Actual source code: ex8.c

petsc-3.10.5 2019-03-28
Report Typos and Errors

  2: static char help[] = "Illustrates use of the preconditioner ASM.\n\
  3: The Additive Schwarz Method for solving a linear system in parallel with KSP.  The\n\
  4: code indicates the procedure for setting user-defined subdomains.  Input\n\
  5: parameters include:\n\
  6:   -user_set_subdomain_solvers:  User explicitly sets subdomain solvers\n\
  7:   -user_set_subdomains:  Activate user-defined subdomains\n\n";

  9: /*
 10:    Note:  This example focuses on setting the subdomains for the ASM
 11:    preconditioner for a problem on a 2D rectangular grid.  See ex1.c
 12:    and ex2.c for more detailed comments on the basic usage of KSP
 13:    (including working with matrices and vectors).

 15:    The ASM preconditioner is fully parallel, but currently the routine
 16:    PCASMCreateSubdomains2D(), which is used in this example to demonstrate
 17:    user-defined subdomains (activated via -user_set_subdomains), is
 18:    uniprocessor only.

 20:    This matrix in this linear system arises from the discretized Laplacian,
 21:    and thus is not very interesting in terms of experimenting with variants
 22:    of the ASM preconditioner.
 23: */

 25: /*T
 26:    Concepts: KSP^Additive Schwarz Method (ASM) with user-defined subdomains
 27:    Processors: n
 28:    requires: x   TODO: Need to determine if deprecated
 29: T*/



 33: /*
 34:   Include "petscksp.h" so that we can use KSP solvers.  Note that this file
 35:   automatically includes:
 36:      petscsys.h       - base PETSc routines   petscvec.h - vectors
 37:      petscmat.h - matrices
 38:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 39:      petscviewer.h - viewers               petscpc.h  - preconditioners
 40: */
 41:  #include <petscksp.h>

 43: int main(int argc,char **args)
 44: {
 45:   Vec            x,b,u;                 /* approx solution, RHS, exact solution */
 46:   Mat            A;                       /* linear system matrix */
 47:   KSP            ksp;                    /* linear solver context */
 48:   PC             pc;                      /* PC context */
 49:   IS             *is,*is_local;           /* array of index sets that define the subdomains */
 50:   PetscInt       overlap = 1;             /* width of subdomain overlap */
 51:   PetscInt       Nsub;                    /* number of subdomains */
 52:   PetscInt       m = 15,n = 17;          /* mesh dimensions in x- and y- directions */
 53:   PetscInt       M = 2,N = 1;            /* number of subdomains in x- and y- directions */
 54:   PetscInt       i,j,Ii,J,Istart,Iend;
 56:   PetscMPIInt    size;
 57:   PetscBool      flg;
 58:   PetscBool      user_subdomains = PETSC_FALSE;
 59:   PetscScalar    v, one = 1.0;
 60:   PetscReal      e;

 62:   PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
 63:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 64:   PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);
 65:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 66:   PetscOptionsGetInt(NULL,NULL,"-Mdomains",&M,NULL);
 67:   PetscOptionsGetInt(NULL,NULL,"-Ndomains",&N,NULL);
 68:   PetscOptionsGetInt(NULL,NULL,"-overlap",&overlap,NULL);
 69:   PetscOptionsGetBool(NULL,NULL,"-user_set_subdomains",&user_subdomains,NULL);

 71:   /* -------------------------------------------------------------------
 72:          Compute the matrix and right-hand-side vector that define
 73:          the linear system, Ax = b.
 74:      ------------------------------------------------------------------- */

 76:   /*
 77:      Assemble the matrix for the five point stencil, YET AGAIN
 78:   */
 79:   MatCreate(PETSC_COMM_WORLD,&A);
 80:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);
 81:   MatSetFromOptions(A);
 82:   MatSetUp(A);
 83:   MatGetOwnershipRange(A,&Istart,&Iend);
 84:   for (Ii=Istart; Ii<Iend; Ii++) {
 85:     v = -1.0; i = Ii/n; j = Ii - i*n;
 86:     if (i>0)   {J = Ii - n; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
 87:     if (i<m-1) {J = Ii + n; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
 88:     if (j>0)   {J = Ii - 1; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
 89:     if (j<n-1) {J = Ii + 1; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
 90:     v = 4.0; MatSetValues(A,1,&Ii,1,&Ii,&v,INSERT_VALUES);
 91:   }
 92:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 93:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

