Actual source code: ntl.c

petsc-3.10.5 2019-03-28
Report Typos and Errors
  1:  #include <../src/tao/unconstrained/impls/ntl/ntlimpl.h>

  3:  #include <petscksp.h>

  5: #define NTL_INIT_CONSTANT         0
  6: #define NTL_INIT_DIRECTION        1
  7: #define NTL_INIT_INTERPOLATION    2
  8: #define NTL_INIT_TYPES            3

 10: #define NTL_UPDATE_REDUCTION      0
 11: #define NTL_UPDATE_INTERPOLATION  1
 12: #define NTL_UPDATE_TYPES          2

 14: static const char *NTL_INIT[64] = {"constant","direction","interpolation"};

 16: static const char *NTL_UPDATE[64] = {"reduction","interpolation"};

 18: /* Implements Newton's Method with a trust-region, line-search approach for
 19:    solving unconstrained minimization problems.  A More'-Thuente line search
 20:    is used to guarantee that the bfgs preconditioner remains positive
 21:    definite. */

 23: #define NTL_NEWTON              0
 24: #define NTL_BFGS                1
 25: #define NTL_SCALED_GRADIENT     2
 26: #define NTL_GRADIENT            3

 28: static PetscErrorCode TaoSolve_NTL(Tao tao)
 29: {
 30:   TAO_NTL                      *tl = (TAO_NTL *)tao->data;
 31:   KSPType                      ksp_type;
 32:   PetscBool                    is_nash,is_stcg,is_gltr,is_bfgs,is_jacobi,is_symmetric,sym_set;
 33:   KSPConvergedReason           ksp_reason;
 34:   PC                           pc;
 35:   TaoLineSearchConvergedReason ls_reason;

 37:   PetscReal                    fmin, ftrial, prered, actred, kappa, sigma;
 38:   PetscReal                    tau, tau_1, tau_2, tau_max, tau_min, max_radius;
 39:   PetscReal                    f, fold, gdx, gnorm;
 40:   PetscReal                    step = 1.0;

 42:   PetscReal                    norm_d = 0.0;
 43:   PetscErrorCode               ierr;
 44:   PetscInt                     stepType;
 45:   PetscInt                     its;

 47:   PetscInt                     bfgsUpdates = 0;
 48:   PetscInt                     needH;

 50:   PetscInt                     i_max = 5;
 51:   PetscInt                     j_max = 1;
 52:   PetscInt                     i, j, n, N;

 54:   PetscInt                     tr_reject;

 57:   if (tao->XL || tao->XU || tao->ops->computebounds) {
 58:     PetscPrintf(((PetscObject)tao)->comm,"WARNING: Variable bounds have been set but will be ignored by ntl algorithm\n");
 59:   }

 61:   KSPGetType(tao->ksp,&ksp_type);
 62:   PetscStrcmp(ksp_type,KSPCGNASH,&is_nash);
 63:   PetscStrcmp(ksp_type,KSPCGSTCG,&is_stcg);
 64:   PetscStrcmp(ksp_type,KSPCGGLTR,&is_gltr);
 65:   if (!is_nash && !is_stcg && !is_gltr) {
 66:     SETERRQ(PETSC_COMM_SELF,1,"TAO_NTR requires nash, stcg, or gltr for the KSP");
 67:   }

 69:   /* Initialize the radius and modify if it is too large or small */
 70:   tao->trust = tao->trust0;
 71:   tao->trust = PetscMax(tao->trust, tl->min_radius);
 72:   tao->trust = PetscMin(tao->trust, tl->max_radius);

 74:   /* Allocate the vectors needed for the BFGS approximation */
 75:   KSPGetPC(tao->ksp, &pc);
 76:   PetscObjectTypeCompare((PetscObject)pc, PCLMVM, &is_bfgs);
 77:   PetscObjectTypeCompare((PetscObject)pc, PCJACOBI, &is_jacobi);
 78:   if (is_bfgs) {
 79:     tl->bfgs_pre = pc;
 80:     PCLMVMGetMatLMVM(tl->bfgs_pre, &tl->M);
 81:     VecGetLocalSize(tao->solution, &n);
 82:     VecGetSize(tao->solution, &N);
 83:     MatSetSizes(tl->M, n, n, N, N);
 84:     MatLMVMAllocate(tl->M, tao->solution, tao->gradient);
 85:     MatIsSymmetricKnown(tl->M, &sym_set, &is_symmetric);
 86:     if (!sym_set || !is_symmetric) SETERRQ(PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_INCOMP, "LMVM matrix in the LMVM preconditioner must be symmetric.");
 87:   } else if (is_jacobi) {
 88:     PCJacobiSetUseAbs(pc,PETSC_TRUE);
 89:   }

 91:   /* Check convergence criteria */
 92:   TaoComputeObjectiveAndGradient(tao, tao->solution, &f, tao->gradient);
 93:   VecNorm(tao->gradient, NORM_2, &gnorm);
 94:   if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN");
 95:   needH = 1;

 97:   tao->reason = TAO_CONTINUE_ITERATING;
 98:   TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
 99:   TaoMonitor(tao,tao->niter,f,gnorm,0.0,step);
100:   (*tao->ops->convergencetest)(tao,tao->cnvP);
101:   if (tao->reason != TAO_CONTINUE_ITERATING) return(0);

