Development of a Terrestrial Dynamical Core for E3SM (TDycore)

Nathan Collier Oak Ridge National Laboratory https://github.com/TDycores-Project/TDycore

June 2019

Common Theme: Considerations in choosing a discretization method

I. The Effect of a Higher Continuous Basis on Solver Performance Victor Calo (Curtin), David Pardo (Ikerbasque), Lisandro Dalcin (KAUST),

Maciej Paszynski (AGH)

II. Selection of a Numerical Method for a Terrestrial Dynamical Core

Jed Brown (Colorado), Gautam Bisht (PNNL), Matthew Knepley (Buffalo), Jennifer Fredrick (SNL), Glenn Hammond (SNL), Satish Karra (LANL)

Higher Continuous Basis?

Poisson problem on unit cube

Poisson problem on unit cube

What effect does continuity have on the solver performance?

What effect does continuity have on the solver performance?

Spoiler Alert!

	<i>C</i> ⁰	C^{p-1}	C^{p-1}/C^{0}
Multifrontal direct solver	$\mathcal{O}(N^2 + Np^6)$	$\mathcal{O}(N^2 p^3)$	$\mathcal{O}(p^3)$
Iterative solvers*	$\mathcal{O}(Np^4)$	$\mathcal{O}(Np^6)$	$\mathcal{O}(p^2)$

*Estimates for Matrix-Vector products

Based on the concepts of the Schur complement and nested dissection.

Key concept: size *s* of the separator

Estimates and Results (d = 3, N = 30k)

Solution time for C^0 vs C^{p-1} (d = 3, N = 30k)

Much more complex to assess costs:

$$P\left(Ax-b\right)=0$$

Need a model for:

- Matrix-vector multiplication
- Preconditioner (P) setup and application

Convergence

Sample Linear Systems

 C^0 space

The cost of a sparse matrix-vector multiply is proportional to the number of nonzero entries in the matrix.

		Number	DOFs	Number
Dimension	Entity	of Entities	per Entity	of interactions
1D	vertex	1	1	(2p + 1)
1D	interior	1	(p-1)	(p+1)
2D	vertex	1	1	$(2p + 1)^2$
2D	edge	2	(p-1)	(2p+1)(p+1)
2D	interior	1	$(p - 1)^2$	$(p + 1)^2$
3D	vertex	1	1	$(2p+1)^3$
3D	edge	3	(p-1)	$(2p+1)^2(p+1)$
3D	face	3	$(p - 1)^2$	$(2p+1)(p+1)^2$
3D	interior	1	$(p - 1)^3$	$(p + 1)^3$

Matrix-vector multiplication - C^0

nnz^{C⁰} =
$$(p-1)^3 \cdot (p+1)^3$$

interior DOF
+ $3(p-1)^2 \cdot (2p+1)(p+1)^2$
face DOF
+ $3(p-1) \cdot (2p+1)^2(p+1)$
edge DOF
+ $1 \cdot (2p+1)^3$
vertex DOF
= $p^6 + 6p^5 + 12p^4 + 8p^3$
= $p^3(p+2)^3 = O(p^6)$

The B-spline C^{p-1} basis is very regular, each DOF interacts with 2p + 1 others in 1D.

$$nnz^{C^{p-1}} = p^3(2p+1)^3 = 8p^6 + 12p^5 + 6p^4 + p^3 = O(8p^6)$$

Matrix-vector multiplication

However, for C^0 spaces, we can use static condensation as in the multifrontal direct solver.

	Number	DOFs	Number	Statically
Entity	of Entities	per Entity	of interactions	condensed
vertex	1	1	$(2p+1)^3$	$-8(p-1)^{3}$
edge	3	(p - 1)	$(2p+1)^2(p+1)$	$-4(p-1)^3$
face	3	$(p - 1)^2$	$(2p+1)(p+1)^2$	$-2(p-1)^{3}$

$$33p^4 - 12p^3 + 9p^2 - 6p + 3 = \mathcal{O}(33p^4)$$

3D Poisson + CG + ILU + static condensation

- N Collier, D Pardo, L Dalcin, M Paszynski, VM Calo, The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Computer Methods in Applied Mechanics and Engineering 213, 353-361, 2012. 10.1016/j.cma.2011.11.002
- N Collier, L Dalcin, D Pardo, VM Calo, The cost of continuity: performance of iterative solvers on isogeometric finite elements, SIAM Journal on Scientific Computing 35 (2), A767-A784, 2013. 10.1137/120881038
- N Collier, L Dalcin, VM Calo, On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers, International Journal for Numerical Methods in Engineering 100 (8), 620-632. 10.1002/nme.4769