 95:   /*
 96:      Create and set vectors
 97:   */
 98:   VecCreate(PETSC_COMM_WORLD,&b);
 99:   VecSetSizes(b,PETSC_DECIDE,m*n);
100:   VecSetFromOptions(b);
101:   VecDuplicate(b,&u);
102:   VecDuplicate(b,&x);
103:   VecSet(u,one);
104:   MatMult(A,u,b);

106:   /*
107:      Create linear solver context
108:   */
109:   KSPCreate(PETSC_COMM_WORLD,&ksp);

111:   /*
112:      Set operators. Here the matrix that defines the linear system
113:      also serves as the preconditioning matrix.
114:   */
115:   KSPSetOperators(ksp,A,A);

117:   /*
118:      Set the default preconditioner for this program to be ASM
119:   */
120:   KSPGetPC(ksp,&pc);
121:   PCSetType(pc,PCASM);

123:   /* -------------------------------------------------------------------
124:                   Define the problem decomposition
125:      ------------------------------------------------------------------- */

127:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
128:        Basic method, should be sufficient for the needs of many users.
129:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

131:      Set the overlap, using the default PETSc decomposition via
132:          PCASMSetOverlap(pc,overlap);
133:      Could instead use the option -pc_asm_overlap <ovl>

135:      Set the total number of blocks via -pc_asm_blocks <blks>
136:      Note:  The ASM default is to use 1 block per processor.  To
137:      experiment on a single processor with various overlaps, you
138:      must specify use of multiple blocks!
139:   */

141:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
142:        More advanced method, setting user-defined subdomains
143:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

145:      Firstly, create index sets that define the subdomains.  The utility
146:      routine PCASMCreateSubdomains2D() is a simple example (that currently
147:      supports 1 processor only!).  More generally, the user should write
148:      a custom routine for a particular problem geometry.

150:      Then call either PCASMSetLocalSubdomains() or PCASMSetTotalSubdomains()
151:      to set the subdomains for the ASM preconditioner.
152:   */

154:   if (!user_subdomains) { /* basic version */
155:     PCASMSetOverlap(pc,overlap);
156:   } else { /* advanced version */
157:     if (size != 1) SETERRQ(PETSC_COMM_WORLD,1,"PCASMCreateSubdomains2D() is currently a uniprocessor routine only!");
158:     PCASMCreateSubdomains2D(m,n,M,N,1,overlap,&Nsub,&is,&is_local);
159:     PCASMSetLocalSubdomains(pc,Nsub,is,is_local);
160:     flg  = PETSC_FALSE;
161:     PetscOptionsGetBool(NULL,NULL,"-subdomain_view",&flg,NULL);
162:     if (flg) {
163:       PetscPrintf(PETSC_COMM_SELF,"Nmesh points: %D x %D; subdomain partition: %D x %D; overlap: %D; Nsub: %D\n",m,n,M,N,overlap,Nsub);
164:       PetscPrintf(PETSC_COMM_SELF,"IS:\n");
165:       for (i=0; i<Nsub; i++) {
166:         PetscPrintf(PETSC_COMM_SELF,"  IS[%D]\n",i);
167:         ISView(is[i],PETSC_VIEWER_STDOUT_SELF);
168:       }
169:       PetscPrintf(PETSC_COMM_SELF,"IS_local:\n");
170:       for (i=0; i<Nsub; i++) {
171:         PetscPrintf(PETSC_COMM_SELF,"  IS_local[%D]\n",i);
172:         ISView(is_local[i],PETSC_VIEWER_STDOUT_SELF);
173:       }
174:     }
175:   }

177:   /* -------------------------------------------------------------------
178:                 Set the linear solvers for the subblocks
179:      ------------------------------------------------------------------- */

181:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
182:        Basic method, should be sufficient for the needs of most users.
183:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

185:      By default, the ASM preconditioner uses the same solver on each
186:      block of the problem.  To set the same solver options on all blocks,
187:      use the prefix -sub before the usual PC and KSP options, e.g.,
188:           -sub_pc_type <pc> -sub_ksp_type <ksp> -sub_ksp_rtol 1.e-4

190:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
191:         Advanced method, setting different solvers for various blocks.
192:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

194:      Note that each block's KSP context is completely independent of
195:      the others, and the full range of uniprocessor KSP options is
196:      available for each block.