103:   /* Initialize trust-region radius */
104:   switch(tl->init_type) {
105:   case NTL_INIT_CONSTANT:
106:     /* Use the initial radius specified */
107:     break;

109:   case NTL_INIT_INTERPOLATION:
110:     /* Use the initial radius specified */
111:     max_radius = 0.0;

113:     for (j = 0; j < j_max; ++j) {
114:       fmin = f;
115:       sigma = 0.0;

117:       if (needH) {
118:         TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
119:         needH = 0;
120:       }

122:       for (i = 0; i < i_max; ++i) {
123:         VecCopy(tao->solution, tl->W);
124:         VecAXPY(tl->W, -tao->trust/gnorm, tao->gradient);

126:         TaoComputeObjective(tao, tl->W, &ftrial);
127:         if (PetscIsInfOrNanReal(ftrial)) {
128:           tau = tl->gamma1_i;
129:         } else {
130:           if (ftrial < fmin) {
131:             fmin = ftrial;
132:             sigma = -tao->trust / gnorm;
133:           }

135:           MatMult(tao->hessian, tao->gradient, tao->stepdirection);
136:           VecDot(tao->gradient, tao->stepdirection, &prered);

138:           prered = tao->trust * (gnorm - 0.5 * tao->trust * prered / (gnorm * gnorm));
139:           actred = f - ftrial;
140:           if ((PetscAbsScalar(actred) <= tl->epsilon) && (PetscAbsScalar(prered) <= tl->epsilon)) {
141:             kappa = 1.0;
142:           } else {
143:             kappa = actred / prered;
144:           }

146:           tau_1 = tl->theta_i * gnorm * tao->trust / (tl->theta_i * gnorm * tao->trust + (1.0 - tl->theta_i) * prered - actred);
147:           tau_2 = tl->theta_i * gnorm * tao->trust / (tl->theta_i * gnorm * tao->trust - (1.0 + tl->theta_i) * prered + actred);
148:           tau_min = PetscMin(tau_1, tau_2);
149:           tau_max = PetscMax(tau_1, tau_2);

151:           if (PetscAbsScalar(kappa - 1.0) <= tl->mu1_i) {
152:             /* Great agreement */
153:             max_radius = PetscMax(max_radius, tao->trust);

155:             if (tau_max < 1.0) {
156:               tau = tl->gamma3_i;
157:             } else if (tau_max > tl->gamma4_i) {
158:               tau = tl->gamma4_i;
159:             } else if (tau_1 >= 1.0 && tau_1 <= tl->gamma4_i && tau_2 < 1.0) {
160:               tau = tau_1;
161:             } else if (tau_2 >= 1.0 && tau_2 <= tl->gamma4_i && tau_1 < 1.0) {
162:               tau = tau_2;
163:             } else {
164:               tau = tau_max;
165:             }
166:           } else if (PetscAbsScalar(kappa - 1.0) <= tl->mu2_i) {
167:             /* Good agreement */
168:             max_radius = PetscMax(max_radius, tao->trust);

170:             if (tau_max < tl->gamma2_i) {
171:               tau = tl->gamma2_i;
172:             } else if (tau_max > tl->gamma3_i) {
173:               tau = tl->gamma3_i;
174:             } else {
175:               tau = tau_max;
176:             }
177:           } else {
178:             /* Not good agreement */
179:             if (tau_min > 1.0) {
180:               tau = tl->gamma2_i;
181:             } else if (tau_max < tl->gamma1_i) {
182:               tau = tl->gamma1_i;
183:             } else if ((tau_min < tl->gamma1_i) && (tau_max >= 1.0)) {
184:               tau = tl->gamma1_i;
185:             } else if ((tau_1 >= tl->gamma1_i) && (tau_1 < 1.0) &&  ((tau_2 < tl->gamma1_i) || (tau_2 >= 1.0))) {
186:               tau = tau_1;
187:             } else if ((tau_2 >= tl->gamma1_i) && (tau_2 < 1.0) &&  ((tau_1 < tl->gamma1_i) || (tau_2 >= 1.0))) {
188:               tau = tau_2;
189:             } else {
190:               tau = tau_max;
191:             }
192:           }
193:         }
194:         tao->trust = tau * tao->trust;
195:       }

197:       if (fmin < f) {
198:         f = fmin;
199:         VecAXPY(tao->solution, sigma, tao->gradient);
200:         TaoComputeGradient(tao, tao->solution, tao->gradient);

202:         VecNorm(tao->gradient, NORM_2, &gnorm);
203:         if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN");
204:         needH = 1;

206:         TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
207:         TaoMonitor(tao,tao->niter,f,gnorm,0.0,step);
208:         (*tao->ops->convergencetest)(tao,tao->cnvP);
209:         if (tao->reason != TAO_CONTINUE_ITERATING) return(0);
210:       }
211:     }
212:     tao->trust = PetscMax(tao->trust, max_radius);

214:     /* Modify the radius if it is too large or small */
215:     tao->trust = PetscMax(tao->trust, tl->min_radius);
216:     tao->trust = PetscMin(tao->trust, tl->max_radius);
217:     break;

219:   default:
220:     /* Norm of the first direction will initialize radius */
221:     tao->trust = 0.0;
222:     break;
223:   }

