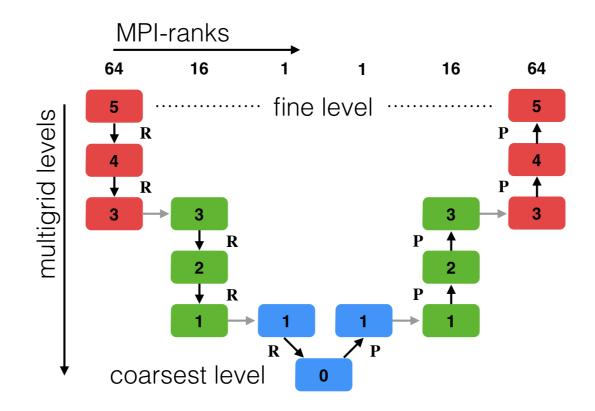


à	Faculty of Informatics	Institute of Computational Science ICS

Extreme-scale Multigrid Components within PETSc



Dave A. May (ETH Zürich), <u>Patrick Sanan</u> (USI Lugano, ETH Zürich), Karl Rupp, Matthew G. Knepley (Rice University), Barry F. Smith (Argonne National Lab)

Outline

1. **Motivation** : The need for (easy-to-use) agglomeration within extreme-scale geometric multigrid

2. Implementation :

- 1. The PCTelescope implementation
- 2. Use cases

3. Numerical Experiments

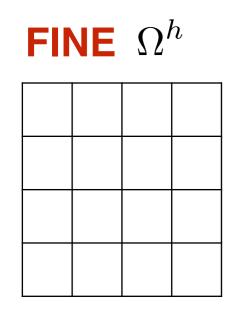
4. Future Development : Extensions for unstructured grids

The Need for Agglomeration in Parallel Multigrid

Re-discretised Geometric Multigrid (RMG)

Given Ax = b let v denote our guess for x

Two-level RMG algorithm (Simplest Form)



"Smooth" N times $v = v + \omega(b - Av)$

Compute residual $r^h = b - Av$ **"Smooth" N times** $v = v + \omega(b - Av)$

Compute residual correction $v = v + e^h$

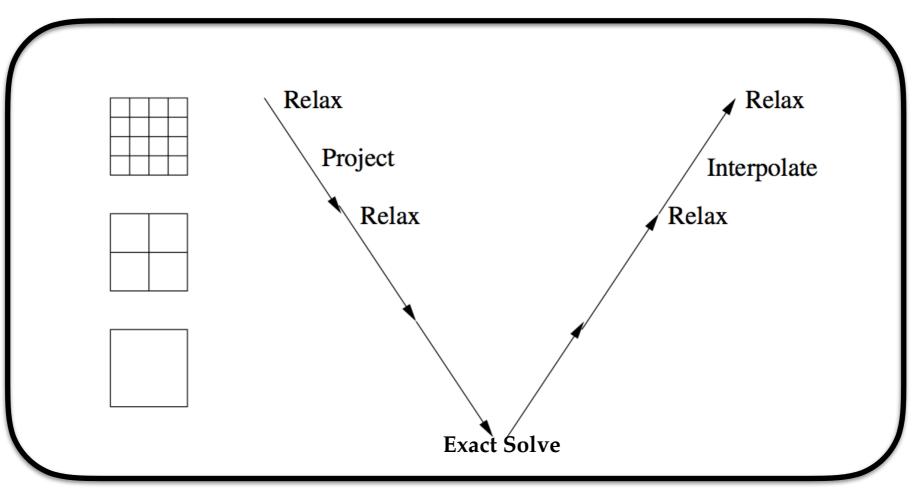
 $\begin{array}{l} \text{Restrict } r^h \to \Omega^{2h}, \\ \text{yielding } r^{2h} \end{array}$

Interpolate $e^{2h} \to \Omega^h$, yielding e^h

Compute error Solve $A^{2h}e^{2h} = r^{2h}$

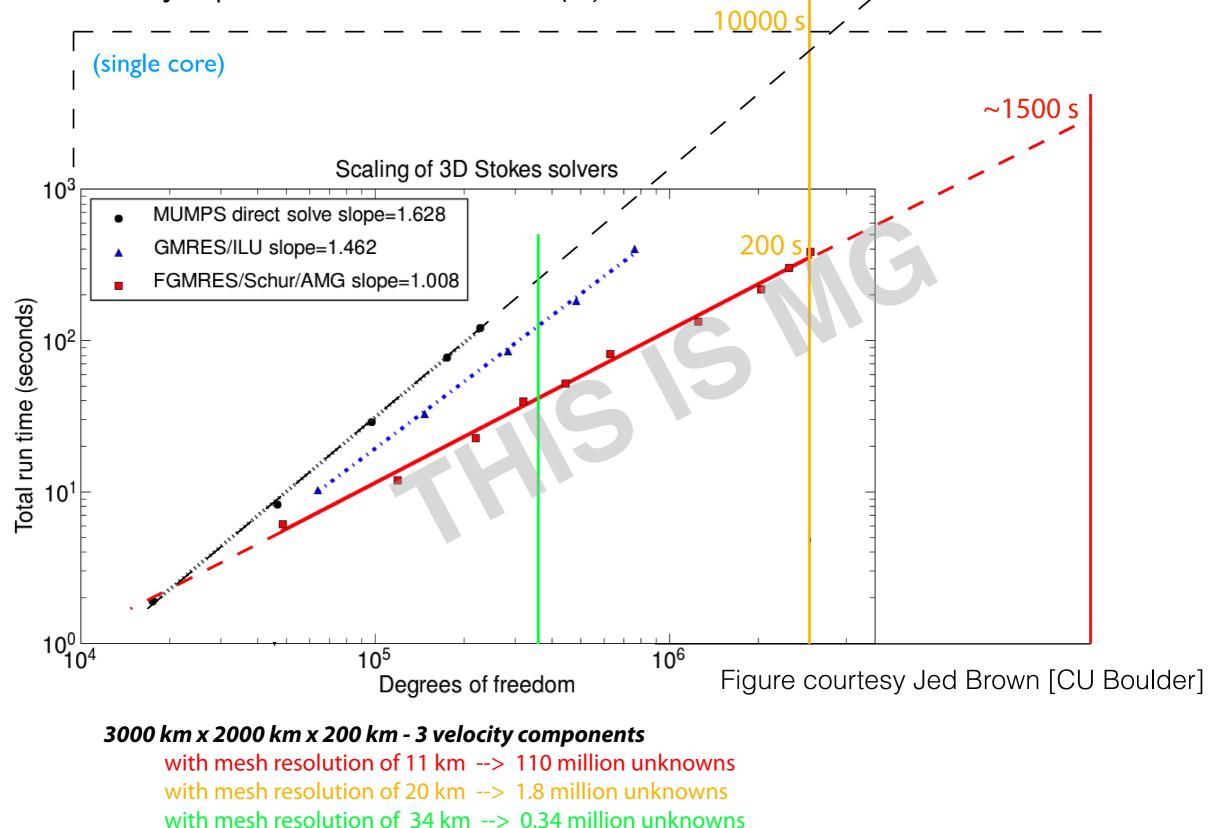
Re-discretised Geometric Multigrid (RMG)