198:      - Use PCASMGetSubKSP() to extract the array of KSP contexts for
199:        the local blocks.
200:      - See ex7.c for a simple example of setting different linear solvers
201:        for the individual blocks for the block Jacobi method (which is
202:        equivalent to the ASM method with zero overlap).
203:   */

205:   flg  = PETSC_FALSE;
206:   PetscOptionsGetBool(NULL,NULL,"-user_set_subdomain_solvers",&flg,NULL);
207:   if (flg) {
208:     KSP       *subksp;        /* array of KSP contexts for local subblocks */
209:     PetscInt  nlocal,first;   /* number of local subblocks, first local subblock */
210:     PC        subpc;          /* PC context for subblock */
211:     PetscBool isasm;

213:     PetscPrintf(PETSC_COMM_WORLD,"User explicitly sets subdomain solvers.\n");

215:     /*
216:        Set runtime options
217:     */
218:     KSPSetFromOptions(ksp);

220:     /*
221:        Flag an error if PCTYPE is changed from the runtime options
222:      */
223:     PetscObjectTypeCompare((PetscObject)pc,PCASM,&isasm);
224:     if (!isasm) SETERRQ(PETSC_COMM_WORLD,1,"Cannot Change the PCTYPE when manually changing the subdomain solver settings");

226:     /*
227:        Call KSPSetUp() to set the block Jacobi data structures (including
228:        creation of an internal KSP context for each block).

230:        Note: KSPSetUp() MUST be called before PCASMGetSubKSP().
231:     */
232:     KSPSetUp(ksp);

234:     /*
235:        Extract the array of KSP contexts for the local blocks
236:     */
237:     PCASMGetSubKSP(pc,&nlocal,&first,&subksp);

239:     /*
240:        Loop over the local blocks, setting various KSP options
241:        for each block.
242:     */
243:     for (i=0; i<nlocal; i++) {
244:       KSPGetPC(subksp[i],&subpc);
245:       PCSetType(subpc,PCILU);
246:       KSPSetType(subksp[i],KSPGMRES);
247:       KSPSetTolerances(subksp[i],1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);
248:     }
249:   } else {
250:     /*
251:        Set runtime options
252:     */
253:     KSPSetFromOptions(ksp);
254:   }

256:   /* -------------------------------------------------------------------
257:                       Solve the linear system
258:      ------------------------------------------------------------------- */

260:   KSPSolve(ksp,b,x);

262:   /* -------------------------------------------------------------------
263:                       Compare result to the exact solution
264:      ------------------------------------------------------------------- */
265:   VecAXPY(x,-1.0,u);
266:   VecNorm(x,NORM_INFINITY, &e);

268:   flg  = PETSC_FALSE;
269:   PetscOptionsGetBool(NULL,NULL,"-print_error",&flg,NULL);
270:   if (flg) {
271:     PetscPrintf(PETSC_COMM_WORLD, "Infinity norm of the error: %g\n",(double) e);
272:   }

274:   /*
275:      Free work space.  All PETSc objects should be destroyed when they
276:      are no longer needed.
277:   */

279:   if (user_subdomains) {
280:     for (i=0; i<Nsub; i++) {
281:       ISDestroy(&is[i]);
282:       ISDestroy(&is_local[i]);
283:     }
284:     PetscFree(is);
285:     PetscFree(is_local);
286:   }
287:   KSPDestroy(&ksp);
288:   VecDestroy(&u);
289:   VecDestroy(&x);
290:   VecDestroy(&b);
291:   MatDestroy(&A);
292:   PetscFinalize();
293:   return ierr;
294: }


297: /*TEST

299:    test:
300:       suffix: 1
301:       args: -print_error

303: TEST*/