225:   /* Set counter for gradient/reset steps */
226:   tl->ntrust = 0;
227:   tl->newt = 0;
228:   tl->bfgs = 0;
229:   tl->grad = 0;

231:   /* Have not converged; continue with Newton method */
232:   while (tao->reason == TAO_CONTINUE_ITERATING) {
233:     ++tao->niter;
234:     tao->ksp_its=0;
235:     /* Compute the Hessian */
236:     if (needH) {
237:       TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
238:     }

240:     if (tl->bfgs_pre) {
241:       /* Update the limited memory preconditioner */
242:       MatLMVMUpdate(tl->M,tao->solution, tao->gradient);
243:       ++bfgsUpdates;
244:     }
245:     KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);
246:     /* Solve the Newton system of equations */
247:     KSPCGSetRadius(tao->ksp,tl->max_radius);
248:     KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);
249:     KSPGetIterationNumber(tao->ksp,&its);
250:     tao->ksp_its+=its;
251:     tao->ksp_tot_its+=its;
252:     KSPCGGetNormD(tao->ksp, &norm_d);

254:     if (0.0 == tao->trust) {
255:       /* Radius was uninitialized; use the norm of the direction */
256:       if (norm_d > 0.0) {
257:         tao->trust = norm_d;

259:         /* Modify the radius if it is too large or small */
260:         tao->trust = PetscMax(tao->trust, tl->min_radius);
261:         tao->trust = PetscMin(tao->trust, tl->max_radius);
262:       } else {
263:         /* The direction was bad; set radius to default value and re-solve
264:            the trust-region subproblem to get a direction */
265:         tao->trust = tao->trust0;

267:         /* Modify the radius if it is too large or small */
268:         tao->trust = PetscMax(tao->trust, tl->min_radius);
269:         tao->trust = PetscMin(tao->trust, tl->max_radius);

271:         KSPCGSetRadius(tao->ksp,tl->max_radius);
272:         KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);
273:         KSPGetIterationNumber(tao->ksp,&its);
274:         tao->ksp_its+=its;
275:         tao->ksp_tot_its+=its;
276:         KSPCGGetNormD(tao->ksp, &norm_d);

278:         if (norm_d == 0.0) SETERRQ(PETSC_COMM_SELF,1, "Initial direction zero");
279:       }
280:     }

282:     VecScale(tao->stepdirection, -1.0);
283:     KSPGetConvergedReason(tao->ksp, &ksp_reason);
284:     if ((KSP_DIVERGED_INDEFINITE_PC == ksp_reason) && (tl->bfgs_pre)) {
285:       /* Preconditioner is numerically indefinite; reset the
286:          approximate if using BFGS preconditioning. */
287:       MatLMVMReset(tl->M, PETSC_FALSE);
288:       MatLMVMUpdate(tl->M, tao->solution, tao->gradient);
289:       bfgsUpdates = 1;
290:     }

292:     /* Check trust-region reduction conditions */
293:     tr_reject = 0;
294:     if (NTL_UPDATE_REDUCTION == tl->update_type) {
295:       /* Get predicted reduction */
296:       KSPCGGetObjFcn(tao->ksp,&prered);
297:       if (prered >= 0.0) {
298:         /* The predicted reduction has the wrong sign.  This cannot
299:            happen in infinite precision arithmetic.  Step should
300:            be rejected! */
301:         tao->trust = tl->alpha1 * PetscMin(tao->trust, norm_d);
302:         tr_reject = 1;
303:       } else {
304:         /* Compute trial step and function value */
305:         VecCopy(tao->solution, tl->W);
306:         VecAXPY(tl->W, 1.0, tao->stepdirection);
307:         TaoComputeObjective(tao, tl->W, &ftrial);

309:         if (PetscIsInfOrNanReal(ftrial)) {
310:           tao->trust = tl->alpha1 * PetscMin(tao->trust, norm_d);
311:           tr_reject = 1;
312:         } else {
313:           /* Compute and actual reduction */
314:           actred = f - ftrial;
315:           prered = -prered;
316:           if ((PetscAbsScalar(actred) <= tl->epsilon) &&
317:               (PetscAbsScalar(prered) <= tl->epsilon)) {
318:             kappa = 1.0;
319:           } else {
320:             kappa = actred / prered;
321:           }

323:           /* Accept of reject the step and update radius */
324:           if (kappa < tl->eta1) {
325:             /* Reject the step */
326:             tao->trust = tl->alpha1 * PetscMin(tao->trust, norm_d);
327:             tr_reject = 1;
328:           } else {
329:             /* Accept the step */
330:             if (kappa < tl->eta2) {
331:               /* Marginal bad step */
332:               tao->trust = tl->alpha2 * PetscMin(tao->trust, norm_d);
333:             } else if (kappa < tl->eta3) {
334:               /* Reasonable step */
335:               tao->trust = tl->alpha3 * tao->trust;
336:             } else if (kappa < tl->eta4) {
337:               /* Good step */
338:               tao->trust = PetscMax(tl->alpha4 * norm_d, tao->trust);
339:             } else {
340:               /* Very good step */
341:               tao->trust = PetscMax(tl->alpha5 * norm_d, tao->trust);
342:             }
343:           }
344:         }
345:       }
346:     } else {
347:       /* Get predicted reduction */
348:       KSPCGGetObjFcn(tao->ksp,&prered);
349:       if (prered >= 0.0) {
350:         /* The predicted reduction has the wrong sign.  This cannot
351:            happen in infinite precision arithmetic.  Step should
352:            be rejected! */
353:         tao->trust = tl->gamma1 * PetscMin(tao->trust, norm_d);
354:         tr_reject = 1;
355:       } else {
356:         VecCopy(tao->solution, tl->W);
357:         VecAXPY(tl->W, 1.0, tao->stepdirection);
358:         TaoComputeObjective(tao, tl->W, &ftrial);
359:         if (PetscIsInfOrNanReal(ftrial)) {
360:           tao->trust = tl->gamma1 * PetscMin(tao->trust, norm_d);
361:           tr_reject = 1;
362:         } else {
363:           VecDot(tao->gradient, tao->stepdirection, &gdx);

