
Progress with PETSc on Manycore and GPU-based Systems on the Path to
Exascale

Richard Tran Mills

(with contributions from Hannah Morgan, Karl Rupp, Jed Brown, Matthew Knepley and Barry
Smith

PETSc 2019 User Meeting, Atlanta, GA, USA
June 6, 2019

What is driving current HPC trends?

Moore’s Law (1965)

I Moore’s Law: Transistor density doubles roughly every two years
I (Slowing down, but reports of its death have been greatly exaggerated.)
I For decades, single core performance roughly tracked Moore’s law growth, because smaller

transitors can switch faster.

Dennard Scaling (1974)

I Dennard Scaling: Voltage and current are proportional to linear dimensions of a transistor;
therefore power is proportional to the area of the transistor.

I Ignores leakage current and threshold voltage; past 65 nm feature size, Dennard scaling breaks
down and power density increases, because these don’t scale with feature size.

Power Considerations
I The “power wall” has limited practical processor frequencies to around 4 GHz since 2006.
I Increased parallelism (cores, hardware threads, SIMD lanes, GPU warps, etc.) is the current

path forward.

2 / 28

Microprocessor Trend Data

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Year

42 Years of Microprocessor Trend Data

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

3 / 28

Current trends in HPC architectures

Emerging architectures are very complex...

I Lots of hardware cores, hardware threads
I Wide SIMD registers
I Increasing reliance on fused-multiply-add (FMA), with multiple execution ports, proposed quad

FMA instructions
I Multiple memories to manage (multiple NUMA nodes, GPU vs. host, normal vs. high-bandwidth

RAM, byte-addressable NVRAM being introduced, ...)
I Growing depth of hierarchies: in memory subsystem, interconnect topology, I/O systems

...and hard to program

I Vectorization may require fighting the compiler, or entirely re-thinking algorithm.
I Must balance vectorization with cache reuse.
I Host vs. offload adds complexity; large imbalance between memory bandwidth on device vs.

between host and device
I Growth in peak FLOP rates have greatly outpaced available memory bandwidth.

4 / 28

Some principles guiding our development work

I Defer algorithmic choices until execution time, and
enable complex composition of multi-layered solvers
via runtime options

I Strive to separate control logic from computational
kernels
I Allow injecting new hardware-specific computational

kernels without having to rewrite the entire solver
software library

I Hand-optimize small kernels only, and design to
maximize reuse of such kernels
I Cf. the BLIS framework, which expresses all level-3

BLAS operations in terms of one micro-kernel.

I Reuse existing, specialized libraries (e.g., MKL,
cuSPARSE) when feasible

0:6 F. Van Zee and T. Smith

4th loop around micro-kernel

5th loop around micro-kernel

3rd loop around micro-kernel

mR

mR

1

+=

+=

+=

+=

+=

+=

nC nC

kC

kC

mC mC

1

nR

kC

nR

Pack Ai → Ai
~

Pack Bp → Bp
~

nR

A Bj Cj

Ap

Ai

Bp
Cj

Ai
~ Bp

~

Bp
~ Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

1st loop around micro-kernel

2nd loop around micro-kernel

micro-kernel

Fig. 1. An illustration of the algorithm for computing high-performance matrix multiplication, as expressed
within the BLIS framework [Van Zee and van de Geijn 2015].

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2016.

[F. Van Zee, T. Smith, ACM TOMS 2017]

5 / 28

Manycore Computing Architectures

I In recent years, the number of compute cores and hardware threads has been dramatically
increasing.

I Seen in GPGPUS, “manycore” processors such as the Intel Xeon Phi, and even on standard
server processors (e.g., Intel Xeon Skylake).

I There is also increasing reliance on data parallelism/fine-grained parallelism.
I Current Intel consumer-grade processors have 256-bit vector registers and support AVX2 instructions.
I Second-generation Intel Xeon Phi processors and Intel Xeon (Skylake and beyond) server processors

have 512-bit vectors/AVX512 instructions.

