PETSc Tutorial

About, Installation, Vectors and Matrices,

 Linear Solvers, Preconditioners, Distributed ArraysKarl Rupp
me@karlrupp.net

Freelance Computational Scientist

Seminarzentrum-Hotel Am Spiegeln, Vienna, Austria
June 28-30, 2016

VIENNA
SGENTIFIC
CLUSTER

Introducing Myself

Education

Master's Degrees in Microelectronics and Mathematics
Doctoral Degree in Microelectronics
Home University: TU Wien

Interests
Efficient Numerics on Modern Hardware
High-level APIs
Semiconductor Device Simulation

Contact
Email: me@karlrupp.net
Web: http://www.karlrupp.net/
Find me at: Google+, Twitter, Linkedln

Before we start...

Goal of this Workshop
 YOU should learn new things about HPC

Ask Questions

Tell me if you do not understand
Ask for further details
Don't be shy

PETSc

About PETSc

PETSc Origins

PETSc was developed as a Platform for Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

These boundaries are often blurred...

Timeline

PETSc

Portable Extensible Toolkit for Scientific Computing

Architecture

tightly coupled (e.g. XT5, BG/P, Earth Simulator)
loosely coupled such as network of workstations
GPU clusters (many vector and sparse matrix kernels)
Software Environment
Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)
Any compiler
Usable from C, C++, Fortran 77/90, Python, and MATLAB
Real/complex, single/double/quad precision, 32/64-bit int
System Size
500B unknowns, 75% weak scalability on Jaguar (225k cores) and Jugene (295k cores)
Same code runs performantly on a laptop
Free to everyone (BSD-style license), open development

PETSc

Portable Extensible Toolkit for Scientific Computing

Philosophy: Everything has a plugin architecture
Vectors, Matrices, Coloring/ordering/partitioning algorithms
Preconditioners, Krylov accelerators
Nonlinear solvers, Time integrators
Spatial discretizations/topology
Example
Vendor supplies matrix format and associated preconditioner, distributes compiled shared library.
Application user loads plugin at runtime, no source code in sight.

PETSc

Portable Extensible Toolkit for Scientific Computing

Toolset

algorithms
(parallel) debugging aids
low-overhead profiling

Composability

try new algorithms by choosing from product space
composing existing algorithms (multilevel, domain decomposition, splitting)

Experimentation

Impossible to pick the solver a priori
PETSc's response: expose an algebra of composition
keep solvers decoupled from physics and discretization

PETSc

Portable Extensible Toolkit for Scientific Computing

Computational Scientists

PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO, Columbia), PFLOTRAN (DOE), SHARP/UNIC (DOE)

Algorithm Developers (iterative methods and preconditioning)
Package Developers
SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar, OOFEM, FreeCFD, OpenFVM

Funding
Department of Energy
SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
National Science Foundation
CIG, CISE, Multidisciplinary Challenge Program
Documentation and Support
Hundreds of tutorial-style examples
Hyperlinked manual, examples, and manual pages for all routines
Support from petsc-maint@mcs.anl.gov

The Role of PETSc

Developing parallel, nontrivial PDE solvers that deliver high performance is still difficult and requires months (or even years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and reduce the development time, but it is not a black-box PDE solver, nor a silver bullet.
—Barry Smith

PETSc

Obtaining PETSc

Linux Package Managers
Web: http://mcs.anl.gov/petsc, download tarball
Git: https://bitbucket.org/petsc/petsc
Mercurial: https://bitbucket.org/petsc/petsc-hg

Installing PETSc

```
$> cd /path/to/petsc/workdir
$> git clone https://bitbucket.org/petsc/petsc.git \
    --branch maint --depth 1
$> cd petsc
```

```
$> export PETSC_DIR=$PWD PETSC_ARCH=mpich-gcc-dbg
$> ./configure --with-cc=gcc --with-fc=gfortran
    --download-fblaslapack --download-{mpich,ml,hypre}
```


