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. Future Development : Extensions for unstructured grids



The Need for Agglomeration
In Parallel Multigrid



Re-discretised Geometric Multigrid (RMG)

Given Ax =b let v denote our guess for x

Two-level RMG algorithm (Simplest Form)

FINE " “Smooth” N times “Smooth” N times
U:U—l-CU(b—AU) U:U+W(b—AU)
Compute residual Compute residual correction
=1 — Av v=uv+e"
----------------- ReStfiCt Th — QQh, InterpOlate €2h — Qh,
yielding 72" yielding e”

Compute error
Solve A2%he2h = p2h

COARSE O*"



Re-discretised Geometric Multigrid (RMG)

Ingredients

e A mesh hierarchy (fine -»coarse) on which will discretise our PDE
e A restriction operator (maps field from fine+coarse)

e An interpolation operator (maps field from coarse = fine)

A smoother on each level

e A coarse grid solver

Relax
Project Aerpolate

Relax

Exact Solve




Why Multigrid (MG)?

Theoretically optimal solve time O(n) —» scalable
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3000 km x 2000 km x 200 km - 3 velocity components
with mesh resolution of 11 km --> 110 million unknowns



Why Are More Levels Better?

* Fewer levels implies the coarse grid will contain a large number of
unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

e Optimality of MGG comes from having a tiny coarse grid problem.



Why Are More Levels Better?

* Fewer levels implies the coarse grid will contain a large number of
unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

e Optimality of MGG comes from having a tiny coarse grid problem.

Two-level method Mesh Levels Time  Factor
Mesh Time Factor 17°3 2 51.22E-02§ -
1773 1.228-02 - 333 3 7.14E-02 6x

""""" 33"3 | 1.25B-01 | 10x  65°3 | 4  6.51E-01  9x

""""" 65°3 | 3.87E+00 31x 1293 | 5  5.48E+00 8x

C120%3 | 1.42m402  63x 257°3 | 6 4.37E401  8x

SPETSC DIR/src/ksp/ksp/examples/tutorials/ex45.c

* When RMG breaks down and the effective coarsest grid is not
‘coarse enough” - change to another scalable method



Why Are More Levels Better?

* Fewer levels implies the coarse grid will contain a large number of
unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

e Optimality of MGG comes from having a tiny coarse grid problem.

Two-level method Mesh Levels Time / Factor
Mesh Time Factor 17°3 2 51.22E-o:z§ -
1773 1.228-02 - 333 3 7.14E-02 6x

""""" 33"3 | 1.25B-01 | 10x  65°3 | 4  6.51E-01  9x

""""" 65°3 | 3.87E400 31x  120%3 | 5  5.48E+00 8x

C120%3 | 1.42m402  63x 257°3 | 6 4.37E401 8x

SPETSC DIR/src/ksp/ksp/examples/tutorials/ex45.c

* When RMG breaks down and the effective coarsest grid is not
‘coarse enough” - change to another scalable method



Multigrid in Parallel

* Multigrid levels are sometimes limited in practice

* Practical restrictions often apply; €.g. a minimum of 1 finite element
per rank

* "Empty” ranks may still impose collective communication costs

* Coarse grids may be limited in their ability to resolve features
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* A multigrid V-cycle (with an exact coarse grid solve) is all-to-all
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3
09

08

> 05 > 05

0.4 04

02 02

0.1 0.1

A 1 L
d & & & N 4 °

-6
0 0t
0 0.6 0.8 1 0 0.2 0.4 06




Multigrid in Parallel - Where to Communicate?
e Should the cost be incurred within a solve on a coarse grid?

 AMG or another multilevel method (e.g. PCGAMG)
e Setup stage doesn’t scale for AMG
e Shifts the guestion but doesn’t fundamentally answer it
* Hierarchical Krylov methods [May et. al CMAME 2015]
 Doesn'’t scale forever - network latency eventually dominates
 Redundant solve on all cores (PETSc’s PCREDUNDANT)
* Slow and expensive
* Or at intermediate points in the hierarchy? —» Agglomeration
 As we coarsen, use smaller sets of processors (MPI ranks)
* Allows balance of communication and computation

* Well-known, but requires implementation effort



Multigrid in Parallel - Where to Communicate?
e Should the cost be incurred within a solve on a coarse grid?

