Actual source code: basicsymplectic.c

petsc-3.10.5 2019-03-28
Report Typos and Errors
  1: /*
  2:   Code for Timestepping with basic symplectic integrators for separable Hamiltonian systems
  3: */
  4:  #include <petsc/private/tsimpl.h>
  5:  #include <petscdm.h>

  7: static TSBasicSymplecticType TSBasicSymplecticDefault = TSBASICSYMPLECTICSIEULER;
  8: static PetscBool TSBasicSymplecticRegisterAllCalled;
  9: static PetscBool TSBasicSymplecticPackageInitialized;

 11: typedef struct _BasicSymplecticScheme *BasicSymplecticScheme;
 12: typedef struct _BasicSymplecticSchemeLink *BasicSymplecticSchemeLink;

 14: struct _BasicSymplecticScheme {
 15:   char      *name;
 16:   PetscInt  order;
 17:   PetscInt  s;       /* number of stages */
 18:   PetscReal *c,*d;
 19: };
 20: struct _BasicSymplecticSchemeLink {
 21:   struct _BasicSymplecticScheme sch;
 22:   BasicSymplecticSchemeLink     next;
 23: };
 24: static BasicSymplecticSchemeLink BasicSymplecticSchemeList;
 25: typedef struct {
 26:   TS                    subts_p,subts_q; /* sub TS contexts that holds the RHSFunction pointers */
 27:   IS                    is_p,is_q; /* IS sets for position and momentum respectively */
 28:   Vec                   update;    /* a nest work vector for generalized coordinates */
 29:   BasicSymplecticScheme scheme;
 30: } TS_BasicSymplectic;

 32: /*MC
 33:   TSBASICSYMPLECTICSIEULER - first order semi-implicit Euler method
 34:   Level: intermediate
 35: .seealso: TSBASICSYMPLECTIC
 36: M*/

 38: /*MC
 39:   TSBASICSYMPLECTICVELVERLET - second order Velocity Verlet method (leapfrog method with starting process and determing velocity and position at the same time)
 40: Level: intermediate
 41: .seealso: TSBASICSYMPLECTIC
 42: M*/

 44: /*@C
 45:   TSBasicSymplecticRegisterAll - Registers all of the basic symplectic integration methods in TSBasicSymplectic

 47:   Not Collective, but should be called by all processes which will need the schemes to be registered

 49:   Level: advanced

 51: .keywords: TS, TSBASICSYMPLECTIC, register, all

 53: .seealso:  TSBasicSymplecticRegisterDestroy()
 54: @*/
 55: PetscErrorCode TSBasicSymplecticRegisterAll(void)
 56: {

 60:   if (TSBasicSymplecticRegisterAllCalled) return(0);
 61:   TSBasicSymplecticRegisterAllCalled = PETSC_TRUE;
 62:   {
 63:     PetscReal c[1] = {1.0},d[1] = {1.0};
 64:     TSBasicSymplecticRegister(TSBASICSYMPLECTICSIEULER,1,1,c,d);
 65:   }
 66:   {
 67:     PetscReal c[2] = {0,1.0},d[2] = {0.5,0.5};
 68:     TSBasicSymplecticRegister(TSBASICSYMPLECTICVELVERLET,2,2,c,d);
 69:   }
 70:   {
 71:     PetscReal c[3] = {1,-2.0/3.0,2.0/3.0},d[3] = {-1.0/24.0,3.0/4.0,7.0/24.0};
 72:     TSBasicSymplecticRegister(TSBASICSYMPLECTIC3,3,3,c,d);
 73:   }
 74:   {
 75: #define CUBE../../../../..OFTWO 1.2599210498948731647672106
 76:     PetscReal c[4] = {1.0/2.0/(2.0-CUBE../../../../..OFTWO),(1.0-CUBE../../../../..OFTWO)/2.0/(2.0-CUBE../../../../..OFTWO),(1.0-CUBE../../../../..OFTWO)/2.0/(2.0-CUBE../../../../..OFTWO),1.0/2.0/(2.0-CUBE../../../../..OFTWO)},d[4] = {1.0/(2.0-CUBE../../../../..OFTWO),-CUBE../../../../..OFTWO/(2.0-CUBE../../../../..OFTWO),1.0/(2.0-CUBE../../../../..OFTWO),0};
 77:     TSBasicSymplecticRegister(TSBASICSYMPLECTIC4,4,4,c,d);
 78:   }
 79:   return(0);
 80: }

 82: /*@C
 83:    TSBasicSymplecticRegisterDestroy - Frees the list of schemes that were registered by TSBasicSymplecticRegister().