PETSc External Packages

Most packages can be automatically

Downloaded
Configured and Built (in \$PETSC_DIR/externalpackages) Installed with PETSc

Works for (list incomplete)
petsc4py
PETSc documentation utilities (Sowing, lgrind, c2html)
BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
MPICH, MPE, OpenMPI
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
PaStiX, BLOPEX, FFTW, SPRNG
Prometheus, HYPRE, ML, SPAI
Sundials
Triangle, TetGen, FIAT, FFC, Generator
HDF5, Boost

PETSc Pyramid

PETSc Structure

PETSc PDE Application Codes

Main Routine

PETSc

Vectors and Matrices

The Role of PETSc

You want to think about how you decompose your data structures, how you think about them globally. [...]
If you were building a house, you'd start with a set of blueprints that give you a picture of what the whole house looks like. You wouldn't start with a bunch of tiles and say. "Well l'll put this tile down on the ground, and then l'll find a tile to go next to it."
But all too many people try to build their parallel programs by creating the smallest possible tiles and then trying to have the structure of their code emerge from the chaos of all these little pieces. You have to have an organizing principle if you're going to survive making your code parallel.

- Bill Gropp
— http://www.rce-cast.com/Podcast/rce-28-mpich2.html

PETSc Vectors

Parallel Vector Layout

proc 0 proc 1 proc 2

```
VecCreate(PETSC_COMM_WORLD, &x);
VecSetSizes(x, PETSC_DECIDE, N);
VecSetFromOptions(x);
```


PETSc Vectors

Vector Gather and Scatter


```
// y[iy[i]] = x[ix[i]]
VecScatterCreate(...);
VecScatterBegin(...);
    VecScatterEnd(...);
```


PETSc Vectors

Vector Reductions
proc 0 proc 1 proc 2


```
VecNorm(...);
VecDot(...);
VecMax(...);
```


PETSc Vectors

Local (Sequential) Operations

Executed by an arbitrary subset of MPI ranks
Usually involve VecGetArray()/VecRestoreArray()
Collective Operations
Must be executed by all processes in the MPI communicator Involve MPI operations (scatter, gather, reduce, etc.)

PETSc Application Integration

Sparse Matrices

The important data type when solving PDEs
Two main phases:
Filling with entries (assembly)
Application of its action (e.g. SpMV)

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures can add additional nonzeros freely

Dynamically adding many nonzeros requires additional memory allocations
requires copies
can kill performance
Memory preallocation provides
the freedom of dynamic data structures good performance

Easiest solution is to replicate the assembly code Remove computation, but preserve the indexing code Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation ()
MatMPIBAIJSetPreallocation()
Only the relevant data will be used

PETSc Application Integration

Sequential Sparse Matrices

MatSeqAIJSetPreallocation (Mat A, int nz, int nnz[])
nz : expected number of nonzeros in any row

PETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows Each submatrix consists of diagonal and off-diagonal parts

MatGetOwnershipRange (Mat A, int *start,int *end)
start: first locally owned row of global matrix end-1: last locally owned row of global matrix

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0				Proc 1

PETSc Application Integration

Parallel Sparse Matrix

```
MatMPIAIJSetPreallocation(Mat A, int dnz, int dnnz[],
    int onz, int onnz[]
```

dnz: expected number of nonzeros in any row in the diagonal block dnnz(i): expected number of nonzeros in row i in the diagonal block onz: expected number of nonzeros in any row in the offdiagonal portion onnz(i): expected number of nonzeros in row i in the offdiagonal portion

PETSc Application Integration

Verifying Preallocation

Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err
Use runtime option
-info
Output:

```
[proc #] Matrix size: %d X %d; storage space: %d unneeded, %d used
[proc #] Number of mallocs during MatSetValues( ) is %d
```

```
[merlin] mpirun ex2 -log_info
[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:
[0] 310 unneeded, 250 used
[0] MatAssemblyEnd_SeqAIJ : Number of mallocs during MatsetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routines
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routines
Norm o\overline{f error 0.000156044 iterations }6
[0]PetscFinalize:PETSc successfully ended!
```