- Ingredients
 - A mesh hierarchy (fine → coarse) on which will discretise our PDE
 - A restriction operator (maps field from fine → coarse)
 - An interpolation operator (maps field from coarse \rightarrow fine)
 - A smoother on each level
 - A coarse grid solver



Why Multigrid (MG)?

Theoretically optimal solve time O(n) --> scalable



Why Are More Levels Better?

- Fewer levels implies the coarse grid will contain a large number of unknowns. Recall that the coarse grid correction requires an accurate solve (usually expensive, non-scalable).
- Optimality of MG comes from having a tiny coarse grid problem.

Why Are More Levels Better?

- Fewer levels implies the coarse grid will contain a large number of unknowns. Recall that the coarse grid correction requires an accurate solve (usually expensive, non-scalable).
- Optimality of MG comes from having a tiny coarse grid problem.

Two-level method			Mesh	Levels	Time	Factor
Mesh	Time	Factor	17^3	2	1.22E-02	-
17^3	1.22E-02	-	33^3	3	7.14E-02	бx
33^3	1.25E-01	10x	65^3	4	6.51E-01	9x
65^3	3.87E+00	31x	129^3	5	5.48E+00	8x
129^3	1.42E+02	63x	257^3	6	4.37E+01	8x

\$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex45.c

 When RMG breaks down and the effective coarsest grid is not "coarse enough" → change to another scalable method

Why Are More Levels Better?

- Fewer levels implies the coarse grid will contain a large number of unknowns. Recall that the coarse grid correction requires an accurate solve (usually expensive, non-scalable).
- Optimality of MG comes from having a tiny coarse grid problem.

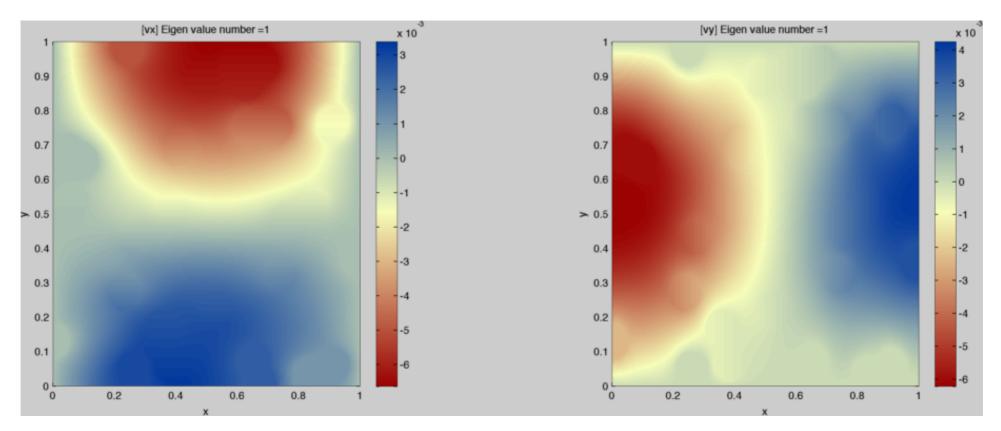
wo-level	method		Mesh	Levels	Time /	Factor
Mesh	Time	Factor	17^3	2	1.22E-02	-
17^3	1.22E-02	-	33^3	3	7.14E-02	бx
33^3	1.25E-01	10x	65^3	4	6.51E-01	9x
65^3	3.87E+00	31x	129^3	5	5.48E+00	8x
129^3	1.42E+02	63x	257^3	6	4.37E+01	8x

\$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex45.c

 When RMG breaks down and the effective coarsest grid is not "coarse enough" → change to another scalable method

Multigrid in Parallel

- Multigrid levels are sometimes limited in practice
 - Practical restrictions often apply; e.g. a minimum of 1 finite element per rank
 - "Empty" ranks may still impose collective communication costs
 - Coarse grids may be limited in their ability to resolve features



 A multigrid V-cycle (with an exact coarse grid solve) is all-to-all communication, with a fundamental *log(P)* communication cost

Multigrid in Parallel - Where to Communicate?