 85:    Not Collective

 87:    Level: advanced

 89: .keywords: TSBasicSymplectic, register, destroy
 90: .seealso: TSBasicSymplecticRegister(), TSBasicSymplecticRegisterAll()
 91: @*/
 92: PetscErrorCode TSBasicSymplecticRegisterDestroy(void)
 93: {
 94:   PetscErrorCode            ierr;
 95:   BasicSymplecticSchemeLink link;

 98:   while ((link = BasicSymplecticSchemeList)) {
 99:     BasicSymplecticScheme scheme = &link->sch;
100:     BasicSymplecticSchemeList = link->next;
101:     PetscFree2(scheme->c,scheme->d);
102:     PetscFree(scheme->name);
103:     PetscFree(link);
104:   }
105:   TSBasicSymplecticRegisterAllCalled = PETSC_FALSE;
106:   return(0);
107: }

109: /*@C
110:   TSBasicSymplecticInitializePackage - This function initializes everything in the TSBasicSymplectic package. It is called
111:   from PetscDLLibraryRegister() when using dynamic libraries, and on the first call to TSCreate_BasicSymplectic()
112:   when using static libraries.

114:   Level: developer

116: .keywords: TS, TSBasicSymplectic, initialize, package
117: .seealso: PetscInitialize()
118: @*/
119: PetscErrorCode TSBasicSymplecticInitializePackage(void)
120: {

124:   if (TSBasicSymplecticPackageInitialized) return(0);
125:   TSBasicSymplecticPackageInitialized = PETSC_TRUE;
126:   TSBasicSymplecticRegisterAll();
127:   PetscRegisterFinalize(TSBasicSymplecticFinalizePackage);
128:   return(0);
129: }

131: /*@C
132:   TSBasicSymplecticFinalizePackage - This function destroys everything in the TSBasicSymplectic package. It is
133:   called from PetscFinalize().

135:   Level: developer

137: .keywords: Petsc, destroy, package
138: .seealso: PetscFinalize()
139: @*/
140: PetscErrorCode TSBasicSymplecticFinalizePackage(void)
141: {

145:   TSBasicSymplecticPackageInitialized = PETSC_FALSE;
146:   TSBasicSymplecticRegisterDestroy();
147:   return(0);
148: }

150: /*@C
151:    TSBasicSymplecticRegister - register a basic symplectic integration scheme by providing the coefficients.

153:    Not Collective, but the same schemes should be registered on all processes on which they will be used

155:    Input Parameters:
156: +  name - identifier for method
157: .  order - approximation order of method
158: .  s - number of stages, this is the dimension of the matrices below
159: .  c - coefficients for updating generalized position (dimension s)
160: -  d - coefficients for updating generalized momentum (dimension s)

162:    Notes:
163:    Several symplectic methods are provided, this function is only needed to create new methods.

165:    Level: advanced

167: .keywords: TS, register

169: .seealso: TSBasicSymplectic
170: @*/
171: PetscErrorCode TSBasicSymplecticRegister(TSRosWType name,PetscInt order,PetscInt s,PetscReal c[],PetscReal d[])
172: {
173:   BasicSymplecticSchemeLink link;
174:   BasicSymplecticScheme     scheme;
175:   PetscErrorCode  ierr;


182:   TSBasicSymplecticInitializePackage();
183:   PetscCalloc1(1,&link);
184:   scheme = &link->sch;
185:   PetscStrallocpy(name,&scheme->name);
186:   scheme->order = order;
187:   scheme->s = s;
188:   PetscMalloc2(s,&scheme->c,s,&scheme->d);
189:   PetscMemcpy(scheme->c,c,s*sizeof(c[0]));
190:   PetscMemcpy(scheme->d,d,s*sizeof(d[0]));
191:   link->next = BasicSymplecticSchemeList;
192:   BasicSymplecticSchemeList = link;
193:   return(0);
194: }

196: /*
197: The simplified form of the equations are:

199: $ p_{i+1} = p_i + c_i*g(q_i)*h
200: $ q_{i+1} = q_i + d_i*f(p_{i+1},t_{i+1})*h

202: Several symplectic integrators are given below. An illustrative way to use them is to consider a particle with position q and velocity p.