Block and Symmetric Formats

BAIJ

Like AIJ, but uses static block size
Preallocation is like AIJ, but just one index per block

SBAIJ

Only stores upper triangular part
Preallocation needs number of nonzeros in upper triangular parts of on- and off-diagonal blocks

MatSetValuesBlocked()

Better performance with blocked formats
Also works with scalar formats, if MatSetBlockSize() was called
Variants MatSetValuesBlockedLocal(), MatSetValuesBlockedStencil()
Change matrix format at runtime, don't need to touch assembly code

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
    for(row = 0; row < N; row++) {
        cols[0] = row-1; cols[1] = row; cols[2] = row+1;
        if (row == 0) {
            MatSetValues(A,1,&row, 2, &cols[1],&v[1],
                INSERT_VALUES);
        } else if (row == N-1) {
            MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
        } else {
            MatSetValues(A,1,&row, 3, cols,v,INSERT_VALUES);
        }
    }
}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
```


A Better Way to Set the Elements of a Matrix

A More Efficient Way

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {
    cols[0] = row-1; cols[1] = row; cols[2] = row+1;
    if (row == 0) {
        MatSetValues(A, 1, &row, 2, &cols[1],&v[1],
                                    INSERT_VALUES);
    } else if (row == N-1) {
        MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
    } else {
        MatSetValues(A,1,&row, 3, cols,v,INSERT_VALUES);
    }
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
```

Advantages
All ranks busy: Scalable!
Amount of code essentially unchanged

Matrices

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.
Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

These matrices are dense. Never form them.

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon y)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don't form them.

Matrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)
2. Inverse of anything interesting $B=A^{-1}$
3. Jacobian of a nonlinear function $J y=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon)-F(x)}{\epsilon}$
4. Fourier transform $\mathcal{F}, \mathcal{F}^{-1}$
5. Other fast transforms, e.g. Fast Multipole Method
6. Low rank correction $B=A+u v^{T}$
7. Schur complement $S=D-C A^{-1} B$
8. Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
9. Linearization of a few steps of an explicit integrator

None of these matrices "have entries"

PETSc

Iterative Solvers

Matrices

What can we do with a matrix that doesn't have entries?

Krylov solvers for $A x=b$
Krylov subspace: $\left\{b, A b, A^{2} b, A^{3} b, \ldots\right\}$
Convergence rate depends on the spectral properties of the matrix For any popular Krylov method \mathcal{K}, there is a matrix of size m, such that \mathcal{K} outperforms all other methods by a factor at least $\mathcal{O}(\sqrt{m})$ [Nachtigal et. al., 1992]

Typically...
The action $y \leftarrow A x$ can be computed in $\mathcal{O}(m)$
Aside from matrix multiply, the $n^{\text {th }}$ iteration requires at most $\mathcal{O}(m n)$

GMRES

Brute force minimization of residual in $\left\{b, A b, A^{2} b, \ldots\right\}$

1. Use Arnoldi to orthogonalize the nth subspace, producing

$$
A Q_{n}=Q_{n+1} H_{n}
$$

2. Minimize residual in this space by solving the overdetermined system

$$
H_{n} y_{n}=e_{1}^{(n+1)}
$$

using $Q R$-decomposition, updated cheaply at each iteration.