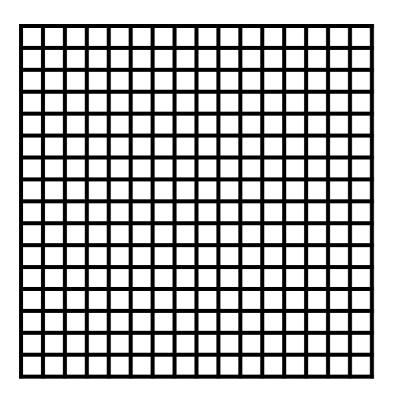
- Should the cost be incurred within a solve on a coarse grid?
 - AMG or another multilevel method (e.g. **PCGAMG)**
 - Setup stage doesn't scale for AMG
 - Shifts the question but doesn't fundamentally answer it
 - Hierarchical Krylov methods [May et. al CMAME 2015]
 - Doesn't scale forever network latency eventually dominates
 - Redundant solve on all cores (PETSc's **PCREDUNDANT**)
 - Slow and expensive
- Or at intermediate points in the hierarchy? --> Agglomeration
 - As we coarsen, use smaller sets of processors (MPI ranks)
 - Allows balance of communication and computation
 - Well-known, but requires implementation effort

Multigrid in Parallel - Where to Communicate?

- Should the cost be incurred within a solve on a coarse grid?
 - AMG or another multilevel method (e.g. **PCGAMG)**
 - Setup stage doesn't scale for AMG
 - Shifts the question but doesn't fundamentally answer it
 - Hierarchical Krylov methods [May et. al CMAME 2015]
 - Doesn't scale forever network latency eventually dominates
 - Redundant solve on all cores (PETSc's **PCREDUNDANT**)
 - Slow and expensive
- Or at intermediate points in the hierarchy? --> Agglomeration
 - As we coarsen, use smaller sets of processors (MPI ranks)
 - Allows balance of communication and computation
 - Well-known, but requires implementation effort

PCBDDC PCGAMG

Mesh: 16 x 16 elements



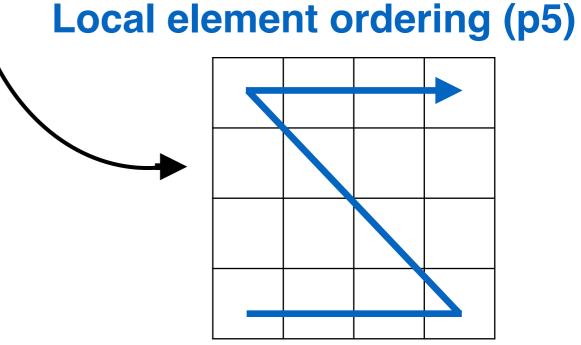
Partition: 4 x 4 processors

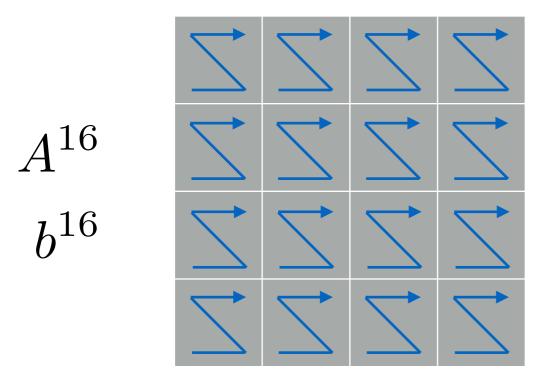
p12	p13	p14	p15
p8	р9	p10	p11
p4	р5	р6	р7
р0	р1	р2	р3