365:           actred = f - ftrial;
366:           prered = -prered;
367:           if ((PetscAbsScalar(actred) <= tl->epsilon) &&
368:               (PetscAbsScalar(prered) <= tl->epsilon)) {
369:             kappa = 1.0;
370:           } else {
371:             kappa = actred / prered;
372:           }

374:           tau_1 = tl->theta * gdx / (tl->theta * gdx - (1.0 - tl->theta) * prered + actred);
375:           tau_2 = tl->theta * gdx / (tl->theta * gdx + (1.0 + tl->theta) * prered - actred);
376:           tau_min = PetscMin(tau_1, tau_2);
377:           tau_max = PetscMax(tau_1, tau_2);

379:           if (kappa >= 1.0 - tl->mu1) {
380:             /* Great agreement; accept step and update radius */
381:             if (tau_max < 1.0) {
382:               tao->trust = PetscMax(tao->trust, tl->gamma3 * norm_d);
383:             } else if (tau_max > tl->gamma4) {
384:               tao->trust = PetscMax(tao->trust, tl->gamma4 * norm_d);
385:             } else {
386:               tao->trust = PetscMax(tao->trust, tau_max * norm_d);
387:             }
388:           } else if (kappa >= 1.0 - tl->mu2) {
389:             /* Good agreement */

391:             if (tau_max < tl->gamma2) {
392:               tao->trust = tl->gamma2 * PetscMin(tao->trust, norm_d);
393:             } else if (tau_max > tl->gamma3) {
394:               tao->trust = PetscMax(tao->trust, tl->gamma3 * norm_d);
395:             } else if (tau_max < 1.0) {
396:               tao->trust = tau_max * PetscMin(tao->trust, norm_d);
397:             } else {
398:               tao->trust = PetscMax(tao->trust, tau_max * norm_d);
399:             }
400:           } else {
401:             /* Not good agreement */
402:             if (tau_min > 1.0) {
403:               tao->trust = tl->gamma2 * PetscMin(tao->trust, norm_d);
404:             } else if (tau_max < tl->gamma1) {
405:               tao->trust = tl->gamma1 * PetscMin(tao->trust, norm_d);
406:             } else if ((tau_min < tl->gamma1) && (tau_max >= 1.0)) {
407:               tao->trust = tl->gamma1 * PetscMin(tao->trust, norm_d);
408:             } else if ((tau_1 >= tl->gamma1) && (tau_1 < 1.0) && ((tau_2 < tl->gamma1) || (tau_2 >= 1.0))) {
409:               tao->trust = tau_1 * PetscMin(tao->trust, norm_d);
410:             } else if ((tau_2 >= tl->gamma1) && (tau_2 < 1.0) && ((tau_1 < tl->gamma1) || (tau_2 >= 1.0))) {
411:               tao->trust = tau_2 * PetscMin(tao->trust, norm_d);
412:             } else {
413:               tao->trust = tau_max * PetscMin(tao->trust, norm_d);
414:             }
415:             tr_reject = 1;
416:           }
417:         }
418:       }
419:     }

421:     if (tr_reject) {
422:       /* The trust-region constraints rejected the step.  Apply a linesearch.
423:          Check for descent direction. */
424:       VecDot(tao->stepdirection, tao->gradient, &gdx);
425:       if ((gdx >= 0.0) || PetscIsInfOrNanReal(gdx)) {
426:         /* Newton step is not descent or direction produced Inf or NaN */

428:         if (!tl->bfgs_pre) {
429:           /* We don't have the bfgs matrix around and updated
430:              Must use gradient direction in this case */
431:           VecCopy(tao->gradient, tao->stepdirection);
432:           VecScale(tao->stepdirection, -1.0);
433:           ++tl->grad;
434:           stepType = NTL_GRADIENT;
435:         } else {
436:           /* Attempt to use the BFGS direction */
437:           MatSolve(tl->M, tao->gradient, tao->stepdirection);
438:           VecScale(tao->stepdirection, -1.0);

440:           /* Check for success (descent direction) */
441:           VecDot(tao->stepdirection, tao->gradient, &gdx);
442:           if ((gdx >= 0) || PetscIsInfOrNanReal(gdx)) {
443:             /* BFGS direction is not descent or direction produced not a number
444:                We can assert bfgsUpdates > 1 in this case because
445:                the first solve produces the scaled gradient direction,
446:                which is guaranteed to be descent */