204: To apply a timestep with values c_{1,2},d_{1,2} to the particle, carry out the following steps:

206: - Update the velocity of the particle by adding to it its acceleration multiplied by c_1
207: - Update the position of the particle by adding to it its (updated) velocity multiplied by d_1
208: - Update the velocity of the particle by adding to it its acceleration (at the updated position) multiplied by c_2
209: - Update the position of the particle by adding to it its (double-updated) velocity multiplied by d_2

211: */
212: static PetscErrorCode TSStep_BasicSymplectic(TS ts)
213: {
214:   TS_BasicSymplectic    *bsymp = (TS_BasicSymplectic*)ts->data;
215:   BasicSymplecticScheme scheme = bsymp->scheme;
216:   Vec                   solution = ts->vec_sol,update = bsymp->update,q,p,q_update,p_update;
217:   IS                    is_q = bsymp->is_q,is_p = bsymp->is_p;
218:   TS                    subts_q = bsymp->subts_q,subts_p = bsymp->subts_p;
219:   PetscBool             stageok;
220:   PetscReal             next_time_step = ts->time_step;
221:   PetscInt              iter;
222:   PetscErrorCode        ierr;

225:   VecGetSubVector(solution,is_q,&q);
226:   VecGetSubVector(solution,is_p,&p);
227:   VecGetSubVector(update,is_q,&q_update);
228:   VecGetSubVector(update,is_p,&p_update);

230:   for (iter = 0;iter<scheme->s;iter++) {
231:     TSPreStage(ts,ts->ptime);
232:     /* update velocity p */
233:     if (scheme->c[iter]) {
234:       TSComputeRHSFunction(subts_p,ts->ptime,q,p_update);
235:       VecAXPY(p,scheme->c[iter]*ts->time_step,p_update);
236:     }
237:     /* update position q */
238:     if (scheme->d[iter]) {
239:       TSComputeRHSFunction(subts_q,ts->ptime,p,q_update);
240:       VecAXPY(q,scheme->d[iter]*ts->time_step,q_update);
241:       ts->ptime = ts->ptime+scheme->d[iter]*ts->time_step;
242:     }
243:     TSPostStage(ts,ts->ptime,0,&solution);
244:     TSAdaptCheckStage(ts->adapt,ts,ts->ptime,solution,&stageok);
245:     if(!stageok) {ts->reason = TS_DIVERGED_STEP_REJECTED; return(0);}
246:     TSFunctionDomainError(ts,ts->ptime+ts->time_step,update,&stageok);
247:     if(!stageok) {ts->reason = TS_DIVERGED_STEP_REJECTED; return(0);}
248:   }

250:   ts->time_step = next_time_step;
251:   VecRestoreSubVector(solution,is_q,&q);
252:   VecRestoreSubVector(solution,is_p,&p);
253:   VecRestoreSubVector(update,is_q,&q_update);
254:   VecRestoreSubVector(update,is_p,&p_update);
255:   return(0);
256: }

258: static PetscErrorCode DMCoarsenHook_BasicSymplectic(DM fine,DM coarse,void *ctx)
259: {
261:   return(0);
262: }

264: static PetscErrorCode DMRestrictHook_BasicSymplectic(DM fine,Mat restrct,Vec rscale,Mat inject,DM coarse,void *ctx)
265: {
267:   return(0);
268: }

270: static PetscErrorCode DMSubDomainHook_BasicSymplectic(DM dm,DM subdm,void *ctx)
271: {
273:   return(0);
274: }

276: static PetscErrorCode DMSubDomainRestrictHook_BasicSymplectic(DM dm,VecScatter gscat,VecScatter lscat,DM subdm,void *ctx)
277: {

280:   return(0);
281: }

283: static PetscErrorCode TSSetUp_BasicSymplectic(TS ts)
284: {
285:   TS_BasicSymplectic *bsymp = (TS_BasicSymplectic*)ts->data;
286:   DM                 dm;
287:   PetscErrorCode     ierr;

290:   TSRHSSplitGetIS(ts,"position",&bsymp->is_q);
291:   TSRHSSplitGetIS(ts,"momentum",&bsymp->is_p);
292:   if (!bsymp->is_q || !bsymp->is_p) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must set up RHSSplits with TSRHSSplitSetIS() using split names positon and momentum respectively in order to use -ts_type basicsymplectic");
293:   TSRHSSplitGetSubTS(ts,"position",&bsymp->subts_q);
294:   TSRHSSplitGetSubTS(ts,"momentum",&bsymp->subts_p);
295:   if (!bsymp->subts_q || !bsymp->subts_p) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must set up the RHSFunctions for position and momentum using TSRHSSplitSetRHSFunction() or calling TSSetRHSFunction() for each sub-TS");