We wish to solve

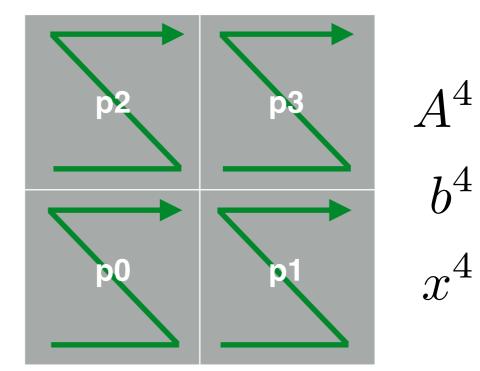
 $A^{16}x^{16} = b^{16}$

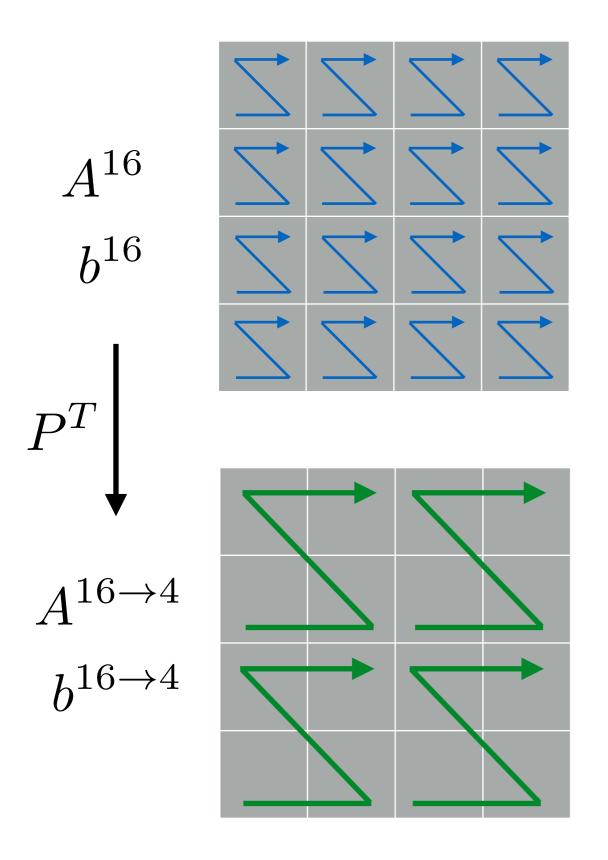
on a smaller number of processors



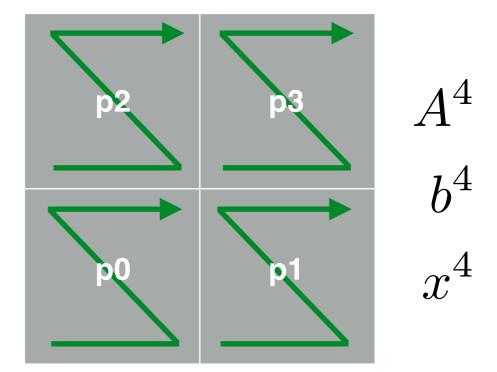


Repartition: 2 x 2 processors

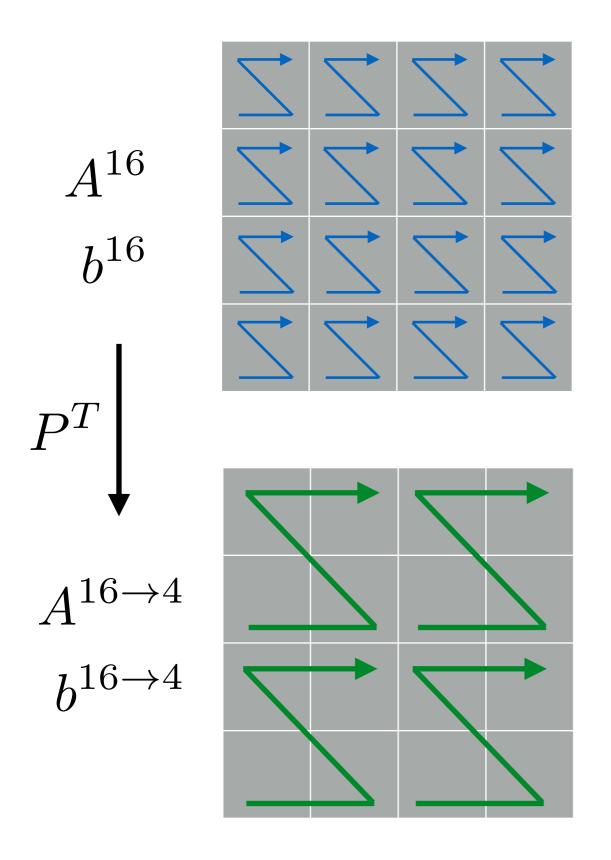




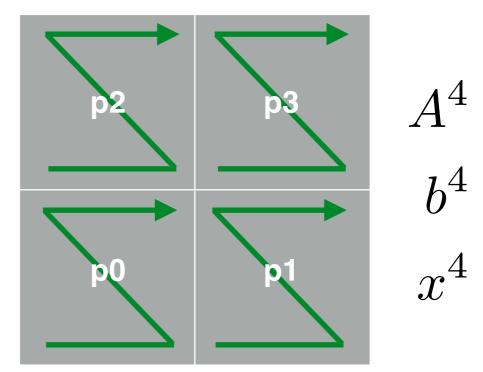
Repartition: 2 x 2 processors



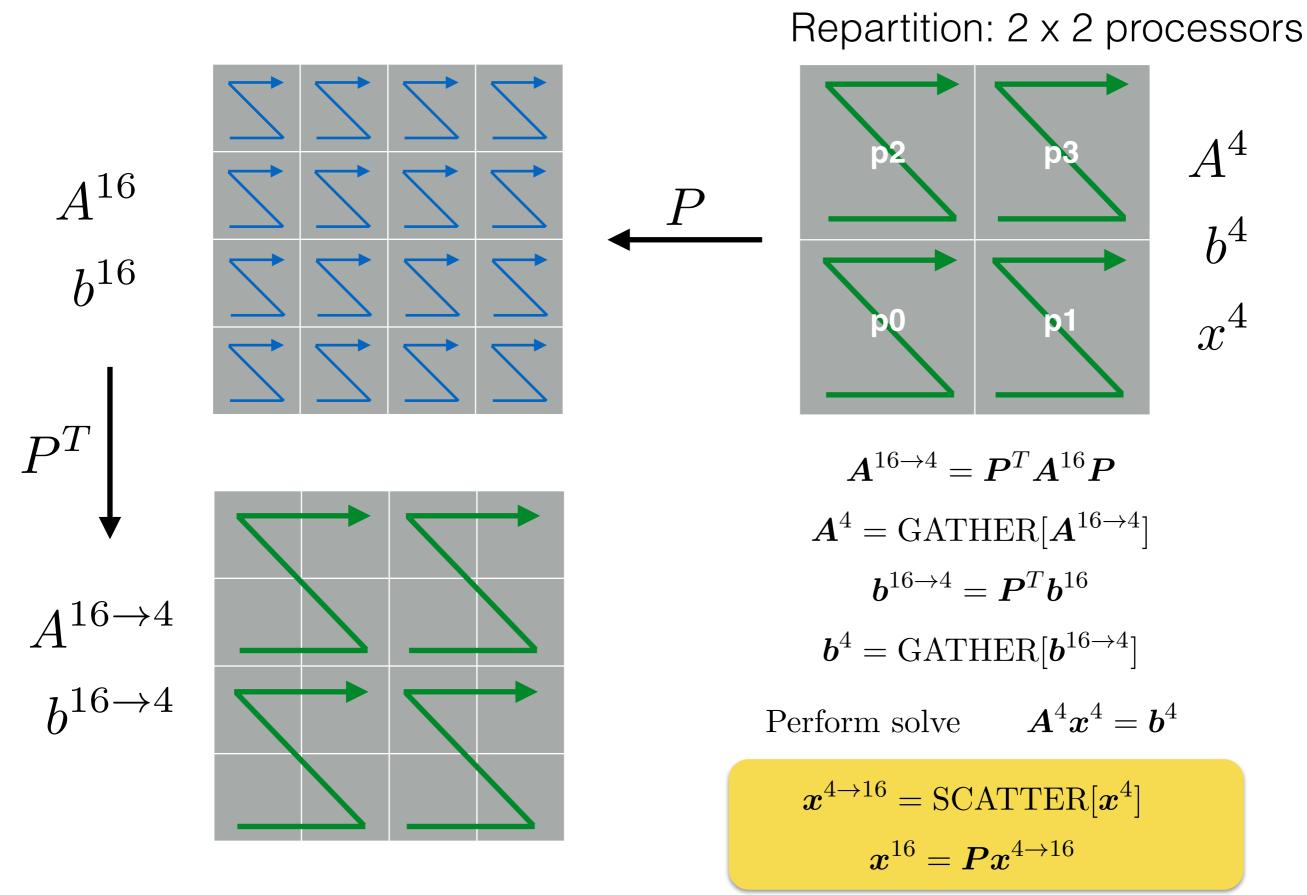
$$egin{aligned} &A^{16 o 4} = P^T A^{16} P\ &A^4 = ext{GATHER}[A^{16 o 4}]\ &b^{16 o 4} = P^T b^{16}\ &b^4 = ext{GATHER}[b^{16 o 4}] \end{aligned}$$
 Perform solve $egin{aligned} &A^4 x^4 = b^4\ &x^{4 o 16} = ext{SCATTER}[x^4]\ &x^{16} = Px^{4 o 16} \end{aligned}$