Common Theme: Considerations in choosing a discretization method

I. The Effect of a Higher Continuous Basis on Solver Performance Victor Calo (Curtin), David Pardo (Ikerbasque), Lisandro Dalcin (KAUST),

Maciej Paszynski (AGH)

II. Selection of a Numerical Method for a Terrestrial Dynamical Core

Jed Brown (Colorado), Gautam Bisht (PNNL), Matthew Knepley (Buffalo), Jennifer Fredrick (SNL), Glenn Hammond (SNL), Satish Karra (LANL)

Energy Exascale Earth System Model (E3SM)

- The terrestrial water cycle is a key component of the Earth system model
- While conceptually key processes transport water laterally, the representation is 1D in current models
- Requirements: accurate velocities on distorted grids with uncertain and rough coefficients at global scale
- Naturally think of mixed finite elements

$$\mathbf{u} = -K\nabla p \qquad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = f \qquad \text{in } \Omega$$
$$p = g \qquad \text{on } \Gamma_D$$
$$\mathbf{u} \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_N$$

$$\mathbf{u} = -K\nabla p \qquad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = f \qquad \text{in } \Omega$$
$$p = g \qquad \text{on } \Gamma_D$$
$$\mathbf{u} \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_N$$

Candidate approaches:

- Mixed finite elements (BDM) + FieldSplit/BDDC/hybridization
- Wheeler-Yotov (WY) + AMG
- Arnold-Boffi-Falk (ABF) + FieldSplit/BDDC/hybridization
- Multipoint flux approximation (MFPA) + AMG

$$\mathbf{u} = -K\nabla p \qquad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = f \qquad \text{in } \Omega$$
$$p = g \qquad \text{on } \Gamma_D$$
$$\mathbf{u} \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_N$$

Weak form Find $\mathbf{u} \in \mathbf{V}$ and $p \in W$ such that,

$$\begin{pmatrix} \mathcal{K}^{-1}\mathbf{u},\mathbf{v} \end{pmatrix} = (p,\nabla\cdot\mathbf{v}) - \langle g,\mathbf{v}\cdot\mathbf{n} \rangle_{\Gamma_D}, \qquad \mathbf{v} \in \mathbf{V} \\ (\nabla\cdot\mathbf{u},w) = (f,w), \qquad w \in W$$

where $\mathbf{V} = \{ \mathbf{v} \in H^{\mathrm{div}}(\Omega) : \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \}$, $W = L^2(\Omega)$

$$\mathbf{u} = -K\nabla p \qquad \text{in } \Omega$$
$$\nabla \cdot \mathbf{u} = f \qquad \text{in } \Omega$$
$$p = g \qquad \text{on } \Gamma_D$$
$$\mathbf{u} \cdot \mathbf{n} = 0 \qquad \text{on } \Gamma_N$$

Weak form Find $\mathbf{u} \in \mathbf{V}$ and $p \in W$ such that,

$$\begin{pmatrix} \mathsf{K}^{-1}\mathbf{u},\mathbf{v} \end{pmatrix} = (p,\nabla\cdot\mathbf{v}) - \langle g,\mathbf{v}\cdot\mathbf{n} \rangle_{\mathsf{\Gamma}_{D}}, \qquad \mathbf{v} \in \mathsf{V} \\ (\nabla\cdot\mathbf{u},w) = (f,w), \qquad w \in W$$

where $\mathbf{V} = \{ \mathbf{v} \in H^{\mathrm{div}}(\Omega) : \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \}$, $W = L^2(\Omega)$

Wheeler & Yotov 2006

Ingredients:

- Brezzi–Douglas–Marini (BDM₁) velocity space
- ► Basis interpolatory at corners $N_4(x_4) \cdot n_0 = u_{40}$ $N_4(x_4) \cdot n_1 = u_{41}$
- Vertex-based quadrature (under-integrated)
- Constant pressure space

Wheeler & Yotov 2006

Ingredients:

- Brezzi–Douglas–Marini (BDM₁) velocity space
- ► Basis interpolatory at corners $N_4(x_4) \cdot n_0 = u_{40}$ $N_4(x_4) \cdot n_1 = u_{41}$
- Vertex-based quadrature (under-integrated)
- Constant pressure space

This means that velocity DOFs only couple to each other at vertices.