 AMG or another multilevel method (e.g. PCGAMG)
e Setup stage doesn’t scale for AMG
e Shifts the guestion but doesn’t fundamentally answer it
* Hierarchical Krylov methods [May et. al CMAME 2015]
 Doesn'’t scale forever - network latency eventually dominates
 Redundant solve on all cores (PETSc’s PCREDUNDANT)
* Slow and expensive
* Or at intermediate points in the hierarchy? —» Agglomeration
 As we coarsen, use smaller sets of processors (MPI ranks)
* Allows balance of communication and computation PCBDDC

« Well-known, but requires implementation effort PCGAMG



Repartitioning Coarse Grids

Mesh: 1

O X T

o elements

We wish to solve
A16,..16 _ pl6

on a smaller number of processors

Partition: 4 x 4 processors

Local element ordering (p5)




Repartitioning Coarse Grids

Repartition: 2 x 2 processors




Repartitioning Coarse Grids
Repartition: 2 x 2 processors

A4
b4
4
XL
A16—>4 _ PTA16P
A* = GATHER[A ™4
pl6—4 _ pTpl6
b* = GATHER[b'94]
e 4
Perform solve Azt = p*

1% = SCATTER|[2*]

216 _ pA—16



Repartitioning Coarse Grids

Repartition: 2 x 2 processors

PT A16—>4 _ PTA16P

A* = GATHER[A'6™4]
b16—>4 _ PTb16
A16—>4
b* = GATHER[b'® 4]
b16_>4 Perform solve Atz* = b*
e 4
710 = SCATTER [z*]

216 _ pA—16




Repartitioning Coarse Grids

Repartition: 2 x 2 processors

PT A16—>4 _ PTA16P

A* = GATHER[A'6™4]
b16—>4 _ PTb16
A16—>4
b* = GATHER[b'® 4]
b16_>4 Perform solve Azt = b*
710 = SCATTER [z*]
N

21316 _ Pw4—>16




Linear Stokes Solver: Strong Scaling
9613 Q2-P1 elements

Wall clock times (sec)

3-level method

Chebyshev(10)/Jacobi

Coarse grid solvers:

* Hierarchical Krylov

* PCGAMG

R=0.25
An = 10*

» Repartitioned (custom precursor to PCTelescope) by a factor of 16

MPI-ranks 64 512 4096

Strategy Task

H-Krylov Coarse solve 1.8872e+02 3.3849e+401 9.1787e+00
Smoother 4.8848e+02 5.1566e+01  7.2146e+00
Solve 9.9545e+02 1.1651e+02 1.9926e+01

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Repartitioned Coarse solve 1.4028e+02 1.7607e4+01  2.9893e-+00
Nested coarse solve 1.5587e4-01 1.9563e+00 3.3214e—01
Smoother 3.0379e+02 3.8059e+01  5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01




Linear Stokes Solver: Strong Scalmg
¢« 9613 Q2-P1 elements

e 3-level method ‘,
« Chebyshev(10)/Jacobi R = 0‘245
« (Coarse grid solvers: An =10 -

e Hierarchir
 PCGAMG
* Repartitic

MPI-ranlk
Strategy

H-Krylov

Solve 995456—|—02 1.1651e+02  1.9926e4-01

o 55 49% Stong scaling efciency
18390¢e

Solve 5.9950e—|—02 7.4663e4+01  2.1039e+01

moother

Solve 6.4287e—|—02 8.0635e—|—01 118266-|—01

Wall clock times (sec)
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PCTelescope:
U Agglomeratlon In
PETSc

!




Flavours of Multigrid for Variable Coefficients

[Chan & Wan, JCP, 2000]

Geometric  Structured grids Unstructured grids Algebraic
Standard MG : Blackbox MG
Matrix dep. ?ggggr?grggg%uo"/ Multi-graph
: Node nested Ener
Stencil MG unstr. MG i ke AMG
e Gray Box MG >

Fig. 1. A spectrum of multigrid methods.