Repartition: 2 x 2 processors



$$egin{aligned} &oldsymbol{A}^{16 o4} = oldsymbol{P}^Toldsymbol{A}^{16}oldsymbol{P} \ &oldsymbol{A}^4 = ext{GATHER}[oldsymbol{A}^{16 o4}] \ &oldsymbol{b}^{16 o4} = oldsymbol{P}^Toldsymbol{b}^{16 o4}] \ &oldsymbol{P}^4 = ext{GATHER}[oldsymbol{b}^{16 o4}] \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^4 \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^4 \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^{16 o4}] \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^4 \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^16 \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^16 \ &oldsymbol{b}^4 = oldsymbol{GATHER}[oldsymbol{b}^{16 o4}] \ &oldsymbol{A}^4oldsymbol{x}^4 = oldsymbol{b}^4 \ &oldsymbol{A}^4oldsymbol{A}^4 = oldsymbol{b}^4 \ &oldsymbol{A}^4oldsymbol{A}^4 \ &oldsymbol{A}^4 \$$



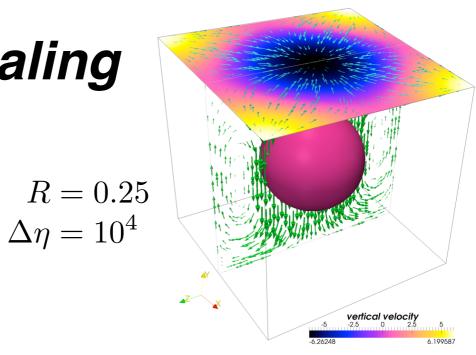
Linear Stokes Solver: Strong Scaling

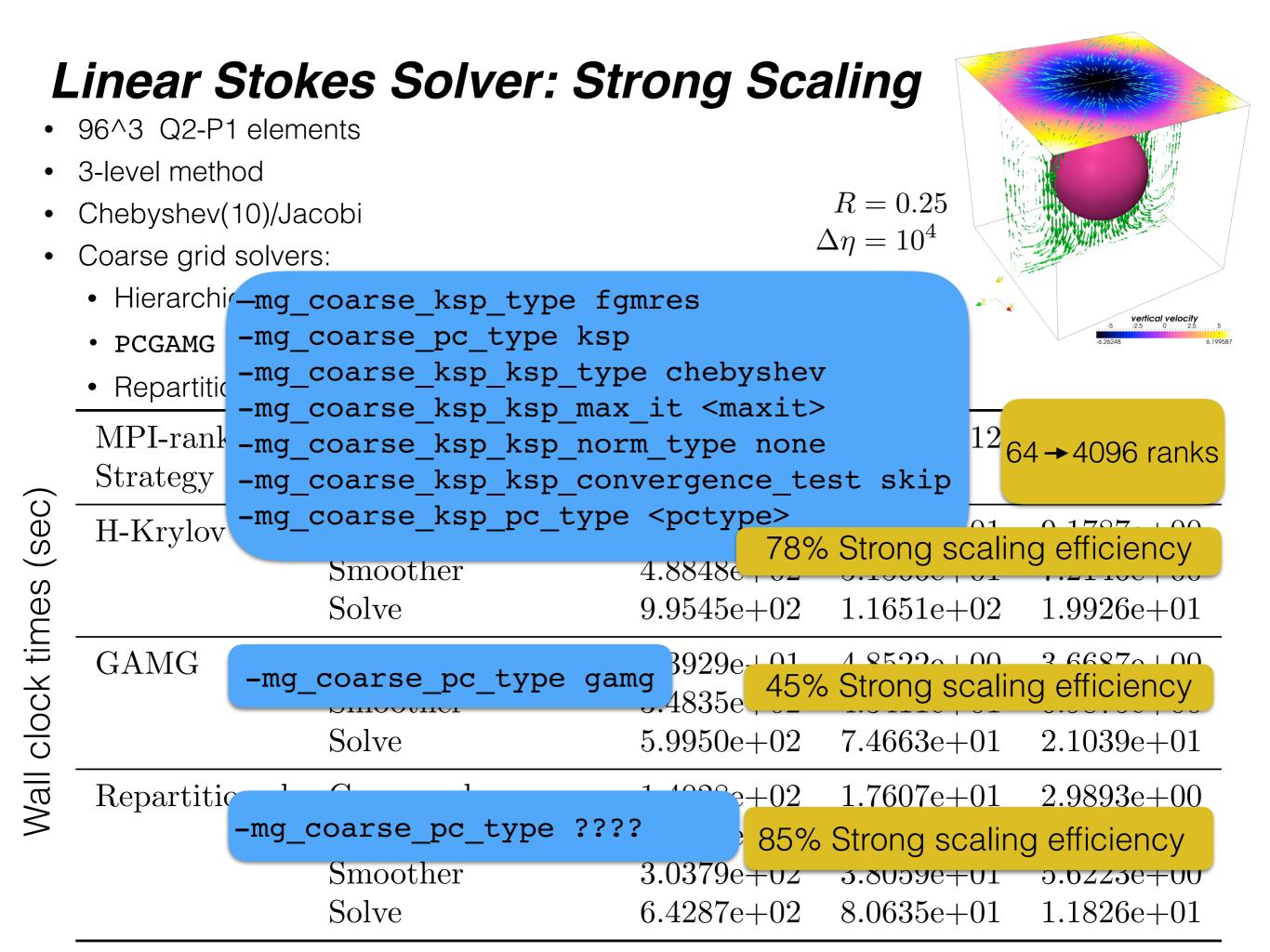
- 96^3 Q2-P1 elements
- 3-level method
- Chebyshev(10)/Jacobi
- Coarse grid solvers:
 - Hierarchical Krylov
 - PCGAMG

