Actual source code: brdn.c

petsc-3.10.5 2019-03-28
Report Typos and Errors
  1:  #include <../src/ksp/ksp/utils/lmvm/lmvm.h>

  3: /*
  4:   Limited-memory "good" Broyden's method for approximating the inverse of 
  5:   a Jacobian.
  6: */

  8: typedef struct {
  9:   Vec *P, *Q;
 10:   PetscBool allocated, needP, needQ;
 11:   PetscReal *sts, *stq;
 12: } Mat_Brdn;

 14: /*------------------------------------------------------------*/

 16: /*
 17:   The solution method is the matrix-free implementation of the inverse Hessian 
 18:   representation in page 312 of Griewank "Broyden Updating, The Good and The Bad!" 
 19:   (http://www.emis.ams.org/journals/DMJDMV/vol-ismp/45_griewank-andreas-broyden.pdf).
 20:   
 21:   Q[i] = (B_i)^{-1}*S[i] terms are computed ahead of time whenever 
 22:   the matrix is updated with a new (S[i], Y[i]) pair. This allows 
 23:   repeated calls of MatSolve without incurring redundant computation.
 24:   
 25:   dX <- J0^{-1} * F
 26:   
 27:   for i=0,1,2,...,k
 28:     # Q[i] = (B_i)^{-1} * Y[i]
 29:     tau = (S[i]^T dX) / (S[i]^T Q[i])
 30:     dX <- dX + (tau * (S[i] - Q[i]))
 31:   end
 32:  */

 34: static PetscErrorCode MatSolve_LMVMBrdn(Mat B, Vec F, Vec dX)
 35: {
 36:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
 37:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
 38:   PetscErrorCode    ierr;
 39:   PetscInt          i, j;
 40:   PetscScalar       sjtqi, stx, stq;
 41: 
 43:   VecCheckSameSize(F, 2, dX, 3);
 44:   VecCheckMatCompatible(B, dX, 3, F, 2);
 45: 
 46:   if (lbrdn->needQ) {
 47:     /* Pre-compute (Q[i] = (B_i)^{-1} * Y[i]) */
 48:     for (i = 0; i <= lmvm->k; ++i) {
 49:       MatLMVMApplyJ0Inv(B, lmvm->Y[i], lbrdn->Q[i]);
 50:       for (j = 0; j <= i-1; ++j) {
 51:         VecDot(lmvm->S[j], lbrdn->Q[i], &sjtqi);
 52:         VecAXPBYPCZ(lbrdn->Q[i], PetscRealPart(sjtqi)/lbrdn->stq[j], -PetscRealPart(sjtqi)/lbrdn->stq[j], 1.0, lmvm->S[j], lbrdn->Q[j]);
 53:       }
 54:       VecDot(lmvm->S[i], lbrdn->Q[i], &stq);
 55:       lbrdn->stq[i] = PetscRealPart(stq);
 56:     }
 57:     lbrdn->needQ = PETSC_FALSE;
 58:   }
 59: 
 60:   MatLMVMApplyJ0Inv(B, F, dX);
 61:   for (i = 0; i <= lmvm->k-1; ++i) {
 62:     VecDot(lmvm->S[i], dX, &stx);
 63:     VecAXPBYPCZ(dX, PetscRealPart(stx)/lbrdn->stq[i], -PetscRealPart(stx)/lbrdn->stq[i], 1.0, lmvm->S[i], lbrdn->Q[i]);
 64:   }
 65:   return(0);
 66: }

 68: /*------------------------------------------------------------*/

 70: /*
 71:   The forward product is the matrix-free implementation of Equation 2 in 
 72:   page 302 of Griewank "Broyden Updating, The Good and The Bad!"
 73:   (http://www.emis.ams.org/journals/DMJDMV/vol-ismp/45_griewank-andreas-broyden.pdf).
 74:   
 75:   P[i] = (B_i)*S[i] terms are computed ahead of time whenever 
 76:   the matrix is updated with a new (S[i], Y[i]) pair. This allows 
 77:   repeated calls of MatMult inside KSP solvers without unnecessarily 
 78:   recomputing P[i] terms in expensive nested-loops.
 79:   
 80:   Z <- J0 * X
 81:   
 82:   for i=0,1,2,...,k
 83:     # P[i] = B_i * S[i]
 84:     tau = (S[i]^T X) / (S[i]^T S[i])
 85:     dX <- dX + (tau * (Y[i] - P[i]))
 86:   end
 87:  */