Flavours of Multigrid for Variable Coefficients

Geometric ‘ Structured grids Unstructured grids ! Algebraic

Standard MG , E : _ Blackbox MG
Matrix dep. Nod ﬁ\ggggrleogtgteig}ltwn/ Multi-graph
- €n
Stencil MG unstr. MG minimization AMG
= Gray Box MG >

Fig. 1. A spectrum of multigrid methods.



Implementing Agglomeration for Multigrid

* Not new, not impossible to MPl-ranks
implement*, but as an extreme- *oor T
scale component, rarely
implemented at first, and often
not at all if code Is insufficiently
modular

* Predictive performance models
are lacking, so runtime
configurability is useful

 Agglomeration has uses outside
of MG

fine level

multigrid levels

v coarsest level

*See our paper for many references



Implementing Agglomeration for Multigrid

* Not new, not impossible to MPl-ranks
implement*, but as an extreme- *oor T
scale component, rarely
implemented at first, and often
not at all if code Is insufficiently
modular

* Predictive performance models
are lacking, so runtime
configurability is useful

 Agglomeration has uses outside
of MG

 We implement agglomeration as a preconditioner within PETSc,
to provide a reusable building block
e Simple, composable design
* Not optimal for all usage, particularly in memory footprint.

* We focus on agglomeration which is aware of domain
connectivity via PETSc’s DM class “See our paper for many references

fine level

multigrid levels

v coarsest level



Design Philosophy

 Portable, Extensible Toolkit for Scientific computation
e Portable, Extensible Toolkit for Solver composability ?
 Composable building blocks
e KSP : iterative linear solver
e PC: preconditioner within KSP
e Also used for direct solvers
 Nested KSP objects as subsolvers or smoothers
e SNES : nonlinear solver
DM : domain management
 Runtime configurability is a central design decision.
e experimentation usually required to choose solver
parameters
e Solvers and subsolvers addressed with options prefixes

-stokes fieldsplit u mg levels 2 ksp type sor



Anatomy of a Prefix




DM

* A class to provide the required interface between solvers
and distributed domains

* (Geometric primitives, topological relationships between
them, and field information

PCMG

* |t's not entirely obvious that a solver library should
iInclude domain information

 However, geometric multigrid is tfacilitated with this
information, so PCMG couples strongly to DM

e PCTelescope IS also "DM aware”

* Following the design pattern of providing composable,
nestable solvers, the smoothers on each level of the
multigrid hierarchy, as well as the coarse grid solver, are
KSP objects




PCTelescope Design - Assembled Matrices

1.

2.

Given an MPI communicator C, create a new commu-
nicator C’.

Repartition the input matrix A and vector x onto C’,
yielding A’ and x'.

3. Apply a Krylov method to solve A'y’ = x’ on C’.
4. Scatter the solution y’ to C to obtain y.
a) b) ~ ¢©)
A A’
_ _ Ly _ _
AO /-/ AO = [AO; Al] \.\
/—* ™ A6
A1 ] - -
A71“ c ROXn
A2 ~L — —_
" \_* /_,V All
| 3 \:\‘ Ag — [A.Q, A3] =1 | ]
Ag c ROXn
| l ]
C C’

Nullspaces attached to A are automatically propagated!



DM Repartitioning

« PETSc allows DM's to be associated with KSP objects,
which in turn makes them available to PC's like

PCTelescope

* PCTelescope can automatically repartition regular 2D
and 3D grids represented with DMDA objects

* This involves constructing a permutation to account for the

new ordering




Use Cases



Multigrid with Truncation

Use an LU routine as a coarse grid solver:

Interface to your sequential or parallel

-pc_type mg direct solver of choice

-pc_mg levels <N>
-mg coarse pc type telescope

-mg coarse pc telescope reduction factor <r>
-mg coarse telescope pc type 1lu
—mg_coarse_pc_telescoPe_subcdﬁﬁ_t

e

(recent addition in PETSC master)



Repartitioned Coarse Grids

MPI-ranks
k%
)
>
D
O
o)
E
-pCc_type mg
-pc_mg_ levels 2
-pc_mg galerkin Y coarsest level

-mg _coarse_pc_type telescope
-mg coarse pc telescope reduction factor 4

-Ing coarse telescope pc type mg

-mg coarse telescope pc mg levels 2

-mg coarse telescope pc mg galerkin
-mg_coarse telescope mg coarse pc type telescope

