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Objectives

Demonstrate Alternating Direction Method of
Multipliers’ splittable objective implementation
in TAO.
•Provide working example of splitable
objectives on TAO
•Results comparison between single objective
implementation and ADMM implementation
•Future structural splittable objectives in TAO

Introduction

Nowadays, With ever-increasing complexities of
data, decentralization of data collection and stor-
age, inevitably brings a need for distributed solution
method. Here, we propose that Alternating Direc-
tion Method of Multipliers (ADMM), is well suited
for distributed, parallel convex solver, which can be
easily implemented into existing TAO framework.
In essence, ADMM takes the form of decomposition-
coordination, of which can be viewed as an attempt
to blend the benefits of dual decomposition and aug-
mented Lagrangian methods for constrained opti-
mization [1], Currently TAO supports only one ob-
jective. Thus, this project tries to make it more ex-
pandable, and provide proof of concept for multiple
objectives in TAO, in this example, ADMM.
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Figure 1:Tomography Example Convergence with Different ε

Algorithms

As mentioned, ADMM is an algorithm that is in-
tended to blend the decomposability of dual as-
cent with the superior convergence properties of the
method of multipliers. The algorithm solves prob-
lems in the form [1],

minimize f (x) + g(z)
subject to Ax +Bz = c

with variables x ∈ Rn and z ∈ Rm, where A ∈
Rp×n, B ∈ Rp×m, and c ∈ Rp. Now, for the
method of multipliers, we form the augmented La-
grangian

Lp(x, z, y) =

f (x)+g(z)+yT (Ax+Bz−c)+(ρ/2)‖Ax+Bz−c‖2
2

with which we can construct the following ADMM
iterations

xk+1 := argminxLρ(x, zk, yk)

zk+1 := argminzLρ(xk+1, z, yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

Further, ADMM can be writtein in a different form,
by including the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable,
where u = (1/ρ)y is the scaled dual variable, and
defining residual r = Ax +Bz − c, we get
xk+1 := argminx

(
f (x) + (ρ/2)‖Ax +Bzk − c + uk‖2

2
)

zk+1 := argminx
(
g(x) + (ρ/2)‖Axk+1 +Bz − c + uk‖2

2
)

uk+1 := uk + Axk+1 +Bzk+1 − c
In practice, for PETsc/TAO, the typical form be-
comes,

minx f (x) + ρ‖x− z + u‖2
2

minx R(z) + ρ‖x− z + u‖2
2

uk+1 := uk + Axk+1 +Bzk+1 − c

Convergence

•Residual convergence. rk → 0 as k →∞
•Objective convergence. f (xk) + g(zk)→ p∗ as
k →∞
•Dual variable convergence. yk → y∗ as k →∞,
where y∗ is a dual optimal point.

In practice, for PETSc/TAO, the break conditions
are

‖x− z‖ <
√
n ∗ ABSTOL

‖ρ(zk+1 − zk)‖ < ‖ρ ∗ u‖ ∗ RELTOL

Results

For comparision, tomography recovery was con-
ducted with and without using ADMM.

Figure 2:Ground Truth and L1 Dictionary BRGN recovery

Figure 3:L2 Proximal Norm and ADMM Recovery

Results
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Figure 4:Tomography Conv. with diff. Methods at ε 1e-8

Conclusion

Splittable objective, namely ADMM, was imple-
mented in PETsc/TAO, and its outcomes were an-
alyzed, and compared with existing software ar-
tifact. For the tomography example, clearly L1
dictionary was the most efficient regularizer. Yet,
here, ADMM proved to be equal or better efficiency
than existing L2 proxiaml regularizer, and showed
that indeed separable objective works with existing
TAO framework. For future work, integration of
ADMM feature with possibility of warm start opti-
mization feature could be considered. As the current
PETsc/TAO development team’s native implemen-
tation for splittable objective is under way, future
work could include incorporting splittable objectives
and native ADMM support for TAO - one of which
may include PETSCFN feature-interface.
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