Properties

Converges in n steps for all right hand sides if there exists a polynomial of degree n such that $\left\|p_{n}(A)\right\|<t o l$ and $p_{n}(0)=1$.
Residual is monotonically decreasing, robust in practice Restarted variants are used to bound memory requirements

PETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

```
KSPSetOperators(KSP ksp, Mat A, Mat M)
KSPSolve(KSP ksp, Vec b, Vec x)
```

Can access subobjects

```
KSPGetPC(KSP ksp, PC *pc)
```

Preconditioners must obey PETSc interface
Basically just the KSP interface
Can change solver dynamically from the command line, -ksp_type

Linear solvers in PETSc KSP

Linear solvers in PETSc KSP (Excerpt)

Richardson
Chebychev
Conjugate Gradient
BiConjugate Gradient
Generalized Minimum Residual Variants
Transpose-Free Quasi-Minimum Residual
Least Squares Method
Conjugate Residual

PETSc

Preconditioners

Preconditioning

Idea: improve the conditioning of the Krylov operator
Left preconditioning

$$
\begin{gathered}
\left(P^{-1} A\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} A\right) P^{-1} b,\left(P^{-1} A\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Right preconditioning

$$
\begin{gathered}
\left(A P^{-1}\right) P x=b \\
\left\{b,\left(P^{-1} A\right) b,\left(P^{-1} A\right)^{2} b, \ldots\right\}
\end{gathered}
$$

The product $P^{-1} A$ or $A P^{-1}$ is not formed.
A preconditioner \mathcal{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathcal{P}\left(A, A_{p}\right)$ using a matrix A and extra information A_{p}, such that the spectrum of $P^{-1} A\left(\right.$ or $\left.A P^{-1}\right)$ is well-behaved.

Preconditioning

Definition (Preconditioner)

A preconditioner \mathcal{P} is a method for constructing a matrix $P^{-1}=\mathcal{P}\left(A, A_{p}\right)$ using a matrix A and extra information A_{p}, such that the spectrum of $P^{-1} A\left(\right.$ or $\left.A P^{-1}\right)$ is well-behaved.
P^{-1} is dense, P is often not available and is not needed
A is rarely used by \mathcal{P}, but $A_{p}=A$ is common
A_{p} is often a sparse matrix, the "preconditioning matrix"
Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU
Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC
Indefinite: Schur-complement, Domain Decomposition, Multigrid

Questions to ask when you see a matrix

1. What do you want to do with it?

Multiply with a vector
Solve linear systems or eigen-problems
2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$? nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \operatorname{Re}[z]>0\})$? indefinite?
3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we'd like?
4. Is there a better way to compute $A x$?
5. Is there a different matrix with similar spectrum, but nicer properties?
6. How can we precondition A ?

Questions to ask when you see a matrix

1. What do you want to do with it?

Multiply with a vector
Solve linear systems or eigen-problems
2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$? nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \operatorname{Re}[z]>0\})$? indefinite?
3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we'd like?
4. Is there a better way to compute $A x$?
5. Is there a different matrix with similar spectrum, but nicer properties?
6. How can we precondition A ?

Relaxation

Split into lower, diagonal, upper parts: $A=L+D+U$
Jacobi
Cheapest preconditioner: $P^{-1}=D^{-1}$
Successive over-relaxation (SOR)

$$
\begin{gathered}
\left(L+\frac{1}{\omega} D\right) x_{n+1}=\left[\left(\frac{1}{\omega}-1\right) D-U\right] x_{n}+\omega b \\
P^{-1}=k \text { iterations starting with } x_{0}=0
\end{gathered}
$$

Implemented as a sweep
$\omega=1$ corresponds to Gauss-Seidel
Very effective at removing high-frequency components of residual

Factorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for $m \times m$ sparse matrix with bandwidth b, traditionally requires $\mathcal{O}\left(m b^{2}\right)$ time and $\mathcal{O}(m b)$ space.

Bandwidth scales as $m^{\frac{d-1}{d}}$ in d-dimensions
Optimal in 2D: $\mathcal{O}(m \cdot \log m)$ space, $\mathcal{O}\left(m^{3 / 2}\right)$ time
Optimal in 3D: $\mathcal{O}\left(m^{4 / 3}\right)$ space, $\mathcal{O}\left(m^{2}\right)$ time
Symbolic factorization is problematic in parallel