-mg coarse telescope mg coarse pc telescope reduction factor 16

-Ing coarse telescope mg coarse telescope pc type mg
-mg coarse telescope mg coarse telescope pc mg levels 2
-mg coarse telescope mg coarse telescope pc mg galerkin



Hybrid Coarse Operator Construction

-pc_type mg

-pc_mg levels <N1>

-mg coarse pc type telescope

-mg coarse pc telescope reduction factor <r>
-mg_coarse telescope pc type mg

-mg_ coarse telescope pc mg levels <N2>

-mg coarse telescope pc mg galerkin
-mg_coarse telescope mg coarse pc type gamg

n— A(n)

Re-disc. geom. MG
Galerkin MG

@ 1 =Ry(n) — A1)

Gi) A’ = RART

Algebraic MG

A MxM

A’ — R A’ (R/)T A — )

dmXm




Subdomain Smoothers with Constant Size

-pc_type mg

-pc_mg levels <N>

-mg levels pc type telescope

-mg levels pc telescope reduction factor <rn>
-mg levels telescope pc type bjacobi

-mg levels telescope sub pc type <xxx>

Smoothers with Different Spatial Decomposition

-pCc_type mg

-pc_mg levels <N>

-mg levels pc type telescope

-mg levels pc telescope reduction factor <r>
-mg levels telescope repart da processors z 1



Edison

2.57 PFlop/s peak

Numerical Experiments
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Agglomeration Profiling

* Profile Setup and Application times
for PCTelescope on Piz Daint

3D FD Laplacian (nA3 DOF)

SPETSC DIR/src/ksp/ksp/examples/
tutorials/ex45.c

« 3D Q1-Q1 stabilized Stokes problem (ma3 elements)

SPETSC DIR/src/ksp/ksp/examples/tutorials/ex42.c

101

*—23 sub-domain

43 sub-domain

o—33 sub-domain

163 sub-domain

™
"
-
-

-®
o
-
-
o
™
=)
o
-*
=

247

101

ne N r Tsetup (8) Tapply (S)

64 8 8 1.64dE—-03 &.11E—-05

64 8 16 1.77TE—03 1.00E—04

64 8 32 1.88E—-03 1.51E—-04

64 8 64 2.05E—-03 2.80E—04
4096 32 8 3.02E-02 5.63E—-04
4096 32 16 3.82E—02 3.84E—04
4096 32 32 3.19E-02 3.74E-04
4096 32 64 3.12E—-02 6.21E-04
13824 48 8 4.3TE—-02 4.30E—-04
13824 48 16 4.55E—-02 3.53E—-04
13824 48 32 5.76E—02 5.58E—04
13824 48 64 5.50E—02 5.62E—04
nc M 7 Tsetup () Tapply (s)
64 8 8 6.3dE—-03 1.39E—03
64 8 16 1.02E—-02 2.06E—03
64 8 32 1.23E-02 3.26E—03
64 8 64 1.72E—-02 4.44E—03
4096 32 8 3.96E—-02 1.53E—-03
4096 32 16 4.93E—-02 2.58E—03
4096 32 32 bH.7T6E—02 4.20E—03
4096 32 64 T7.39E-02 7.33E—03
13824 48 8 &8.04E—-02 1.58E—-03
13824 48 16 8.91E—-02 2.60E—03
13824 48 32 1.02E—-01 4.20E—-03
13824 48 64 1.30E—-01 7.37TE—03




Repartitioning at Scale

e 3D linear elasticity example, run on Edison

* Q2 finite elements implemented on top of DMDA

» FGMRES preconditioned with a single V-cycle of
geometric multigrid

¢ Strong-scaling test to stress communication

 "Easy” with constant coefficents: variable coefficients
cause further problems for the truncated approach