448:             /* Use steepest descent direction (scaled) */
449:             MatLMVMReset(tl->M, PETSC_FALSE);
450:             MatLMVMUpdate(tl->M, tao->solution, tao->gradient);
451:             MatSolve(tl->M, tao->gradient, tao->stepdirection);
452:             VecScale(tao->stepdirection, -1.0);

454:             bfgsUpdates = 1;
455:             ++tl->grad;
456:             stepType = NTL_GRADIENT;
457:           } else {
458:             MatLMVMGetUpdateCount(tl->M, &bfgsUpdates);
459:             if (1 == bfgsUpdates) {
460:               /* The first BFGS direction is always the scaled gradient */
461:               ++tl->grad;
462:               stepType = NTL_GRADIENT;
463:             } else {
464:               ++tl->bfgs;
465:               stepType = NTL_BFGS;
466:             }
467:           }
468:         }
469:       } else {
470:         /* Computed Newton step is descent */
471:         ++tl->newt;
472:         stepType = NTL_NEWTON;
473:       }

475:       /* Perform the linesearch */
476:       fold = f;
477:       VecCopy(tao->solution, tl->Xold);
478:       VecCopy(tao->gradient, tl->Gold);

480:       step = 1.0;
481:       TaoLineSearchApply(tao->linesearch, tao->solution, &f, tao->gradient, tao->stepdirection, &step, &ls_reason);
482:       TaoAddLineSearchCounts(tao);

484:       while (ls_reason != TAOLINESEARCH_SUCCESS && ls_reason != TAOLINESEARCH_SUCCESS_USER && stepType != NTL_GRADIENT) {      /* Linesearch failed */
485:         /* Linesearch failed */
486:         f = fold;
487:         VecCopy(tl->Xold, tao->solution);
488:         VecCopy(tl->Gold, tao->gradient);

490:         switch(stepType) {
491:         case NTL_NEWTON:
492:           /* Failed to obtain acceptable iterate with Newton step */

494:           if (tl->bfgs_pre) {
495:             /* We don't have the bfgs matrix around and being updated
496:                Must use gradient direction in this case */
497:             VecCopy(tao->gradient, tao->stepdirection);
498:             ++tl->grad;
499:             stepType = NTL_GRADIENT;
500:           } else {
501:             /* Attempt to use the BFGS direction */
502:             MatSolve(tl->M, tao->gradient, tao->stepdirection);


505:             /* Check for success (descent direction) */
506:             VecDot(tao->stepdirection, tao->gradient, &gdx);
507:             if ((gdx <= 0) || PetscIsInfOrNanReal(gdx)) {
508:               /* BFGS direction is not descent or direction produced
509:                  not a number.  We can assert bfgsUpdates > 1 in this case
510:                  Use steepest descent direction (scaled) */
511:               MatLMVMReset(tl->M, PETSC_FALSE);
512:               MatLMVMUpdate(tl->M, tao->solution, tao->gradient);
513:               MatSolve(tl->M, tao->gradient, tao->stepdirection);

515:               bfgsUpdates = 1;
516:               ++tl->grad;
517:               stepType = NTL_GRADIENT;
518:             } else {
519:               MatLMVMGetUpdateCount(tl->M, &bfgsUpdates);
520:               if (1 == bfgsUpdates) {
521:                 /* The first BFGS direction is always the scaled gradient */
522:                 ++tl->grad;
523:                 stepType = NTL_GRADIENT;
524:               } else {
525:                 ++tl->bfgs;
526:                 stepType = NTL_BFGS;
527:               }
528:             }
529:           }
530:           break;

532:         case NTL_BFGS:
533:           /* Can only enter if pc_type == NTL_PC_BFGS
534:              Failed to obtain acceptable iterate with BFGS step
535:              Attempt to use the scaled gradient direction */
536:           MatLMVMReset(tl->M, PETSC_FALSE);
537:           MatLMVMUpdate(tl->M, tao->solution, tao->gradient);
538:           MatSolve(tl->M, tao->gradient, tao->stepdirection);

540:           bfgsUpdates = 1;
541:           ++tl->grad;
542:           stepType = NTL_GRADIENT;
543:           break;
544:         }
545:         VecScale(tao->stepdirection, -1.0);

547:         /* This may be incorrect; linesearch has values for stepmax and stepmin
548:            that should be reset. */
549:         step = 1.0;
550:         TaoLineSearchApply(tao->linesearch, tao->solution, &f, tao->gradient, tao->stepdirection, &step, &ls_reason);
551:         TaoAddLineSearchCounts(tao);
552:       }