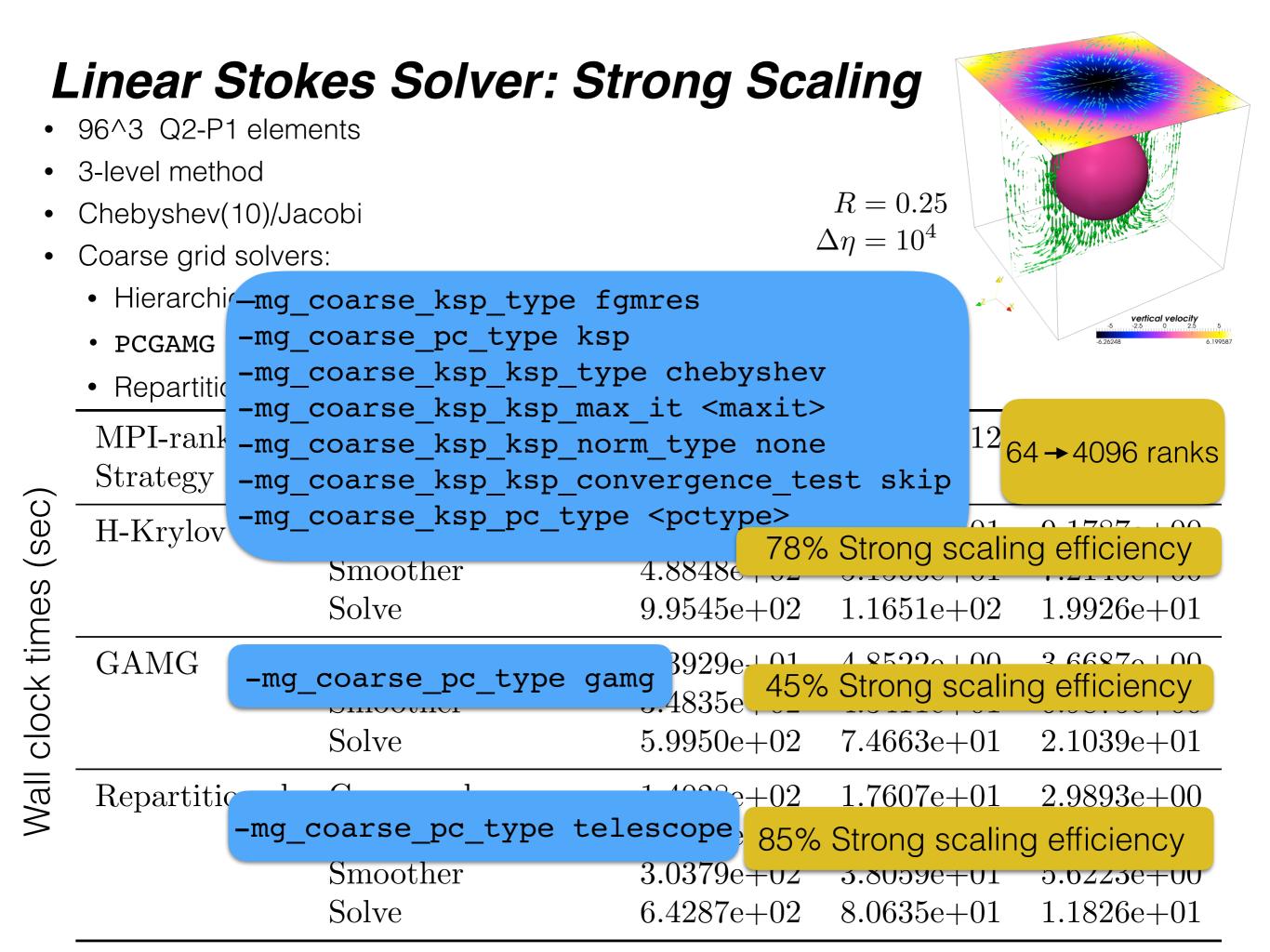
Wall clock times (sec)