Incomplete LU
Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

1-level Domain decomposition

Domain size L, subdomain size H, element size h
Overlapping/Schwarz
Solve Dirichlet problems on overlapping subdomains
No overlap: its $\in \mathcal{O}\left(\frac{L}{\sqrt{H h}}\right)$
Overlap $\delta:$ its $\in\left(\frac{L}{\sqrt{H \delta}}\right)$

Neumann-Neumann

Solve Neumann problems on non-overlapping subdomains
its $\in \mathcal{O}\left(\frac{L}{H}\left(1+\log \frac{H}{h}\right)\right)$
Tricky null space issues (floating subdomains)
Need subdomain matrices, net globally assembled matrix.
Multilevel variants knock off the leading $\frac{L}{H}$
Both overlapping and nonoverlapping with this bound

Multigrid

Hierarchy: Interpolation and restriction operators

$$
\mathcal{I}^{\uparrow}: X_{\text {coarse }} \rightarrow X_{\text {fine }} \quad \mathcal{I}^{\downarrow}: X_{\text {fine }} \rightarrow X_{\text {coarse }}
$$

Geometric: define problem on multiple levels, use grid to compute hierarchy Algebraic: define problem only on finest level, use matrix structure to build hierarchy

Galerkin approximation
Assemble this matrix: $A_{\text {coarse }}=\mathcal{I}^{\downarrow} A_{\text {fine }} \mathcal{I}^{\uparrow}$
Application of multigrid preconditioner (V-cycle)
Apply pre-smoother on fine level (any preconditioner) Restrict residual to coarse level with \mathcal{I}^{\downarrow}
Solve on coarse level $A_{\text {coarse }} x=r$
Interpolate result back to fine level with \mathcal{I}^{\uparrow}
Apply post-smoother on fine level (any preconditioner)

Multigrid convergence properties

Textbook: $P^{-1} A$ is spectrally equivalent to identity
Constant number of iterations to converge up to discretization error
Most theory applies to SPD systems
variable coefficients (e.g. discontinuous): low energy interpolants mesh- and/or physics-induced anisotropy: semi-coarsening/line smoothers complex geometry: difficult to have meaningful coarse levels
Deeper algorithmic difficulties
nonsymmetric (e.g. advection, shallow water, Euler)
indefinite (e.g. incompressible flow, Helmholtz)
Performance considerations
Aggressive coarsening is critical in parallel
Most theory uses SOR smoothers, ILU often more robust
Coarsest level usually solved semi-redundantly with direct solver
Multilevel Schwarz is essentially the same with different language
assume strong smoothers, emphasize aggressive coarsening

Splitting for Multiphysics

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

Relaxation: -pc_fieldsplit_type
[additive, multiplicative,symmetric_multiplicative]

$$
\left[\begin{array}{ll}
A & \\
& D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
& \mathbf{1}
\end{array}\right]^{-1}\left(\mathbf{1}-\left[\begin{array}{ll}
A & B \\
& \mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1}\right)
$$

Gauss-Seidel inspired, works when fields are loosely coupled
Factorization: -pc_fieldsplit_type schur

$$
\left[\begin{array}{ll}
A & B \\
& S
\end{array}\right]^{-1}\left[\begin{array}{cc}
\mathbf{1} & \\
C A^{-1} & \mathbf{1}
\end{array}\right]^{-1}, \quad S=D-C A^{-1} B
$$

robust (exact factorization), can often drop lower block how to precondition S which is usually dense?
interpret as differential operators, use approximate commutators

PETSc

Distributed Arrays

Distributed Array

Interface for topologically structured grids

Defines (topological part of) a finite-dimensional function space
Get an element from this space: DMCreateGlobalvector ()

Provides parallel layout

Refinement and coarsening

```
DMRefineHierarchy()
```

Ghost value coherence

```
DMGlobalToLocalBegin()
```

Matrix preallocation

```
DMCreateMatrix() (formerly DMGetMatrix())
```


Ghost Values

To evaluate a local function $f(x)$, each process requires
its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring processes