Wheeler & Yotov Assembly

- 1. for vertex v in mesh do
- setup vertex local problem 2:

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} U \\ P \end{bmatrix} = \begin{bmatrix} G \\ F \end{bmatrix}$$

3. for element e connected to v do

4:
$$A \leftarrow (K^{-1}\mathbf{u}_v, \mathbf{v}_v)_{\Omega_e}$$

- $egin{aligned} B^{\mathcal{T}} &\leftarrow -\left(p_{e},
 abla \cdot \mathbf{v}_{v}
 ight)_{\Omega_{e}} \ G &\leftarrow -\left\langle g, \mathbf{v}_{v} \cdot \mathbf{n}
 ight
 angle_{\Gamma_{D,e}} \end{aligned}$ 5:
- 6:
- $F \leftarrow (f_e, w_e)_{o}$ 7:
- 8: end for
- Assemble Schur complement <u>g</u>. $(BA^{-1}B^T)P = F - BA^{-1}G$
- 10: end for

- 1: for vertex v in mesh do
- setup vertex local problem 2:

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} U \\ P \end{bmatrix} = \begin{bmatrix} G \\ F \end{bmatrix}$$

3. for element e connected to v do

4:
$$A \leftarrow (K^{-1}\mathbf{u}_v, \mathbf{v}_v)_{\Omega_e}$$

- $egin{aligned} B^{\mathcal{T}} &\leftarrow -\left(p_{e},
 abla \cdot \mathbf{v}_{v}
 ight)_{\Omega_{e}}\ G &\leftarrow -\left\langle g, \mathbf{v}_{v} \cdot \mathbf{n}
 ight
 angle_{\Gamma_{D,e}} \end{aligned}$ 5:
- 6:
- $F \leftarrow (f_e, w_e)_{O}$ 7:
- 8: end for
- Assemble Schur complement <u>g</u>. $(BA^{-1}B^T)P = F - BA^{-1}G$
- 10: end for

Global cell-centered pressure system which is SPD

Sample Wheeler-Yotov Stencils

$$\mathcal{K} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $K = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$ $R_{10} \ K \ R_{10}^{T}$ $R_{45} K R_{45}^T$ +0.000-1.000 +0.000+0.133-0.985 -0.209 +0.250-1.500 -2.865 -1.500 -2.865 +0.000-1.000 +0.000-0.209 -0.985 +0.133-0.750 -1.500

-0.750

-1.500

+0.250

Sample Wheeler-Yotov Stencils

$$K = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$K \cdot (10^{-3} \text{ if } x > 2/3)$$

+0.000	-1.000	+0.000
-1.000	+3.002	-0.002
+0.000	-1.000	+0.000

SPE10 Test Problem

We use the permeabilities from the SPE10 problem:

- ▶ 60 × 220 × 85 = 1,122,000 cells
- Diagonal permeability $K_{xx} = K_{yy} \neq K_{zz}$
- We induce flow by Dirichlet conditions
- Solve on original permeabilities and also rotate around two axes

Sample slice of the permeability field

WY Options

-ksp_type cg -pc_type hypre

BDM Options

-ksp_type gmres -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition selfp -fieldsplit_0_ksp_type cg -fieldsplit_0_pc_type jacobi -fieldsplit_1_ksp_type cg -fieldsplit_1_pc_type hypre

Solver Performance

Solver Performance

Assembly Performance (not optimized)

TDycore:

- From limited results, WY approach is at least competitive although it appears to hit the strong scaling limit before BDM/fieldsplit
- BDM appears to use more memory than WY (pprox 10 times)
- WY assembly is competitive although BDM lends itself to easier vectorization
- Experimentation is key: -tdy_method {wy|bdm|...}

TDycore:

- From limited results, WY approach is at least competitive although it appears to hit the strong scaling limit before BDM/fieldsplit
- \blacktriangleright BDM appears to use more memory than WY (\approx 10 times)
- WY assembly is competitive although BDM lends itself to easier vectorization
- Experimentation is key: -tdy_method {wy|bdm|...}

Talk/Meeting:

- All of the presented work uses PETSc (PetIGA + DMPlex/Section)
- Using DMPlex/Section opens doors for solver approaches
- Most of my exposure to solvers comes from using PETSc
- \blacktriangleright Originally exposed to PETSc pprox 11 years ago at DOE ACTS workshops

- PetIGA: https://bitbucket.org/dalcinl/petiga
- TDycore: https://github.com/TDycores-Project/TDycore