• Repartitioned (custom precursor to PCTelescope) by a factor of 16

MPI-ranks Strategy	Task	64	512	4096
H-Krylov	Coarse solve Smoother Solve	1.8872e+02 4.8848e+02 9.9545e+02	3.3849e+01 5.1566e+01 1.1651e+02	9.1787e+00 7.2146e+00 1.9926e+01
GAMG	Coarse solve Smoother Solve	3.3929e+01 3.4835e+02 5.9950e+02	4.8522e+00 4.3411e+01 7.4663e+01	3.6687e+00 6.9875e+00 2.1039e+01
Repartitioned	Coarse solve Nested coarse solve Smoother Solve	$\begin{array}{c} 1.4028\mathrm{e}{+02}\\ 1.5587\mathrm{e}{+01}\\ 3.0379\mathrm{e}{+02}\\ 6.4287\mathrm{e}{+02}\end{array}$	1.7607e+01 1.9563e+00 3.8059e+01 8.0635e+01	2.9893e+00 3.3214e-01 5.6223e+00 1.1826e+01



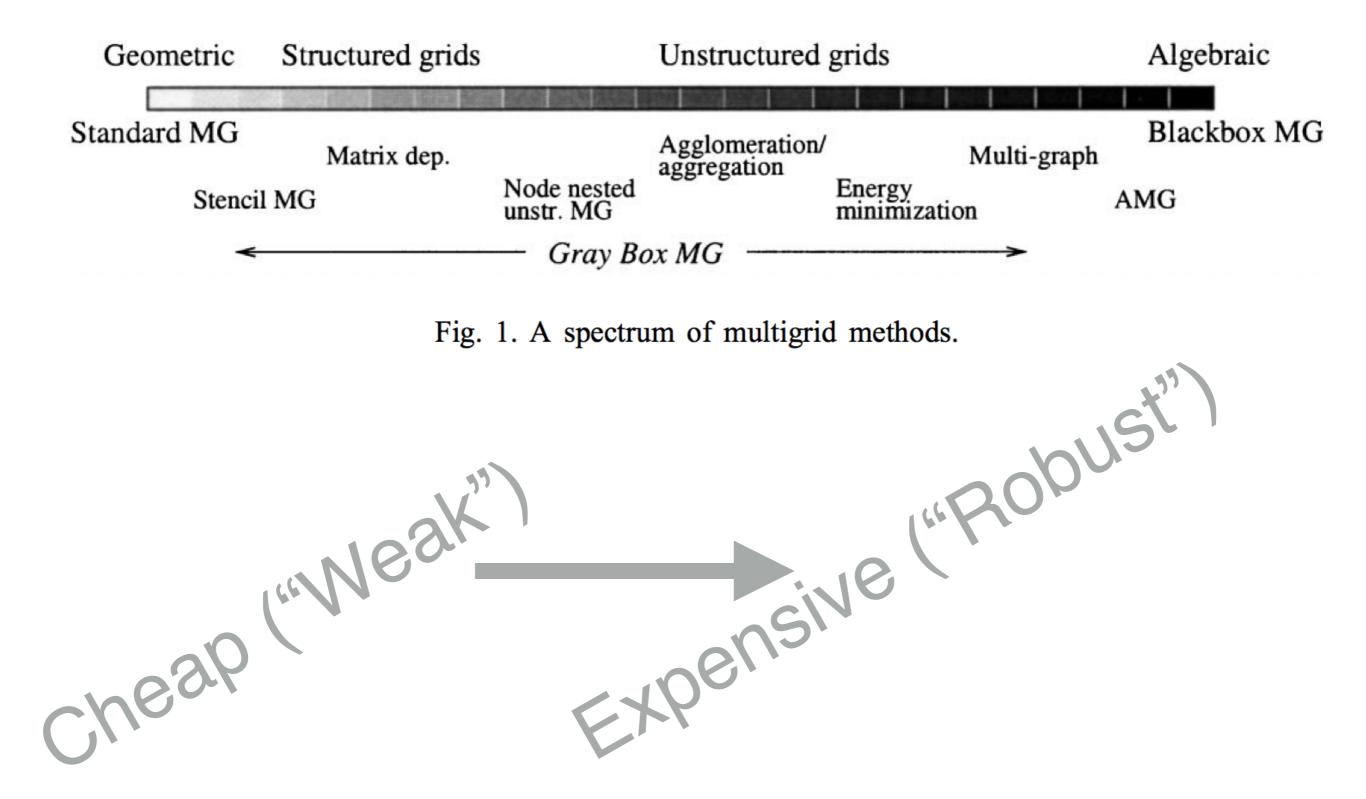


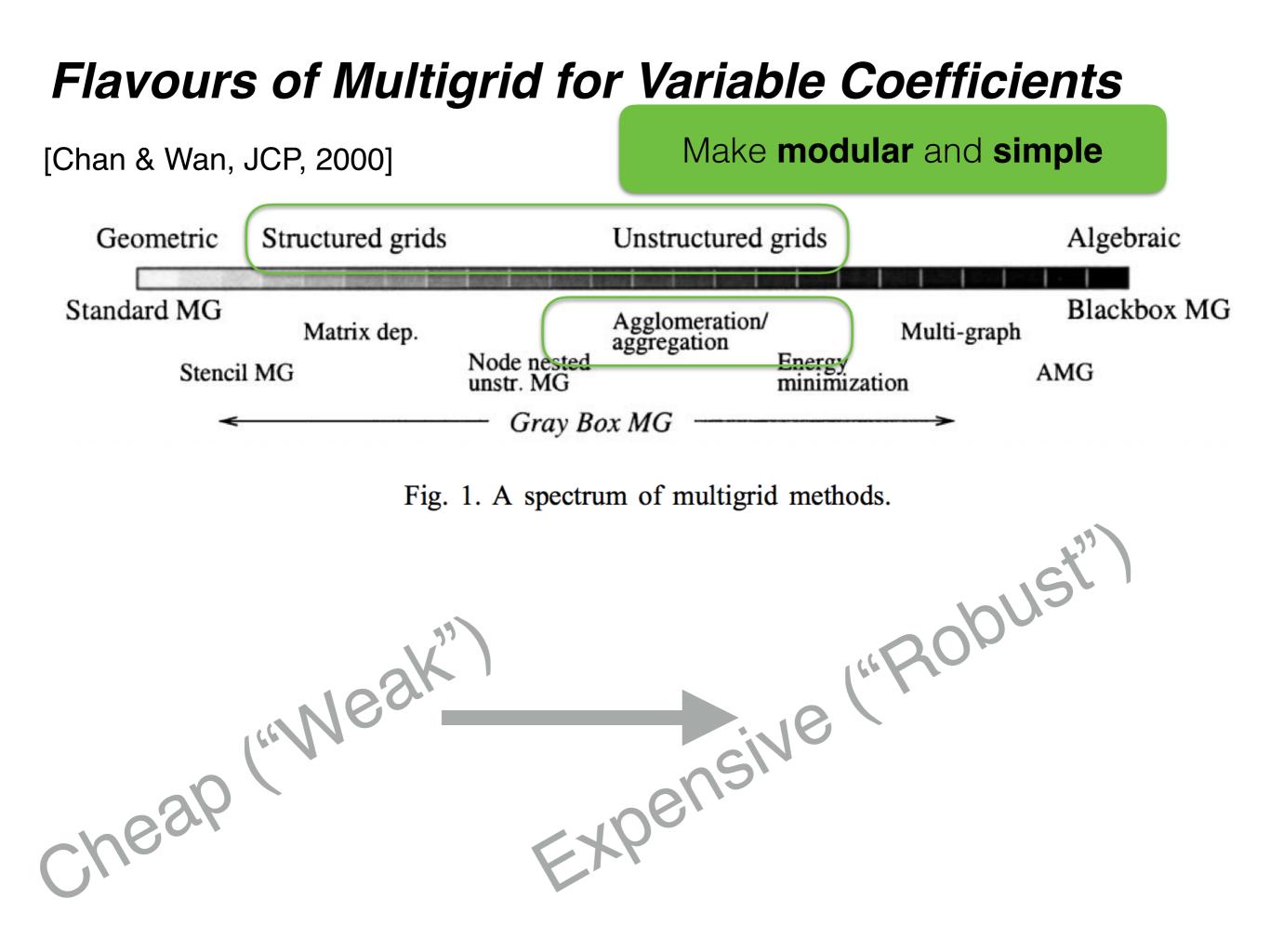


PCTelescope: Agglomeration in PETSc

Flavours of Multigrid for Variable Coefficients

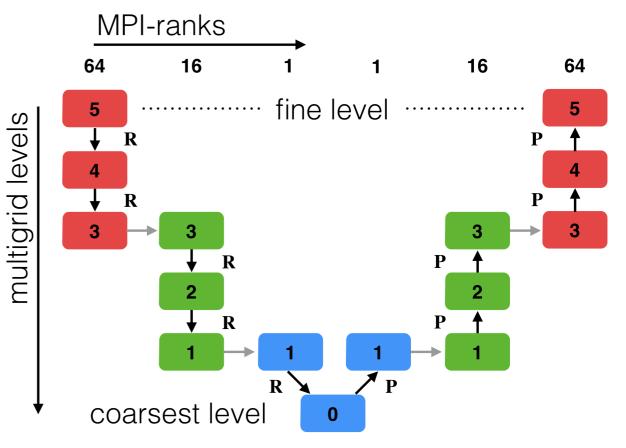
[Chan & Wan, JCP, 2000]





Implementing Agglomeration for Multigrid