297:   VecDuplicate(ts->vec_sol,&bsymp->update);

299:   TSGetAdapt(ts,&ts->adapt);
300:   TSAdaptCandidatesClear(ts->adapt); /* make sure to use fixed time stepping */
301:   TSGetDM(ts,&dm);
302:   if (dm) {
303:     DMCoarsenHookAdd(dm,DMCoarsenHook_BasicSymplectic,DMRestrictHook_BasicSymplectic,ts);
304:     DMSubDomainHookAdd(dm,DMSubDomainHook_BasicSymplectic,DMSubDomainRestrictHook_BasicSymplectic,ts);
305:   }
306:   return(0);
307: }

309: static PetscErrorCode TSReset_BasicSymplectic(TS ts)
310: {
311:   TS_BasicSymplectic *bsymp = (TS_BasicSymplectic*)ts->data;
312:   PetscErrorCode     ierr;

315:   VecDestroy(&bsymp->update);
316:   return(0);
317: }

319: static PetscErrorCode TSDestroy_BasicSymplectic(TS ts)
320: {

324:   TSReset_BasicSymplectic(ts);
325:   PetscFree(ts->data);
326:   return(0);
327: }

329: static PetscErrorCode TSSetFromOptions_BasicSymplectic(PetscOptionItems *PetscOptionsObject,TS ts)
330: {
331:   TS_BasicSymplectic *bsymp = (TS_BasicSymplectic*)ts->data;
332:   PetscErrorCode     ierr;

335:   PetscOptionsHead(PetscOptionsObject,"Basic symplectic integrator options");
336:   {
337:     BasicSymplecticSchemeLink link;
338:     PetscInt                  count,choice;
339:     PetscBool                 flg;
340:     const char                **namelist;

342:     for (link=BasicSymplecticSchemeList,count=0; link; link=link->next,count++) ;
343:     PetscMalloc1(count,(char***)&namelist);
344:     for (link=BasicSymplecticSchemeList,count=0; link; link=link->next,count++) namelist[count] = link->sch.name;
345:     PetscOptionsEList("-ts_basicsymplectic_type","Family of basic symplectic integration method","TSBasicSymplecticSetType",(const char*const*)namelist,count,bsymp->scheme->name,&choice,&flg);
346:     if (flg) {TSBasicSymplecticSetType(ts,namelist[choice]);}
347:     PetscFree(namelist);
348:   }
349:   PetscOptionsTail();
350:   return(0);
351: }

353: static PetscErrorCode TSView_BasicSymplectic(TS ts,PetscViewer viewer)
354: {
356:   return(0);
357: }

359: static PetscErrorCode TSInterpolate_BasicSymplectic(TS ts,PetscReal t,Vec X)
360: {
361:   TS_BasicSymplectic *bsymp = (TS_BasicSymplectic*)ts->data;
362:   Vec                update = bsymp->update;
363:   PetscReal          alpha = (ts->ptime - t)/ts->time_step;
364:   PetscErrorCode     ierr;

367:   VecWAXPY(X,-ts->time_step,update,ts->vec_sol);
368:   VecAXPBY(X,1.0-alpha,alpha,ts->vec_sol);
369:   return(0);
370: }

372: static PetscErrorCode TSComputeLinearStability_BasicSymplectic(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
373: {
375:   *yr = 1.0 + xr;
376:   *yi = xi;
377:   return(0);
378: }

380: /*@C
381:   TSBasicSymplecticSetType - Set the type of the basic symplectic method

383:   Logically Collective on TS

385:   Input Parameter:
386: +  ts - timestepping context
387: -  bsymptype - type of the symplectic scheme

389:   Options Database:
390: .  -ts_basicsymplectic_type <scheme>

392:   Notes:
393:   The symplectic solver always expects a two-way splitting with the split names being "position" and "momentum". Each split is associated with an IS object and a sub-TS that is intended to store the user-provided RHS function.

