm) {
505:     PetscInfo6(ksp,"LSQR solver has converged. Normal equation residual %14.12e is less than rel. tol. %14.12e times %s Frobenius norm of matrix %14.12e times residual %14.12e at iteration %D\n",(double)lsqr->arnorm,(double)ksp->rtol,lsqr->exact_norm?"exact":"approx.",(double)lsqr->anorm,(double)rnorm,n);
506:     *reason = KSP_CONVERGED_RTOL_NORMAL;
507:   }
508:   return(0);
509: }

511: /*MC
512:      KSPLSQR - This implements LSQR

514:    Options Database Keys:
515: +   -ksp_lsqr_set_standard_error  - set standard error estimates of solution, see KSPLSQRSetComputeStandardErrorVec() and KSPLSQRGetStandardErrorVec()
516: .   -ksp_lsqr_exact_mat_norm - compute exact matrix norm instead of iteratively refined estimate, see KSPLSQRSetExactMatNorm()
517: -   -ksp_lsqr_monitor - monitor residual norm, norm of residual of normal equations A'*A x = A' b, and estimate of matrix norm ||A||

519:    Level: beginner

521:    Notes:
522:      Supports non-square (rectangular) matrices.

524:      This varient, when applied with no preconditioning is identical to the original algorithm in exact arithematic; however, in practice, with no preconditioning
525:      due to inexact arithematic, it can converge differently. Hence when no preconditioner is used (PCType PCNONE) it automatically reverts to the original algorithm.

527:      With the PETSc built-in preconditioners, such as ICC, one should call KSPSetOperators(ksp,A,A'*A)) since the preconditioner needs to work
528:      for the normal equations A'*A.

530:      Supports only left preconditioning.

532:      For least squares problems wit nonzero residual A*x - b, there are additional convergence tests for the residual of the normal equations, A'*(b - Ax), see KSPLSQRConvergedDefault().

534:    References:
535: .  1. - The original unpreconditioned algorithm can be found in Paige and Saunders, ACM Transactions on Mathematical Software, Vol 8, 1982.

537:      In exact arithmetic the LSQR method (with no preconditioning) is identical to the KSPCG algorithm applied to the normal equations.
538:      The preconditioned variant was implemented by Bas van't Hof and is essentially a left preconditioning for the Normal Equations. It appears the implementation with preconditioner
539:      track the true norm of the residual and uses that in the convergence test.

541:    Developer Notes:
542:     How is this related to the KSPCGNE implementation? One difference is that KSPCGNE applies
543:             the preconditioner transpose times the preconditioner,  so one does not need to pass A'*A as the third argument to KSPSetOperators().



547: .seealso:  KSPCreate(), KSPSetType(), KSPType (for list of available types), KSP, KSPSolve(), KSPLSQRConvergedDefault(), KSPLSQRSetComputeStandardErrorVec(), KSPLSQRGetStandardErrorVec(), KSPLSQRSetExactMatNorm()

549: M*/
550: PETSC_EXTERN PetscErrorCode KSPCreate_LSQR(KSP ksp)
551: {
552:   KSP_LSQR       *lsqr;
553:   void           *ctx;

557:   PetscNewLog(ksp,&lsqr);
558:   lsqr->se     = NULL;
559:   lsqr->se_flg = PETSC_FALSE;
560:   lsqr->exact_norm = PETSC_FALSE;
561:   lsqr->anorm  = -1.0;
562:   lsqr->arnorm = -1.0;
563:   ksp->data    = (void*)lsqr;
564:   KSPSetSupportedNorm(ksp,KSP_NORM_UNPRECONDITIONED,PC_LEFT,3);

566:   ksp->ops->setup          = KSPSetUp_LSQR;
567:   ksp->ops->solve          = KSPSolve_LSQR;
568:   ksp->ops->destroy        = KSPDestroy_LSQR;
569:   ksp->ops->setfromoptions = KSPSetFromOptions_LSQR;
570:   ksp->ops->view           = KSPView_LSQR;

572:   KSPConvergedDefaultCreate(&ctx);
573:   KSPSetConvergenceTest(ksp,KSPLSQRConvergedDefault,ctx,KSPConvergedDefaultDestroy);
574:   return(0);
575: }