M levels N1, ranks Tstftllfp (s)  Tsolve (8)
32 2 2 16° — 8.34E—01
32 2,3 4 16°, 43 8.56E—02 5.23E—01
32 2,3,3 6 163 43 1 9.54E—02 1.27E—01
64 2 2 323 — 1.48E+401
64 2,3 4 323 8° 2.30E—01 1.40E—01
64 2.3, 3 6 32° 8% 2° 3.71E—-01 1.82E—01
64 2,2 3 5 32% 16%,4°  3.43E—01 1.39E—01
64 2,2, 3,3 7 32° 16° 43 1 3.71E-01 1.51E—01

~»




Hybrid CPU-GPU Subdomain Smoothers

* On a hybrid system, one may wish to use agglomerated
communicators with a single rank per available
accelerator

* We can do so on Piz Daint, assigning a single rank per
GPU in the agglomerated communicator

* This allows comparison of SpMV pertormanceFrom the
command line

* With no need for threads (flat MP| + subcommunicators)

CPU (8 MPI-ranks) GPU
M  Time (s) GF/s FE/s Time (s) GF/s E/s
4  8.89E—-03 11.99 720k 2.43E—02 4.40 264k
8 1.27E—-01 6.96 402k 5.90E—-02 14.99 865k
12 4.15E—-01 7.3 417k 1.91E-01 1591 908k
24  3.15E+00 7.79 439k 1.44E400 17.09 963k




Hybrid CPU-GPU Subdomain Smoothers

* We can also compare time to solution of a
full solve using GPU subdomain smoothers

M levels overlap Tsetup (s) Its. Tsolve (8)

8 2 —  1.12E—-02 12 4.27TE—02
12 3 — 441E-02 16 2.06E—01
24 3 — 1.88E—-01 13 1.55E+00
48 4 —  1.29E+00 11 9.92E+00

8 2 0 5.49E—-01 12 2.2813e-01
12 2 0 2.52E+00 16 2.3985e-01
24 3 0 4.94E+00 13 1.28E+00
48 4 0 3.58E+401 11 6.66E+00

8 2 1 5.95E—-01 12 2.40E—01
12 2 1 1.10E+400 16 4.30E—01
24 3 1 5.55E4+00 13 1.52E-+00
48 4 1 2.30E401 11 7.34E+00




Future Development:
Agglomeration for Multigrid
on Unstructured Meshes



Extending to Support Unstructured Grids

 PETSc supports unstructured grids via the DMP1lex class
* Ordering is more complicated
* "Reduction factor” is less clear
 Permutation and Scatter objects more complex to
generate
 More attached structure must be considered and
repartitioned
 Regardless, all required operations are algebraic and can
be defined - the key is to lower the burden on a typical
user
* Proposed Solution
* \When working with DMPlex (Or more exotic DM
implementations), return the responsibility of defining the
reduced communicator and required mappings to the
DM, requiring a call to DMPlexGetReducedComm/( )




Concluding Remarks

 Subdomain agglomeration in extreme-scale geometric
multigrid allows tor scalability
e [his pattern can be encapsulated as a component with
preconditioner semantics
* A single simple design, aware of operator nullspaces and
underlying domain descriptions, can be effectively used
IN several ways
» Coarse grid agglomeration in multigrid
e Efficient construction of agglomerated subdomains to
use with factorization-based sub-solvers
» Efficient construction of agglomerated sulbdomains for
use with coprocessors associated with multiple CPU
cores in a tlat MP| environment



Concluding Remarks
PCTelescope available in PETSc 3.7

 Composable tool for MPI rank agglomeration,
implemented as a PETSc PC

* Aware of operator nullspaces and structured grids (DMDA)

* Useful for multigrid hierarchies as well as other tasks
requiring agglomeration

e Controllable at runtime from the command line

 Main use case: (hybrid) MG hierarchies

* Auxiliary use cases: easy plumbing to define nested
operators

* Also supports matrix-free / unassembled operators
 Override DMCreateMatrix() and use

KSPSetComputeOperators()



Thank You for Your Attention, and Try It Out!

e PCTelescope in current PETSc release 3.7.x
* mcs.anl.gov/petsc

 Ongoing improvements in PETSC master
* https://bitbucket.org/petsc/petsc

* (Get in touch if you are interested in the development of
PCTelescope for unstructured meshes used DMPlex
» dave.mayl@erdw.eth.ch
« patrick.sanan@{usi.ch,erdw.ethz.ch}
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