395:   Level: intermediate
396: @*/
397: PetscErrorCode TSBasicSymplecticSetType(TS ts,TSBasicSymplecticType bsymptype)
398: {

403:   PetscTryMethod(ts,"TSBasicSymplecticSetType_C",(TS,TSBasicSymplecticType),(ts,bsymptype));
404:   return(0);
405: }

407: /*@C
408:   TSBasicSymplecticGetType - Get the type of the basic symplectic method

410:   Logically Collective on TS

412:   Input Parameter:
413: +  ts - timestepping context
414: -  bsymptype - type of the basic symplectic scheme

416:   Level: intermediate
417: @*/
418: PetscErrorCode TSBasicSymplecticGetType(TS ts,TSBasicSymplecticType *bsymptype)
419: {

424:   PetscUseMethod(ts,"TSBasicSymplecticGetType_C",(TS,TSBasicSymplecticType*),(ts,bsymptype));
425:   return(0);
426: }

428: static PetscErrorCode TSBasicSymplecticSetType_BasicSymplectic(TS ts,TSBasicSymplecticType bsymptype)
429: {
430:   TS_BasicSymplectic        *bsymp = (TS_BasicSymplectic*)ts->data;
431:   BasicSymplecticSchemeLink link;
432:   PetscBool                 match;
433:   PetscErrorCode            ierr;

436:   if (bsymp->scheme) {
437:     PetscStrcmp(bsymp->scheme->name,bsymptype,&match);
438:     if (match) return(0);
439:   }
440:   for (link = BasicSymplecticSchemeList; link; link=link->next) {
441:     PetscStrcmp(link->sch.name,bsymptype,&match);
442:     if (match) {
443:       bsymp->scheme = &link->sch;
444:       return(0);
445:     }
446:   }
447:   SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_UNKNOWN_TYPE,"Could not find '%s'",bsymptype);
448:   return(0);
449: }

451: static PetscErrorCode  TSBasicSymplecticGetType_BasicSymplectic(TS ts,TSBasicSymplecticType *bsymptype)
452: {
453:   TS_BasicSymplectic *bsymp = (TS_BasicSymplectic*)ts->data;

456:   *bsymptype = bsymp->scheme->name;
457:   return(0);
458: }

460: /*MC
461:   TSBasicSymplectic - ODE solver using basic symplectic integration schemes

463:   These methods are intened for separable Hamiltonian systems

465: $  qdot = dH(q,p,t)/dp
466: $  pdot = -dH(q,p,t)/dq

468:   where the Hamiltonian can be split into the sum of kinetic energy and potential energy

470: $  H(q,p,t) = T(p,t) + V(q,t).

472:   As a result, the system can be genearlly represented by

474: $  qdot = f(p,t) = dT(p,t)/dp
475: $  pdot = g(q,t) = -dV(q,t)/dq

477:   and solved iteratively with

479: $  q_new = q_old + d_i*h*f(p_old,t_old)
480: $  t_new = t_old + d_i*h
481: $  p_new = p_old + c_i*h*g(p_new,t_new)
482: $  i=0,1,...,n.

484:   The solution vector should contain both q and p, which correspond to (generalized) position and momentum respectively. Note that the momentum component could simply be velocity in some representations.
485:   The symplectic solver always expects a two-way splitting with the split names being "position" and "momentum". Each split is associated with an IS object and a sub-TS that is intended to store the user-provided RHS function.

487:   Reference: wikipedia (https://en.wikipedia.org/wiki/Symplectic_integrator)

489:   Level: beginner

491: .seealso:  TSCreate(), TSSetType(), TSRHSSplitSetIS(), TSRHSSplitSetRHSFunction()

493: M*/
494: PETSC_EXTERN PetscErrorCode TSCreate_BasicSymplectic(TS ts)
495: {
496:   TS_BasicSymplectic *bsymp;
497:   PetscErrorCode     ierr;

500:   TSBasicSymplecticInitializePackage();
501:   PetscNewLog(ts,&bsymp);
502:   ts->data = (void*)bsymp;

504:   ts->ops->setup           = TSSetUp_BasicSymplectic;
505:   ts->ops->step            = TSStep_BasicSymplectic;
506:   ts->ops->reset           = TSReset_BasicSymplectic;
507:   ts->ops->destroy         = TSDestroy_BasicSymplectic;
508:   ts->ops->setfromoptions  = TSSetFromOptions_BasicSymplectic;
509:   ts->ops->view            = TSView_BasicSymplectic;
510:   ts->ops->interpolate     = TSInterpolate_BasicSymplectic;
511:   ts->ops->linearstability = TSComputeLinearStability_BasicSymplectic;

513:   PetscObjectComposeFunction((PetscObject)ts,"TSBasicSymplecticSetType_C",TSBasicSymplecticSetType_BasicSymplectic);
514:   PetscObjectComposeFunction((PetscObject)ts,"TSBasicSymplecticGetType_C",TSBasicSymplecticGetType_BasicSymplectic);

516:   TSBasicSymplecticSetType(ts,TSBasicSymplecticDefault);
517:   return(0);
518: }