554:       if (ls_reason != TAOLINESEARCH_SUCCESS && ls_reason != TAOLINESEARCH_SUCCESS_USER) {
555:         /* Failed to find an improving point */
556:         f = fold;
557:         VecCopy(tl->Xold, tao->solution);
558:         VecCopy(tl->Gold, tao->gradient);
559:         tao->trust = 0.0;
560:         step = 0.0;
561:         tao->reason = TAO_DIVERGED_LS_FAILURE;
562:         break;
563:       } else if (stepType == NTL_NEWTON) {
564:         if (step < tl->nu1) {
565:           /* Very bad step taken; reduce radius */
566:           tao->trust = tl->omega1 * PetscMin(norm_d, tao->trust);
567:         } else if (step < tl->nu2) {
568:           /* Reasonably bad step taken; reduce radius */
569:           tao->trust = tl->omega2 * PetscMin(norm_d, tao->trust);
570:         } else if (step < tl->nu3) {
571:           /* Reasonable step was taken; leave radius alone */
572:           if (tl->omega3 < 1.0) {
573:             tao->trust = tl->omega3 * PetscMin(norm_d, tao->trust);
574:           } else if (tl->omega3 > 1.0) {
575:             tao->trust = PetscMax(tl->omega3 * norm_d, tao->trust);
576:           }
577:         } else if (step < tl->nu4) {
578:           /* Full step taken; increase the radius */
579:           tao->trust = PetscMax(tl->omega4 * norm_d, tao->trust);
580:         } else {
581:           /* More than full step taken; increase the radius */
582:           tao->trust = PetscMax(tl->omega5 * norm_d, tao->trust);
583:         }
584:       } else {
585:         /* Newton step was not good; reduce the radius */
586:         tao->trust = tl->omega1 * PetscMin(norm_d, tao->trust);
587:       }
588:     } else {
589:       /* Trust-region step is accepted */
590:       VecCopy(tl->W, tao->solution);
591:       f = ftrial;
592:       TaoComputeGradient(tao, tao->solution, tao->gradient);
593:       ++tl->ntrust;
594:     }

596:     /* The radius may have been increased; modify if it is too large */
597:     tao->trust = PetscMin(tao->trust, tl->max_radius);

599:     /* Check for converged */
600:     VecNorm(tao->gradient, NORM_2, &gnorm);
601:     if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1,"User provided compute function generated Not-a-Number");
602:     needH = 1;

604:     TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
605:     TaoMonitor(tao,tao->niter,f,gnorm,0.0,step);
606:     (*tao->ops->convergencetest)(tao,tao->cnvP);
607:   }
608:   return(0);
609: }

611: /* ---------------------------------------------------------- */
612: static PetscErrorCode TaoSetUp_NTL(Tao tao)
613: {
614:   TAO_NTL        *tl = (TAO_NTL *)tao->data;

618:   if (!tao->gradient) {VecDuplicate(tao->solution, &tao->gradient); }
619:   if (!tao->stepdirection) {VecDuplicate(tao->solution, &tao->stepdirection);}
620:   if (!tl->W) { VecDuplicate(tao->solution, &tl->W);}
621:   if (!tl->Xold) { VecDuplicate(tao->solution, &tl->Xold);}
622:   if (!tl->Gold) { VecDuplicate(tao->solution, &tl->Gold);}
623:   tl->bfgs_pre = 0;
624:   tl->M = 0;
625:   return(0);
626: }

628: /*------------------------------------------------------------*/
629: static PetscErrorCode TaoDestroy_NTL(Tao tao)
630: {
631:   TAO_NTL        *tl = (TAO_NTL *)tao->data;

635:   if (tao->setupcalled) {
636:     VecDestroy(&tl->W);
637:     VecDestroy(&tl->Xold);
638:     VecDestroy(&tl->Gold);
639:   }
640:   PetscFree(tao->data);
641:   return(0);
642: }

644: /*------------------------------------------------------------*/
645: static PetscErrorCode TaoSetFromOptions_NTL(PetscOptionItems *PetscOptionsObject,Tao tao)
646: {
647:   TAO_NTL        *tl = (TAO_NTL *)tao->data;