At left, “Knights Landing” (KNL) Xeon Phi processor:
I Up to 36 tiles interconnected via 2D mesh
I Tile: 2 cores + 2 VPU/core + 1 MB L2 cache
I Core: Silvermont-based, 4 threads per core, out-of-order execution
I Dual issue; can saturate both VPUs from a single thread
I 512 bit (16 floats wide) SIMD lanes, AVX512 vector instructions
I High bandwidth memory (MCDRAM) on package: 490+ GB/s

bandwidth on STREAM triad2

I Powers the NERSC Cori and ALCF Theta supercomputers
I Similarities to announced post-K computer

(512 bit SIMD, high core counts, high-bandwidth memory)

6 / 28

KSP ex56: Linear Elasticity on KNL
Using PETSc default solvers: GMRES(30), block-Jacobi, ILU(0) on blocks

��

��

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ���

�
�
���
�
��
�
�
��
��
�
��
�
�
��
��

���������������

���

��������
���������������������

����������

mpirun -n 64 numactl --membind=1 ./ex56 -ne $ne -log summary
7 / 28

KSP ex56: Linear Elasticity on KNL
Using PETSc default solvers: GMRES(30), block-Jacobi, ILU(0) on blocks

��
��
���
���
���

�������������� ������� ���������
�
�
��
��
�
��
�
�

���������������

��
��
���
���
���

�������������� ������� ���������
�
�
��
��
�
��
�
�

��������������

��
��
���
���
���

�������������� ������� ���������
�
�
��
��
�
��
�
�

����������������

mpirun -n 64 numactl --membind=1 ./ex56 -ne 79 -log summary
8 / 28

KSP ex56: Using PETSc GAMG Algebraic Multigrid
mpirun -n 64 numactl --membind=1 ./ex56 -ne $ne -pc type gamg -log summary

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 30 40 50 60 70 80

W
a
ll-
c
lo
c
k

tim

e

(s
e
c
o
n
d
s
)

Problem size NE

KSP ex56 GAMG performance on KNL and Broadwell (BDW)

KNL: Total time
BDW: Total time

KNL: Setup
BDW: Setup
KNL: Solve
BDW: Solve

I “Solve” phase is quite fast on KNL.
I Unoptimized setup is comparatively slow on KNL.
I We are working on new AVX-512 and GPU-optimized sparse matrix-matrix multiply.

9 / 28

PFLOTRAN Regional Doublet Simulation: Description and Setup

10
0

m
I PFLOTRAN regional doublet

problem analyzed in 2014 WRR
paper (doi:
10.1002/2012WR013483)

I Variably saturated regional
groundwater flow with seasonal
river stage fluctuations

I Grid-aligned anisotrophy: Vertical
permeability order of magnitude
lower than lateral

I First order FV in space, backward
Euler in time

I Used inexact Newton with
GMRES(30) or BCGS, block
Jacobi, ILU(0) on blocks

I Used 200 × 200 × 100 grid (4
million total degrees of freedom)

10 / 28

PFLOTRAN Performance on KNL: Out-of-box
I Broadwell (BDW) and

KNL times comparable
I Orthogonalizations

much faster on KNL
I But MatMult and

MatSolve faster on
BDW!

I Small work per row (∼ 7
nonzeros; compare to
∼ 80 in KSP ex56)
perhaps unable to mask
latency of gathering x
vector; reordering may
help.

I Jacobian formation
faster on BDW;
vectorization work on
KNL probably needed.

11 / 28

The AIJ/CSR Storage Format
Default AIJ matrix format (compressed sparse row) in PETSc is versatile, but can be poor for SIMD.

Two main disadvantages with AIJ representation:

1. Poor utilization of SIMD units when number of nonzero (nnz) elements in a row is less than the
register length, or when nnz modulo register length is small and positive.

2. Sparsity pattern can lead to poor data locality in input vector.

12 / 28

Sliced ELLPACK-based storage formats
I To enable better vectorization, we have added the MATSELL sparse matrix class (-mat type

sell), which uses a sliced ELLPACK representation (with variable slice width).
I Supports sparse matrix-vector multiplication, Jacobi and SOR smoothers.
I Provide AVX and AVX-512 intrinsics implementations.
I Also provide MATAIJSELL subclass of MATAIJ “shadow” copy of SELL matrix with AIJ for

fallback operations.
I See Hong Zhang’s talk this afternoon!

A 0 0 B 0 0 0 0

0 C D 0 0 0 0 0

0 0 0 0 0 0 E 0

0 F 0 G 0 0 0 0

0 H 0 I J 0 0 0

K 0 L 0 0 0 0 0

M 0 0 0 0 N 0 0

0 0 0 O 0 P 0 Q

Matrix

2

2

1

2

3

2

2

3

nonzeros

0 3

1 2

6 ⇤
1 3

1 3 4

0 2 ⇤
0 5 ⇤
3 5 7

Column indices

A B

C D

E ⇤
F G

H I J

K L ⇤
M N ⇤
O P Q

Values

Slice height

Padding

13 / 28

MATAIJMKL: MKL Sparse BLAS Support
Another matrix class targeting KNL (or other Intel CPUs)

I MATAIJMKL (and block variant MATBAIJMKL) matrices facilitate use of MKL sparse BLAS
operations (including new sparse inspector-executor routines).

