
Understanding performance variability
in standard and pipelined parallel Krylov

solvers

Hannah Morgan1, Patrick Sanan2,
Matthew Knepley3, Richard Mills1

1Argonne National Laboratory, 2ETH Zurich,
3University at Buffalo

June 6, 2019



Outline

Introduction and motivation
Stationary performance model
Non-stationary performance model
Performance prediction
Extensions (more Krylov methods, computing platforms,
and GPUs)

1 / 43



Krylov methods

Krylov subspace methods are iterative methods that solve
systems of equations Ax = b by looking for solutions in a
Krylov subspace of size m

Km = span{b,Ab,A2b, . . . ,Am−1b}.

A parallel version of GMRES has two global communication
phases in each iteration.

p = 0
p = 1
p = 2
p = 3

2 / 43



Pipelined Krylov methods

A pipelined version of GMRES has only one and allows local
computation to overlap with communication.

p = 0
p = 1
p = 2
p = 3

Images and KSPPGMRES (p1-GMRES) from Ghysels, Ashby,
Meerbergen, and Vanroose.

3 / 43



Motivation

We obtained data from repeated runs of PETSc KSP tutorial
ex23 on 8192 processors on the Cray XC30 supercomputer Piz
Daint.

We have 12 runs of GMRES and PGMRES including the
runtimes (in seconds) below.

GMRES: [0.661, . . . ,0.982, . . . ,1.074]

PGMRES: [0.464, . . . ,0.611, . . . ,0.769]

How should we report the runtimes? We could use the left or
right endpoints, or the mean of the data.

4 / 43



Motivation

We also have 20 runs of CG and PIPECG including the
runtimes below.

CG: [0.605, . . . ,0.883, . . . ,1.605]

PIPECG: [0.554, . . . ,0.682, . . . ,1.076,1.695]

Again, it isn’t clear what we should say about the performance.

5 / 43



Deterministic performance model

We can model a Krylov method as a set of P communicating
processes who perform a calculation consisting of local
computation (blue) and periodic global synchronizations with,
perhaps, waiting (red).

p = 0
p = 1

The total running time T for K iterations is

T =
∑

k

max
p

T k
p ,

where T k
p is the time for iteration k on process p.

6 / 43



Deterministic performance model

We remove the synchronizations to model a pipelined method.

p = 0
p = 1

In this case, the total running time T ′ is

T ′ = max
p

∑
k

T k
p .

7 / 43



Realistic computing scenario

It is not always reasonable to expect predictable delays since
there are many sources of variability in HPC environments (e.g.
operating system interrupts or inter-job contention for shared
resources). Instead, we will turn to a stochastic performance
model where workloads are seen in a statistical sense.

8 / 43



Stochastic performance model

Again, we model a Krylov method as a set of P communicating
processes.

p = 0
p = 1

Now, the total running time T for K iterations is

T =
∑

k

max
p
T k

p ,

where T k
p is the random variable representing the time for

iteration k on process p.

9 / 43



Stochastic performance model

We remove the synchronizations to model a pipelined method.

p = 0
p = 1

Again, the total running time T ′ is

T ′ = max
p

∑
k

T k
p .

10 / 43



Stochastic performance model

We let the time for iteration k on processor p be the random
variable T k

p and ask for the expected runtime of a Krylov
method

E [T ] =
∑

k

E [max
p
T k

p ]

and of a pipelined method

E [T ′] = E [max
p

∑
k

T k
p ].

We want to study the iteration times T k
p so that we can make

reasonable performance estimates for Krylov and pipelined
Krylov methods.

11 / 43



Stationary performance model

First, we assume that the iteration times T k
p are stationary in

time. That is, we assume that T k
p follow the same distribution

for all k .

For example, the iteration times might be uniformly distributed
with parameters (1,1) for all k .

12 / 43



Stationary performance model

Assuming that runtimes are identical and independent of
process p and stationary in step k , we get

E [T ] =
∑

k

E [max
p
T k

p ] = PK
∫ ∞
−∞

xF (x)P−1f (x)dx

for a Krylov method on P processors after K iterations and

E [T ′] = E [max
p

∑
k

T k
p ]→ Kµ

for a pipelined Krylov method, where T k
p follows a distribution

with pdf f (x), cdf F (x), and mean µ.