651:   PetscOptionsHead(PetscOptionsObject,"Newton trust region with line search method for unconstrained optimization");
652:   PetscOptionsEList("-tao_ntl_init_type", "radius initialization type", "", NTL_INIT, NTL_INIT_TYPES, NTL_INIT[tl->init_type], &tl->init_type,NULL);
653:   PetscOptionsEList("-tao_ntl_update_type", "radius update type", "", NTL_UPDATE, NTL_UPDATE_TYPES, NTL_UPDATE[tl->update_type], &tl->update_type,NULL);
654:   PetscOptionsReal("-tao_ntl_eta1", "poor steplength; reduce radius", "", tl->eta1, &tl->eta1,NULL);
655:   PetscOptionsReal("-tao_ntl_eta2", "reasonable steplength; leave radius alone", "", tl->eta2, &tl->eta2,NULL);
656:   PetscOptionsReal("-tao_ntl_eta3", "good steplength; increase radius", "", tl->eta3, &tl->eta3,NULL);
657:   PetscOptionsReal("-tao_ntl_eta4", "excellent steplength; greatly increase radius", "", tl->eta4, &tl->eta4,NULL);
658:   PetscOptionsReal("-tao_ntl_alpha1", "", "", tl->alpha1, &tl->alpha1,NULL);
659:   PetscOptionsReal("-tao_ntl_alpha2", "", "", tl->alpha2, &tl->alpha2,NULL);
660:   PetscOptionsReal("-tao_ntl_alpha3", "", "", tl->alpha3, &tl->alpha3,NULL);
661:   PetscOptionsReal("-tao_ntl_alpha4", "", "", tl->alpha4, &tl->alpha4,NULL);
662:   PetscOptionsReal("-tao_ntl_alpha5", "", "", tl->alpha5, &tl->alpha5,NULL);
663:   PetscOptionsReal("-tao_ntl_nu1", "poor steplength; reduce radius", "", tl->nu1, &tl->nu1,NULL);
664:   PetscOptionsReal("-tao_ntl_nu2", "reasonable steplength; leave radius alone", "", tl->nu2, &tl->nu2,NULL);
665:   PetscOptionsReal("-tao_ntl_nu3", "good steplength; increase radius", "", tl->nu3, &tl->nu3,NULL);
666:   PetscOptionsReal("-tao_ntl_nu4", "excellent steplength; greatly increase radius", "", tl->nu4, &tl->nu4,NULL);
667:   PetscOptionsReal("-tao_ntl_omega1", "", "", tl->omega1, &tl->omega1,NULL);
668:   PetscOptionsReal("-tao_ntl_omega2", "", "", tl->omega2, &tl->omega2,NULL);
669:   PetscOptionsReal("-tao_ntl_omega3", "", "", tl->omega3, &tl->omega3,NULL);
670:   PetscOptionsReal("-tao_ntl_omega4", "", "", tl->omega4, &tl->omega4,NULL);
671:   PetscOptionsReal("-tao_ntl_omega5", "", "", tl->omega5, &tl->omega5,NULL);
672:   PetscOptionsReal("-tao_ntl_mu1_i", "", "", tl->mu1_i, &tl->mu1_i,NULL);
673:   PetscOptionsReal("-tao_ntl_mu2_i", "", "", tl->mu2_i, &tl->mu2_i,NULL);
674:   PetscOptionsReal("-tao_ntl_gamma1_i", "", "", tl->gamma1_i, &tl->gamma1_i,NULL);
675:   PetscOptionsReal("-tao_ntl_gamma2_i", "", "", tl->gamma2_i, &tl->gamma2_i,NULL);
676:   PetscOptionsReal("-tao_ntl_gamma3_i", "", "", tl->gamma3_i, &tl->gamma3_i,NULL);
677:   PetscOptionsReal("-tao_ntl_gamma4_i", "", "", tl->gamma4_i, &tl->gamma4_i,NULL);
678:   PetscOptionsReal("-tao_ntl_theta_i", "", "", tl->theta_i, &tl->theta_i,NULL);
679:   PetscOptionsReal("-tao_ntl_mu1", "", "", tl->mu1, &tl->mu1,NULL);
680:   PetscOptionsReal("-tao_ntl_mu2", "", "", tl->mu2, &tl->mu2,NULL);
681:   PetscOptionsReal("-tao_ntl_gamma1", "", "", tl->gamma1, &tl->gamma1,NULL);
682:   PetscOptionsReal("-tao_ntl_gamma2", "", "", tl->gamma2, &tl->gamma2,NULL);
683:   PetscOptionsReal("-tao_ntl_gamma3", "", "", tl->gamma3, &tl->gamma3,NULL);
684:   PetscOptionsReal("-tao_ntl_gamma4", "", "", tl->gamma4, &tl->gamma4,NULL);
685:   PetscOptionsReal("-tao_ntl_theta", "", "", tl->theta, &tl->theta,NULL);
686:   PetscOptionsReal("-tao_ntl_min_radius", "lower bound on initial radius", "", tl->min_radius, &tl->min_radius,NULL);
687:   PetscOptionsReal("-tao_ntl_max_radius", "upper bound on radius", "", tl->max_radius, &tl->max_radius,NULL);
688:   PetscOptionsReal("-tao_ntl_epsilon", "tolerance used when computing actual and predicted reduction", "", tl->epsilon, &tl->epsilon,NULL);
689:   PetscOptionsTail();
690:   TaoLineSearchSetFromOptions(tao->linesearch);
691:   KSPSetFromOptions(tao->ksp);
692:   return(0);
693: }

695: /*------------------------------------------------------------*/
696: static PetscErrorCode TaoView_NTL(Tao tao, PetscViewer viewer)
697: {
698:   TAO_NTL        *tl = (TAO_NTL *)tao->data;
699:   PetscBool      isascii;

703:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
704:   if (isascii) {
705:     PetscViewerASCIIPushTab(viewer);
706:     PetscViewerASCIIPrintf(viewer, "Trust-region steps: %D\n", tl->ntrust);
707:     PetscViewerASCIIPrintf(viewer, "Newton search steps: %D\n", tl->newt);
708:     PetscViewerASCIIPrintf(viewer, "BFGS search steps: %D\n", tl->bfgs);
709:     PetscViewerASCIIPrintf(viewer, "Gradient search steps: %D\n", tl->grad);
710:     PetscViewerASCIIPopTab(viewer);
711:   }
712:   return(0);
713: }

715: /* ---------------------------------------------------------- */
716: /*MC
717:   TAONTR - Newton's method with trust region and linesearch
718:   for unconstrained minimization.
719:   At each iteration, the Newton trust region method solves the system for d
720:   and performs a line search in the d direction:

722:             min_d  .5 dT Hk d + gkT d,  s.t.   ||d|| < Delta_k

724:   Options Database Keys:
725: + -tao_ntl_init_type - "constant","direction","interpolation"
726: . -tao_ntl_update_type - "reduction","interpolation"
727: . -tao_ntl_min_radius - lower bound on trust region radius
728: . -tao_ntl_max_radius - upper bound on trust region radius
729: . -tao_ntl_epsilon - tolerance for accepting actual / predicted reduction
730: . -tao_ntl_mu1_i - mu1 interpolation init factor
731: . -tao_ntl_mu2_i - mu2 interpolation init factor
732: . -tao_ntl_gamma1_i - gamma1 interpolation init factor
733: . -tao_ntl_gamma2_i - gamma2 interpolation init factor
734: . -tao_ntl_gamma3_i - gamma3 interpolation init factor
735: . -tao_ntl_gamma4_i - gamma4 interpolation init factor
736: . -tao_ntl_theta_i - thetha1 interpolation init factor
737: . -tao_ntl_eta1 - eta1 reduction update factor
738: . -tao_ntl_eta2 - eta2 reduction update factor
739: . -tao_ntl_eta3 - eta3 reduction update factor
740: . -tao_ntl_eta4 - eta4 reduction update factor
741: . -tao_ntl_alpha1 - alpha1 reduction update factor
742: . -tao_ntl_alpha2 - alpha2 reduction update factor
743: . -tao_ntl_alpha3 - alpha3 reduction update factor
744: . -tao_ntl_alpha4 - alpha4 reduction update factor
745: . -tao_ntl_alpha4 - alpha4 reduction update factor
746: . -tao_ntl_mu1 - mu1 interpolation update
747: . -tao_ntl_mu2 - mu2 interpolation update
748: . -tao_ntl_gamma1 - gamma1 interpolcation update
749: . -tao_ntl_gamma2 - gamma2 interpolcation update
750: . -tao_ntl_gamma3 - gamma3 interpolcation update
751: . -tao_ntl_gamma4 - gamma4 interpolation update
752: - -tao_ntl_theta - theta1 interpolation update

754:   Level: beginner
755: M*/

757: PETSC_EXTERN PetscErrorCode TaoCreate_NTL(Tao tao)
758: {
759:   TAO_NTL        *tl;
761:   const char     *morethuente_type = TAOLINESEARCHMT;

764:   PetscNewLog(tao,&tl);
765:   tao->ops->setup = TaoSetUp_NTL;
766:   tao->ops->solve = TaoSolve_NTL;
767:   tao->ops->view = TaoView_NTL;
768:   tao->ops->setfromoptions = TaoSetFromOptions_NTL;
769:   tao->ops->destroy = TaoDestroy_NTL;

771:   /* Override default settings (unless already changed) */
772:   if (!tao->max_it_changed) tao->max_it = 50;
773:   if (!tao->trust0_changed) tao->trust0 = 100.0;

775:   tao->data = (void*)tl;

777:   /* Default values for trust-region radius update based on steplength */
778:   tl->nu1 = 0.25;
779:   tl->nu2 = 0.50;
780:   tl->nu3 = 1.00;
781:   tl->nu4 = 1.25;

783:   tl->omega1 = 0.25;
784:   tl->omega2 = 0.50;
785:   tl->omega3 = 1.00;
786:   tl->omega4 = 2.00;
787:   tl->omega5 = 4.00;

789:   /* Default values for trust-region radius update based on reduction */
790:   tl->eta1 = 1.0e-4;
791:   tl->eta2 = 0.25;
792:   tl->eta3 = 0.50;
793:   tl->eta4 = 0.90;

795:   tl->alpha1 = 0.25;
796:   tl->alpha2 = 0.50;
797:   tl->alpha3 = 1.00;
798:   tl->alpha4 = 2.00;
799:   tl->alpha5 = 4.00;

801:   /* Default values for trust-region radius update based on interpolation */
802:   tl->mu1 = 0.10;
803:   tl->mu2 = 0.50;

805:   tl->gamma1 = 0.25;
806:   tl->gamma2 = 0.50;
807:   tl->gamma3 = 2.00;
808:   tl->gamma4 = 4.00;

810:   tl->theta = 0.05;

812:   /* Default values for trust region initialization based on interpolation */
813:   tl->mu1_i = 0.35;
814:   tl->mu2_i = 0.50;

816:   tl->gamma1_i = 0.0625;
817:   tl->gamma2_i = 0.5;
818:   tl->gamma3_i = 2.0;
819:   tl->gamma4_i = 5.0;

821:   tl->theta_i = 0.25;

823:   /* Remaining parameters */
824:   tl->min_radius = 1.0e-10;
825:   tl->max_radius = 1.0e10;
826:   tl->epsilon = 1.0e-6;

828:   tl->init_type       = NTL_INIT_INTERPOLATION;
829:   tl->update_type     = NTL_UPDATE_REDUCTION;

831:   TaoLineSearchCreate(((PetscObject)tao)->comm, &tao->linesearch);
832:   PetscObjectIncrementTabLevel((PetscObject)tao->linesearch,(PetscObject)tao,1);
833:   TaoLineSearchSetType(tao->linesearch, morethuente_type);
834:   TaoLineSearchUseTaoRoutines(tao->linesearch, tao);
835:   TaoLineSearchSetOptionsPrefix(tao->linesearch,tao->hdr.prefix);
836:   KSPCreate(((PetscObject)tao)->comm,&tao->ksp);
837:   PetscObjectIncrementTabLevel((PetscObject)tao->ksp,(PetscObject)tao,1);
838:   KSPSetOptionsPrefix(tao->ksp,tao->hdr.prefix);
839:   KSPAppendOptionsPrefix(tao->ksp,"tao_ntl_");
840:   KSPSetType(tao->ksp,KSPCGSTCG);
841:   return(0);
842: }