I Inherits from MATAIJ, but overrides some methods to call MKL routines.
I Usage as simple as

mpirun -n $N ./executable -mat_type aijmkl

or

export PETSC_OPTIONS=-mat_seqaij_type seqaijmkl

I Latter option will make all sequential AIJ matrices default to seqaijmkl.
I Former option allows different sequential matrix types for diagonal and off-diagonal blocks in

MPIAIJ; enables leveraging optimizations in PETSc for zero rows.

Provides another avenue for thread support

I Compile PETSc with OpenMP and link with -lmkl intel thread.
I Use AIJMKL matrices and set MKL NUM THREADS.

14 / 28

Overview of GPU Support in PETSc
Transparently use GPUs for common matrix and vector operations, via runtime options
— no change of user code required.

CUDA/cuSPARSE:
I CUDA matrix and vector types:

-mat type aijcusparse -vec type cuda
I GPU-enabled preconditioners:

I GPU-based ILU: -pc type ilu -pc factor mat solver type cusparse
I Jacobi: -pc type jacobi

ViennaCL:
I ViennaCL matrix and vector types:

-mat type aijviennacl -vec type viennacl

I Compute backend selection (CUDA, OpenCL, or OpenMP):
-viennacl backend opencl

I Switch between CUDA, OpenCL, or OpenMP (CPU) at runtime
I GPU-enabled preconditioners:

I Fine-grained parallel ILU: -pc type chowiluviennacl
I Smoothed aggregation AMG: -pc type saviennacl

15 / 28

GPU Support—How Does it Work?

Host and Device Data

struct _p_Vec {
...
void *data; // host buffer
PetscCUSPFlag valid_GPU_array; // flag
void *spptr; // device buffer

};

Possible Flag States

typedef enum {PETSC_CUSP_UNALLOCATED,
PETSC_CUSP_GPU,
PETSC_CUSP_CPU,
PETSC_CUSP_BOTH} PetscCUSPFlag;

16 / 28

GPU Support—How Does it Work?

Fallback-Operations on Host

I Data becomes valid on host (PETSC_CUSP_CPU)

PetscErrorCode VecSetRandom_SeqCUSP_Private(..) {
VecGetArray(...);
// some operation on host memory
VecRestoreArray(...);

}

Accelerated Operations on Device

I Data becomes valid on device (PETSC_CUSP_GPU)

PetscErrorCode VecAYPX_SeqCUSP(..) {
VecCUSPGetArrayReadWrite(...);
// some operation on raw handles on device
VecCUSPRestoreArrayReadWrite(...);

}

17 / 28

Example
KSP ex12 on Host
I

$> ./ex12
-pc_type none -m 200 -n 200 -log_summary

KSPGMRESOrthog 1630 1.0 4.5866e+00
KSPSolve 1 1.0 1.6361e+01

KSP ex12 on Device
I

$> ./ex12 -vec_type cusp -mat_type aijcusp
-pc_type none -m 200 -n 200 -log_summary

MatCUSPCopyTo 1 1.0 5.6108e-02
KSPGMRESOrthog 1630 1.0 5.5989e-01
KSPSolve 1 1.0 1.0202e+00

18 / 28

GPU Pitfalls

Pitfall: Repeated Host-Device Copies

I PCI-Express transfers kill performance
I Complete algorithm needs to run on device
I Problematic for explicit time-stepping, etc.

Pitfall: Wrong Data Sizes

I Data set too small: Kernel launch latencies dominate
I Data set too big: Out of memory

Pitfall: Function Pointers
I Pass CUDA function “pointers” through library boundaries?
I OpenCL: Pass kernel sources, user-data hard to pass
I Composability?

19 / 28

GPU Pitfalls
Pitfall: GPUs are too fast for PCI-Express

I Example system: 720 GB/sec from GPU-RAM, 16 GB/sec for PCI-Express
I 40x imbalance (!)

N

N

N

Compute vs. Communication

I Take N = 512, so each field consumes 1 GB of GPU RAM
I Boundary communication: 2 × 6 × N2: 31 MB
I Time to load field: 1.4 ms
I Time to load ghost data: 1.9 ms (!!)