13 / 43



Experimental setup

We run PETSc tutorials using GMRES and PGMRES and
collect iteration times T k

p by making calls to MPI Wtime() at
the beginning and end of each Krylov cycle.

for k = 0, 1, ...
start = MPI_Wtime();

/* GMRES iteration */

end = MPI_Wtime() - start;

14 / 43



Experimental setup

PETSc KSP tutorial ex23 is a one-dimensional discretization of
the Laplacian and SNES tutorial ex48 solves the hydrostatic
equations for ice sheet flow. We choose a problem with 106

unknowns, use a Jacobi preconditioner, and force 5000 iterates
of the Krylov method. We stop after one nonlinear iteration of
ex48 and utilize the Cray XC40 Theta at the Argonne
Leadership Computing Facility for these runs.

15 / 43



Distribution fitting

We use Python’s scipy package and calculate the sum of
squared error to fit distributions to our data T k

p for all p and k . A
number of distributions including Johnson SU and non-central
Student’s T were reasonable fits.

16 / 43



Results

We calculate E [T ] and E [T ′] and compare our estimates to the
KSPSolve time provided by the PETSc -log view file, shown
below for PETSc tutorials ex23 and ex48. Times are in
seconds.

ex23 ex48
GMRES PGMRES GMRES PGMRES

KSPSolve 2.217 2.006 2.943 2.656
EJohnSU[T ] 4.831 1.865 5.716 2.413

The pipelined model is a reasonable estimate, but this Krylov
model is not a good one.

17 / 43



Experimental results

A histogram of the iterates T k
p on fixed ranks and use of the two

sample Kolmogorov-Smirnov test show that GMRES iterates
are identical with respect to process, but not PGMRES.

18 / 43



Experimental results

A bar graph shows that GMRES iteration times are nearly
constant on each KNL node (so they are not independent with
p), but there is not much of a difference between PGMRES
nodes.

0 200 400 600 800 1000
Processor number

0.20

0.30

0.40

0.50

0.60

0.70

M
illi

se
co

nd
s

GMRES iterations on 8192 processors
Iteration 44

0 200 400 600 800 1000
Processor number

0.20

0.30

0.40

0.50

0.60

0.70

M
illi

se
co

nd
s

PGMRES iterations on 8192 processors
Iteration 48

64

19 / 43



Experimental results

A histogram of times for fixed iterations shows that the random
variables T k

p are not stationary in time (k ). Furthermore, they
do not resemble any well-known family of distributions.

20 / 43



Experimental results

A 2-color colormap shows again that the iterates are not
stationary in time, but are very similar within an iteration.
Clusters of longer iterations could be explained by operating
system interruptions.

21 / 43



Non-stationary performance model

Based on these results, we turn to a non-stationary
performance model where the distribution of T k

p is allowed to
fluctuate across iterations.

For example, we might have T k1
p ∼ Uniform(1,1) but

T k2
p ∼ Uniform(1.5,1.5).

22 / 43



Non-stationary performance model

Assuming that runtimes are identical and independent of
process p and allowing them to fluctuate across step k , we get

E [T ] =
∑

k

E [max
p
T k

p ] =
∑

k

P
∫ ∞
−∞

xFk (x)P−1fk (x)dx

for a Krylov method on P processors after K iterations and

E [T ′] = E [max
p

∑
k

T k
p ] ≈

∑
k

µk

for a pipelined Krylov method, where T k
p follows a distribution

with pdf fk (x), cdf Fk (x), and mean µk in iteration k .

23 / 43



Stochastic performance model

We assume that T k
p ∼ Uniform(ak , sk ) for all k and fit each

iteration to a uniform distribution to find fk (x), Fk (x), and µk .

24 / 43



Results

We use our non-stationary stochastic models to calculate E [T ]
and E [T ′] and compare our estimates to the KSPSolve time,
shown below for PETSc tutorials ex23 and ex48.

ex23 ex48
GMRES PGMRES GMRES PGMRES

KSPSolve 2.217 2.006 2.943 2.656
EUnif[T ] 2.432 1.857 3.189 2.455

Using collected iteration data, our performance models are in
close agreement with reality.

25 / 43



Predicting runtimes

We perform a random sampling process to predict Krylov and
pipelined Kryov runtimes.

If we had a function of a random variable g(X ) where X ∼ f (x),
we could approximate the expected value of g by sampling f .

26 / 43



Predicting runtimes

The quantities we want to compute E [T ] and E [T ′] depend on
a set of distributions fk (x), which we will assume are uniform.

The pdf and cdf of a uniform distribution are given by

fk (x) =
1

bk − ak
, Fk (x) =

x − ak

bk − ak

so that it can be described with two parameters: the minimum
ak and span sk = bk − ak . These are referred to as loc and
scale in Python.