 89: static PetscErrorCode MatMult_LMVMBrdn(Mat B, Vec X, Vec Z)
 90: {
 91:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
 92:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
 93:   PetscErrorCode    ierr;
 94:   PetscInt          i, j;
 95:   PetscScalar       sjtsi, stx;
 96: 
 98:   VecCheckSameSize(X, 2, Z, 3);
 99:   VecCheckMatCompatible(B, X, 2, Z, 3);
100: 
101:   if (lbrdn->needP) {
102:     /* Pre-compute (P[i] = (B_i) * S[i]) */
103:     for (i = 0; i <= lmvm->k; ++i) {
104:       MatLMVMApplyJ0Fwd(B, lmvm->S[i], lbrdn->P[i]);
105:       for (j = 0; j <= i-1; ++j) {
106:         VecDot(lmvm->S[j], lmvm->S[i], &sjtsi);
107:         VecAXPBYPCZ(lbrdn->P[i], PetscRealPart(sjtsi)/lbrdn->sts[j], -PetscRealPart(sjtsi)/lbrdn->sts[j], 1.0, lmvm->Y[j], lbrdn->P[j]);
108:       }
109:     }
110:     lbrdn->needP = PETSC_FALSE;
111:   }
112: 
113:   MatLMVMApplyJ0Fwd(B, X, Z);
114:   for (i = 0; i <= lmvm->k-1; ++i) {
115:     VecDot(lmvm->S[i], X, &stx);
116:     VecAXPBYPCZ(Z, PetscRealPart(stx)/lbrdn->sts[i], -PetscRealPart(stx)/lbrdn->sts[i], 1.0, lmvm->Y[i], lbrdn->P[i]);
117:   }
118:   return(0);
119: }

121: /*------------------------------------------------------------*/

123: static PetscErrorCode MatUpdate_LMVMBrdn(Mat B, Vec X, Vec F)
124: {
125:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
126:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
127:   PetscErrorCode    ierr;
128:   PetscInt          old_k, i;
129:   PetscScalar       sts;

132:   if (!lmvm->m) return(0);
133:   if (lmvm->prev_set) {
134:     /* Compute the new (S = X - Xprev) and (Y = F - Fprev) vectors */
135:     VecAYPX(lmvm->Xprev, -1.0, X);
136:     VecAYPX(lmvm->Fprev, -1.0, F);
137:     /* Accept the update */
138:     lbrdn->needP = lbrdn->needQ = PETSC_TRUE;
139:     old_k = lmvm->k;
140:     MatUpdateKernel_LMVM(B, lmvm->Xprev, lmvm->Fprev);
141:     /* If we hit the memory limit, shift the sts array */
142:     if (old_k == lmvm->k) {
143:       for (i = 0; i <= lmvm->k-1; ++i) {
144:         lbrdn->sts[i] = lbrdn->sts[i+1];
145:       }
146:     }
147:     VecDot(lmvm->S[lmvm->k], lmvm->S[lmvm->k], &sts);
148:     lbrdn->sts[lmvm->k] = PetscRealPart(sts);
149:   }
150:   /* Save the solution and function to be used in the next update */
151:   VecCopy(X, lmvm->Xprev);
152:   VecCopy(F, lmvm->Fprev);
153:   lmvm->prev_set = PETSC_TRUE;
154:   return(0);
155: }

157: /*------------------------------------------------------------*/

159: static PetscErrorCode MatCopy_LMVMBrdn(Mat B, Mat M, MatStructure str)
160: {
161:   Mat_LMVM          *bdata = (Mat_LMVM*)B->data;
162:   Mat_Brdn          *bctx = (Mat_Brdn*)bdata->ctx;
163:   Mat_LMVM          *mdata = (Mat_LMVM*)M->data;
164:   Mat_Brdn          *mctx = (Mat_Brdn*)mdata->ctx;
165:   PetscErrorCode    ierr;
166:   PetscInt          i;

169:   mctx->needP = bctx->needP;
170:   mctx->needQ = bctx->needQ;
171:   for (i=0; i<=bdata->k; ++i) {
172:     mctx->sts[i] = bctx->sts[i];
173:     mctx->stq[i] = bctx->stq[i];
174:     VecCopy(bctx->P[i], mctx->P[i]);
175:     VecCopy(bctx->Q[i], mctx->Q[i]);
176:   }
177:   return(0);
178: }

180: /*------------------------------------------------------------*/

182: static PetscErrorCode MatReset_LMVMBrdn(Mat B, PetscBool destructive)
183: {
184:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
185:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
186:   PetscErrorCode    ierr;
187: 
189:   lbrdn->needP = lbrdn->needQ = PETSC_TRUE;
190:   if (destructive && lbrdn->allocated) {
191:     PetscFree2(lbrdn->sts, lbrdn->stq);
192:     VecDestroyVecs(lmvm->m, &lbrdn->P);
193:     VecDestroyVecs(lmvm->m, &lbrdn->Q);
194:     lbrdn->allocated = PETSC_FALSE;
195:   }
196:   MatReset_LMVM(B, destructive);
197:   return(0);
198: }

200: /*------------------------------------------------------------*/

202: static PetscErrorCode MatAllocate_LMVMBrdn(Mat B, Vec X, Vec F)
203: {
204:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
205:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
206:   PetscErrorCode    ierr;
207: 
209:   MatAllocate_LMVM(B, X, F);
210:   if (!lbrdn->allocated) {
211:     PetscMalloc2(lmvm->m, &lbrdn->sts, lmvm->m, &lbrdn->stq);
212:     if (lmvm->m > 0) {
213:       VecDuplicateVecs(X, lmvm->m, &lbrdn->P);
214:       VecDuplicateVecs(X, lmvm->m, &lbrdn->Q);
215:     }
216:     lbrdn->allocated = PETSC_TRUE;
217:   }
218:   return(0);
219: }