20 / 28

Recap: GPU Support in PETSc

Current GPU-Functionality in PETSc

CUSP/CUDA ViennaCL
Programming Model CUDA CUDA/OpenCL/OpenMP
Operations Vector, MatMult Vector, MatMult
Matrix Formats CSR, ELL, HYB CSR
Preconditioners ILU, Jacobi SA-AMG, Par-ILU0
MPI-related Scatter -

Current Work
I Optimized sparse matrix-matrix multiply (CPUs and GPUs)
I GPU-acceleration for GAMG algebraic multigrid
I Expand use of cuBLAS and cuSPARSE
I Plugin for NVIDIA AmgX algebraic multigrid preconditioner
I Better support for n > 1 processes

(smarter gather/scatter between GPU and host)

21 / 28

OLCF Summit Supercomputer

System totals
I ∼ 200 PFlop/s theoretical peak

143 PFlop/s LINPACK—#1 in TOP500
I 4,608 compute nodes

Node configuration
I Compute:

I Two IBM Power9 CPUs, each 22 with
cores, 0.5 DP TFlop/s

I Six NVIDIA Volta V100 GPUs, each with 80
SMs–32 FP64 cores/SM, 7.8 DP TFlop/s

I Memory:
I 512 GB DDR4 memory
I 96 (6 × 16) GB high-bandwidth GPU

memory
I 1.6 TB nonvolatile RAM (I/O burst buffer)

Almost all compute power is in GPUs!

22 / 28

Early Summit Results: SNES ex19 with multigrid

Running SNES ex19 (velocity-vorticity formulation for nonlinear driven cavity) with 37.8 million total
degrees of freedom on single Summit node.

CPU only command line:

jsrun -n 6 -a 7 -c 7 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg -
da_refine 10 -snes_view -pc_mg_levels 9 -mg_levels_ksp_type chebyshev -
mg_levels_pc_type jacobi -log_view

CPU + GPU hybrid command line:

jsrun -n 6 -a 4 -c 4 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg -
dm_mat_type aijcusparse -dm_vec_type cuda -da_refine 10 -snes_view -
pc_mg_levels 9 -mg_levels_ksp_type chebyshev -mg_levels_pc_type jacobi -
log_view

23 / 28

Early Summit Results: SNES ex19 with multigrid

 0

 5

 10

 15

 20

 25

 30

SNESSolve

SNESSetUp

Function/Jacobian Eval

KSPSolve

KSPGMRESOrthog

MatMult/Add/Transpose

PCSetUp

PCApply

M
ax

 ti
m

e
(s

)

CPU only

 0

 5

 10

 15

 20

 25

 30

SNESSolve

SNESSetUp

Function/Jacobian Eval

KSPSolve

KSPGMRESOrthog

MatMult/Add/Transpose

PCSetUp

PCApply

M
ax

 ti
m

e
(s

)

CPU + GPU hybrid

24 / 28

Summary: Using Manycore CPUs and GPUs with PETSc

KNL can provide good “out-of-box” performance for some PETSc problems

I If we stay in MCDRAM!
I If the problems are solver dominated; “physics”, i.e., residual and Jacobian formulation routines

may need more work for efficient vectorization.
I MATSELL, MAIAIJSELL, MATAIJMKL matrix classes may improve performance.
I Hand-optimized AVX-512 routines in PETSc can also help on new Intel Xeon CPUs.

Significant work on GPGPU support in PETSc is also ongoing

I E.g., recently added GPU-friendly ILU and smoothed aggregation algebraic multigrid through
ViennaCL.

I Working on optimizing multigrid (geometric and algebraic) on GPUs.
I NVLINK interconnect may significantly reduce offload bottlenecks, making GPGPU use more

practical.

25 / 28

Complementary work: Scalable communication within and across nodes

The focus of this presentation — writing code to effectively use vector units and thread warps
present in systems approaching exascale-class systems — is a key challenge.

With increasing core and node counts, effectively communicating/coordinating within nodes and
across the entire supercomputer is another key challenge the PETSc team is working to address.

26 / 28

MPI-3 Shared Memory Windows
I Three algorithms implemented for vector scatters using direct load/store within MPI-3 shared

memory windows

I New VECNODE vector type (stored in distributed shared memory) and VECSCATTERMPI3NODE
scatter type.
I Choose at runtime: mpirun -n <np> ./ex2 -vec type node -vecscatter type mpi3node

27 / 28

Pipelined Krylov Methods
I Reductions needed for inner products and norms in Krylov methods require global

synchronizations that become very expensive at high node counts.
I PETSc implements several pipelined Krylov methods that hide latency of global reductions: 3

variants of CG, flexible CG, flexible GMRES, BiCGStab, conjugate residuals

Figure: Schematics of the main loop of the Flexible Conjugate Gradient (FCG; left) and the Modified Pipelined
Flexible Conjugate Gradient (PIPEFCG; right) methods. Data dependencies in FCG preclude overlapping
reductions with the application of the operator or the preconditioner. At the price of increased local work and
storage, PIPEFCG reductions can overlap operator and preconditioner application. 28 / 28