Then a Krylov method is modeled by K uniform distributions
with two sets of descriptive parameters {ak} and {sk}.

27 / 43



Predicting runtimes

We model the uniform parameters ak and sk as random
variables themselves and use scipy again to find a good fitting
distribution.

28 / 43



Predicting runtimes

We simulate a Krylov method by sampling the Johnson SU
distributions for ak and sk using Scipy’s rvs and using our
performance models to calculate the expected time for that
iteration, repeating K times. Results are shown below.

ex23 ex48
GMRES PGMRES GMRES PGMRES

KSPSolve 2.217 2.006 2.943 2.656
Simulated 2.416 1.908 3.14 2.482

When we know the distribution of ak and sk , we can reasonably
predict E [T ] and E [T ′].

29 / 43



Experimental results

So far, we have shown results from runs of PETSc KSP ex23
and SNES ex48 using GMRES and PGMRES.

Many factors, such as problem size and computing platform will
influence the performance of a simulation. By performing a
variety of experiments, we see how some of these affect the
uniform parameters {ak} and {sk} we use to describe our
performance model.

30 / 43



Experimental results

We perform strong-scaling experiments on Theta by changing
processor count for a fixed problem size 106 unknowns. By
decreasing processor count, minimum iteration time grows, but
iterations have a shorter span.

31 / 43



Experimental results

We perform static-scaling experiments on Theta by fixing
P = 8192 and changing the number of unknowns. With more
unknowns, iterations take longer and have larger spans. Similar
results were found for PGMRES.

32 / 43



Experimental results

We solve PETSc tutorial ex23 using the Stabilized biconjugate
gradient method (BCGS) and a pipelined version (PIPEBCGS)
on Theta. GMRES and PGMRES have quicker minimum
iteration times (uniform parameter ak ) than BCGS and
PIPEBCGS.

33 / 43



Experimental results

The span of iteration times (uniform parameter sk ) are very
similar for GMRES and BCGS. A good model needs to account
for different performance between Krylov methods.

34 / 43



Experimental results

We repeat experiments on the Cray XC40 Piz Daint at the
Swiss National Computing Center, which contains Intel Xeon
E5 Haswell processors on compute nodes. In a given iteration,
the quickest rank (uniform parameter ak ) can be much faster on
Piz Daint than Theta.

35 / 43



Experimental results

The length of an iteration on Piz Daint (uniform parameter sk )
contains much more variation than on Theta , particularly for
PGMRES. A robust performance model needs to be flexible
enough to account for hardware differences between machines.

36 / 43



Experimental results

We repeat ex48 runs on Mira, an IBM Blue Gene/Q at
Argonne’s ALCF. Nodes on Mira are connected by a 5D Torus
Network with hardware to assist collective functions. A refined
model that accounts for varying computation with iteration is
needed for good performance estimates on a dedicated
network.

37 / 43



Experimental results

We repeat runs of SNES ex48 with 106 unknowns on 8 nodes
of Summit at OLCF. On each node of Summit, we use all 42
CPUs with one MPI rank per CPU and compare CPU only
experiments to those that utilize the 6 GPUs on each node.

38 / 43



Experimental results

First we look at the uniform parameter ak , which represents the
fastest processor in each iteration. We see that for both
GMRES and PGMRES, invoking the GPUs shifts the
distribution.

39 / 43



Experimental results

The span of times in any given iteration (sk ) are very small for
GMRES on Summit, in both GPU and GPU and CPU cases.

40 / 43



Experimental results

The previous slide suggested that GMRES iterations truly
perform in lockstep on Summit. Here, we can see that within an
iteration, processors execute in nearly the same amount of time
whether GPUs are utilized or not.

41 / 43



Experimental results

The horizontal lines visible in a 2-color colormap shows again
that times within an iteration are clustered.

Preliminary results show that a non-stationary performance
model could be useful in modeling performance on GPUs.

42 / 43



Conclusion

By collecting fine-grained iteration data from runs of Krylov and
pipelined Krylov methods, we developed and tested
performance models that are in good agreement with reality.

This work shows that we should approach performance
modeling in a statistical sense, particularly in high latency
situations where we expect unpredictable delays, such as
heavily loaded machines or loosely coupled networks such as
those used for cloud computing.

This analysis could also perhaps guide the development of new
algorithms, particularly those that we expect to be running in
less predictable computing environments.

43 / 43



Questions?

Big thanks to Todd Munson, Barry Smith, Ivana Marincic, Vivak
Patel, Karl Rupp, and Oana Marin.


