
Test Problem :

The p-Laplacian generalizes the Laplacian to a non-linear regime. Example applications
include fluid flow and elastic deformation.

This can be generalized by letting σ be a parameterized CR with the corresponding PDE
below. We test on a 2D mesh with homogeneous Neumann conditions on the top
boundary and Dirichlet conditions on the other boundaries.

Grant Bruer, Tobin Isaac

CRIKit :

The Constitutive Relations Inference Toolkit is a software framework that aims to
simplify the use of novel constitutive relations (CRs) in physical systems described by
partial differential equations (PDEs). It consists of four principal components:

CR: Contains the parameters for the constitutive relation.

Observer: Reduces the full system state to a set of observations.

Experiment: The experiment uses a given CR and Observer to run the forward
problem and get observations. It expresses the PDE system using FEniCS or Firedrake
and solves it using our Reduced System Solver.

Loss: Compares simulated observations from an Experiment to measured
observations from the true system. By using the automatic differentiation tool Pyadjoint,
we can take the gradient of the loss wrt the CR parameters in order to train the CR.

Solving Neural-network simulation systems in CRIKit with Pyadjoint

Conclusion :

We built a software framework to train CRs to match observational data. This work allows
scientists to build complicated PDEs describing a system by using neural networks,
FEniCS or Firedrake, and lots of observations. In future work, we will build known
invariances into the system so that fewer observations will be required and symmetries
will be exactly conserved. We also plan to integrate with common neural network
software such as Pytorch and Keras, and optimizers such as Tao.

Training
Using Pyadjoint, we optimize the CR parameters to minimize the loss. We used two
versions of the loss:
1. Jfull: u is observed at every grid point.
2. Jtop: u is observed along top surface.

Results
Figure 1 shows the result of training. Both CRs learned to match the observations.
However, while the plap CR is able to learn the correct p exactly, the network CR only
matches the contours in the area of negative y-gradient.

Acknowledgements :

This material is based upon work supported by the National Science Foundation
under Grant No. 1835792. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Example CRs :

Network CR
The network CR feeds the inputs through a neural network. We use a simple deep
network implementation consisting of an input layer, a sequence of hidden layers, and
an output layer. The layers are densely connected; i.e., each neuron in a layer is
connected to every neuron in the next layer. The hidden layers have sigmoid activation
and the output layer has linear activation. The number of hidden layers and the size of
each layer can be arbitrarily chosen. In our tests, we use a network with three hidden
layers of sizes 8, 6, and 5.

Plap CR
The plap CR directly calculates the p-Laplacian at each quadrature point. It’s only
parameter is p.

Example Code :

The Pyadjoint library overloads FEniCS and Firedrake functions in order to form a
computation graph with blocks that each know how to redo their computation and
how to compute their gradient and Hessian action. From this graph, derivatives of
functionals can be calculated simply using the chain rule.
We worked on two new components to Pyadjoint:

Reduced Function: The reduced function records the calculation of the CR so
that it can be recomputed with different inputs and so its Jacobian and adjoint can be
calculated.

Reduced System Solver: The solver uses a Reduced Function to calculate the
residual and Jacobian and uses SNES to drive the residual to zero. The solver also
handles solving the adjoint system used to get the gradient . This takes the solution
out of the control of the finite element framework, allowing more general systems to
be solved.

1: Create the reduced function for the residual.
with push_tape():
 fx = f(x)
 gx = g(fx, p)

 rf = ReducedFunction(gx, Control(x))

2: Get solution x_sol such that rf(x_sol) == 0.
solver = SNESSolver(rf, **solver_args)
x_sol = solver.solve(Control(x))

3: Get the observational loss.
J = loss(x_sol, x_obs)

4: Find the optimal p that minimizes the loss.
Jhat = ReducedFunctional(J, Control(p))
p_opt = minimize(Jhat)

Pyadjoint Usage :

CR Tests :

Figure 1: the network CR (left) matches the correct CR (right) in the area constrained
by observations.

Solution with p = 0.5

Trained CR Correct CR

Reduced Functional: Ĵ = Ĵ(p)

p solve(rf) xp

loss(xp, xobs)

xobs

JReduced System Solver

x fxf(x)

gxg(x; p)
p

Reduced Function: rf = rf(x)