- Local NodeGhost Node

DMDA Global Numberings

Proc 2			Proc 3	
25	26	27	28	29
20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
0	1	2	3	4
Proc 0			Proc 1	

Natural numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0				Proc 1
PETSc numbering				

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id, belongs on a unique process Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2			Proc 3	
\mathbf{X}	X	X	X	X
X	X	X	X	X
12	13	14	15	X
8	9	10	11	X
4	5	6	7	X
0	1	2	3	X
Proc 0			Proc $\mathbf{1}$	

Local numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

Global numbering

DM Vectors

The DM object contains only layout (topology) information
All field data is contained in PETSc vecs
Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM dm, Vec *gvec)
Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values

```
DMCreateLocalVector(DM dm, Vec *lvec)
```

includes ghost values!
Coordinate vectors store the mesh geometry

```
DMDAGetCoordinates(DM dm, Vec *coords)
```

Can be manipulated with their own DMDA

```
DMDAGetCoordinateDA(DM dm,DM *cda)
```


Updating Ghosts

Two-step Process for Updating Ghosts
enables overlapping computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)
Finishes the communication

Reverse Process
Via DMLocalToGlobalBegin() and DMLocalToGlobalEnd().

DMDA Stencils

Available Stencils

Box Stencil

Creating a DMDA

DMDACreate2d(comm, xbdy, ybdy, type, M, N, m, n, dof, $s, \operatorname{lm}[], \ln [], D A * d a)$
xbdy, ybdy: Specifies periodicity or ghost cells
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_MIRROR, DM_BOUNDARY_PERIODIC
type
Specifies stencil: DMDA_STENCIL_BOX Or DMDA_STENCIL_STAR
M, N
Number of grid points in x / y-direction
m, n
Number of processes in x / y-direction
dof
Degrees of freedom per node
s
The stencil width
1m, ln
Alternative array of local sizes
Use nuli for the default

Working with the Local Form

Wouldn't it be nice if we could just write our code for the natural numbering?

Proc 2			Proc 3	
25	26	27	28	29
20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
0	1	2	3	4
Proc 0			Proc 1	

Natural numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

PETSc numbering

Working with the Local Form

Wouldn't it be nice if we could just write our code for the natural numbering?

Yes, that's what DMDAVecGetArray() is for.

DMDA offers local callback functions

```
FormFunctionLocal(), set by DMDASetLocalFunction()
FormJacobianLocal(), set by DMDASetLocalJacobian()
```

Evaluating the nonlinear residual $F(x)$
Each process evaluates the local residual PETSc assembles the global residual automatically

Uses DMLocalToGlobal () method

Thinking of Extensions

Multiple Unknowns per Grid Node
Example 1: Displacements u_{x}, u_{y}
Example 2: Velocity components, Pressure
Typical in a multiphysics setting

Multiple Unknowns in a Distributed Setting
Robust abstract concepts important
Lots of bookkeeping
All done by PETSc

Thinking of Extensions

DA Local Function

User-provided Function for Nonlinear Residual in 2D

```
PetscErrorCode (*lfunc)(DMDALocalInfo *info,
    Field **x, Field **r,
    void *ctx)
info All layout and numbering information
\(\mathrm{x} \quad\) The current solution
Notice that it is a multidimensional array
r The residual
ctx \(\quad\) The user context passed to DMSetApplicationContext () or to SNES
```

The local DMDA function is activated by calling

```
SNESSetDM(snes,dm)
SNESSetFunction(snes, r, SNESDAFormFunction, ctx)
```


Summary

PETSc Can Help You

solve algebraic and DAE problems in your application area rapidly develop efficient parallel code, can start from examples
develop new solution methods and data structures
debug and analyze performance
advice on software design, solution algorithms, and performance

$$
\text { petsc-\{users, dev,maint\}@mcs.anl.gov }
$$

You Can Help PETSc

report bugs and inconsistencies, or if you think there is a better way tell us if the documentation is inconsistent or unclear consider developing new algebraic methods as plugins, contribute if your idea works