221: /*------------------------------------------------------------*/

223: static PetscErrorCode MatDestroy_LMVMBrdn(Mat B)
224: {
225:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
226:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
227:   PetscErrorCode    ierr;

230:   if (lbrdn->allocated) {
231:     PetscFree2(lbrdn->sts, lbrdn->stq);
232:     VecDestroyVecs(lmvm->m, &lbrdn->P);
233:     VecDestroyVecs(lmvm->m, &lbrdn->Q);
234:     lbrdn->allocated = PETSC_FALSE;
235:   }
236:   PetscFree(lmvm->ctx);
237:   MatDestroy_LMVM(B);
238:   return(0);
239: }

241: /*------------------------------------------------------------*/

243: static PetscErrorCode MatSetUp_LMVMBrdn(Mat B)
244: {
245:   Mat_LMVM          *lmvm = (Mat_LMVM*)B->data;
246:   Mat_Brdn          *lbrdn = (Mat_Brdn*)lmvm->ctx;
247:   PetscErrorCode    ierr;
248: 
250:   MatSetUp_LMVM(B);
251:   if (!lbrdn->allocated) {
252:     PetscMalloc2(lmvm->m, &lbrdn->sts, lmvm->m, &lbrdn->stq);
253:     if (lmvm->m > 0) {
254:       VecDuplicateVecs(lmvm->Xprev, lmvm->m, &lbrdn->P);
255:       VecDuplicateVecs(lmvm->Xprev, lmvm->m, &lbrdn->Q);
256:     }
257:     lbrdn->allocated = PETSC_TRUE;
258:   }
259:   return(0);
260: }

262: /*------------------------------------------------------------*/

264: PetscErrorCode MatCreate_LMVMBrdn(Mat B)
265: {
266:   Mat_LMVM          *lmvm;
267:   Mat_Brdn          *lbrdn;
268:   PetscErrorCode    ierr;

271:   MatCreate_LMVM(B);
272:   PetscObjectChangeTypeName((PetscObject)B, MATLMVMBRDN);
273:   B->ops->setup = MatSetUp_LMVMBrdn;
274:   B->ops->destroy = MatDestroy_LMVMBrdn;
275:   B->ops->solve = MatSolve_LMVMBrdn;

277:   lmvm = (Mat_LMVM*)B->data;
278:   lmvm->square = PETSC_TRUE;
279:   lmvm->ops->allocate = MatAllocate_LMVMBrdn;
280:   lmvm->ops->reset = MatReset_LMVMBrdn;
281:   lmvm->ops->mult = MatMult_LMVMBrdn;
282:   lmvm->ops->update = MatUpdate_LMVMBrdn;
283:   lmvm->ops->copy = MatCopy_LMVMBrdn;

285:   PetscNewLog(B, &lbrdn);
286:   lmvm->ctx = (void*)lbrdn;
287:   lbrdn->allocated = PETSC_FALSE;
288:   lbrdn->needP = lbrdn->needQ = PETSC_TRUE;
289:   return(0);
290: }

292: /*------------------------------------------------------------*/

294: /*@
295:    MatCreateLMVMBrdn - Creates a limited-memory "good" Broyden-type approximation
296:    matrix used for a Jacobian. L-Brdn is not guaranteed to be symmetric or 
297:    positive-definite.
298:    
299:    The provided local and global sizes must match the solution and function vectors 
300:    used with MatLMVMUpdate() and MatSolve(). The resulting L-Brdn matrix will have 
301:    storage vectors allocated with VecCreateSeq() in serial and VecCreateMPI() in 
302:    parallel. To use the L-Brdn matrix with other vector types, the matrix must be 
303:    created using MatCreate() and MatSetType(), followed by MatLMVMAllocate(). 
304:    This ensures that the internal storage and work vectors are duplicated from the 
305:    correct type of vector.

307:    Collective on MPI_Comm

309:    Input Parameters:
310: +  comm - MPI communicator, set to PETSC_COMM_SELF
311: .  n - number of local rows for storage vectors
312: -  N - global size of the storage vectors

314:    Output Parameter:
315: .  B - the matrix

317:    It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions()
318:    paradigm instead of this routine directly.

320:    Options Database Keys:
321: .   -mat_lmvm_num_vecs - maximum number of correction vectors (i.e.: updates) stored

323:    Level: intermediate

325: .seealso: MatCreate(), MATLMVM, MATLMVMBRDN, MatCreateLMVMDFP(), MatCreateLMVMSR1(), 
326:          MatCreateLMVMBFGS(), MatCreateLMVMBadBrdn(), MatCreateLMVMSymBrdn()
327: @*/
328: PetscErrorCode MatCreateLMVMBrdn(MPI_Comm comm, PetscInt n, PetscInt N, Mat *B)
329: {
330:   PetscErrorCode    ierr;
331: 
333:   MatCreate(comm, B);
334:   MatSetSizes(*B, n, n, N, N);
335:   MatSetType(*B, MATLMVMBRDN);
336:   MatSetUp(*B);
337:   return(0);
338: }