- Not new, not impossible to implement*, but as an extremescale component, rarely implemented at first, and often not at all if code is insufficiently modular
- Predictive performance models are lacking, so runtime configurability is useful
- Agglomeration has uses outside of MG

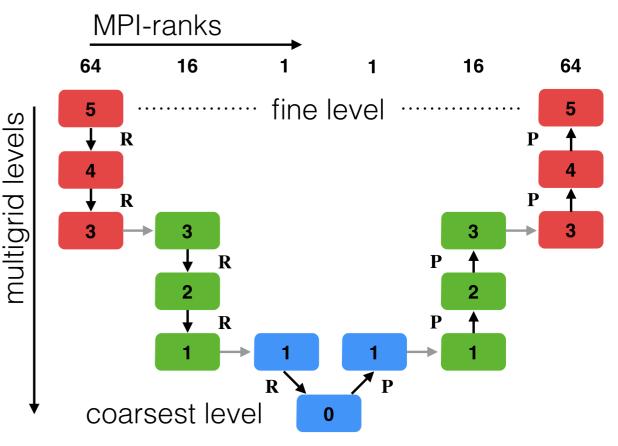


*See our paper for many references

Implementing Agglomeration for Multigrid

- Not new, not impossible to implement*, but as an extremescale component, rarely implemented at first, and often not at all if code is insufficiently modular
- Predictive performance models are lacking, so runtime configurability is useful

- We implement agglomeration as a preconditioner within PETSc, to provide a reusable building block
 - Simple, composable design
 - Not optimal for all usage, particularly in memory footprint.
- We focus on agglomeration which is aware of domain connectivity via PETSc's DM class
 *See our paper for ma



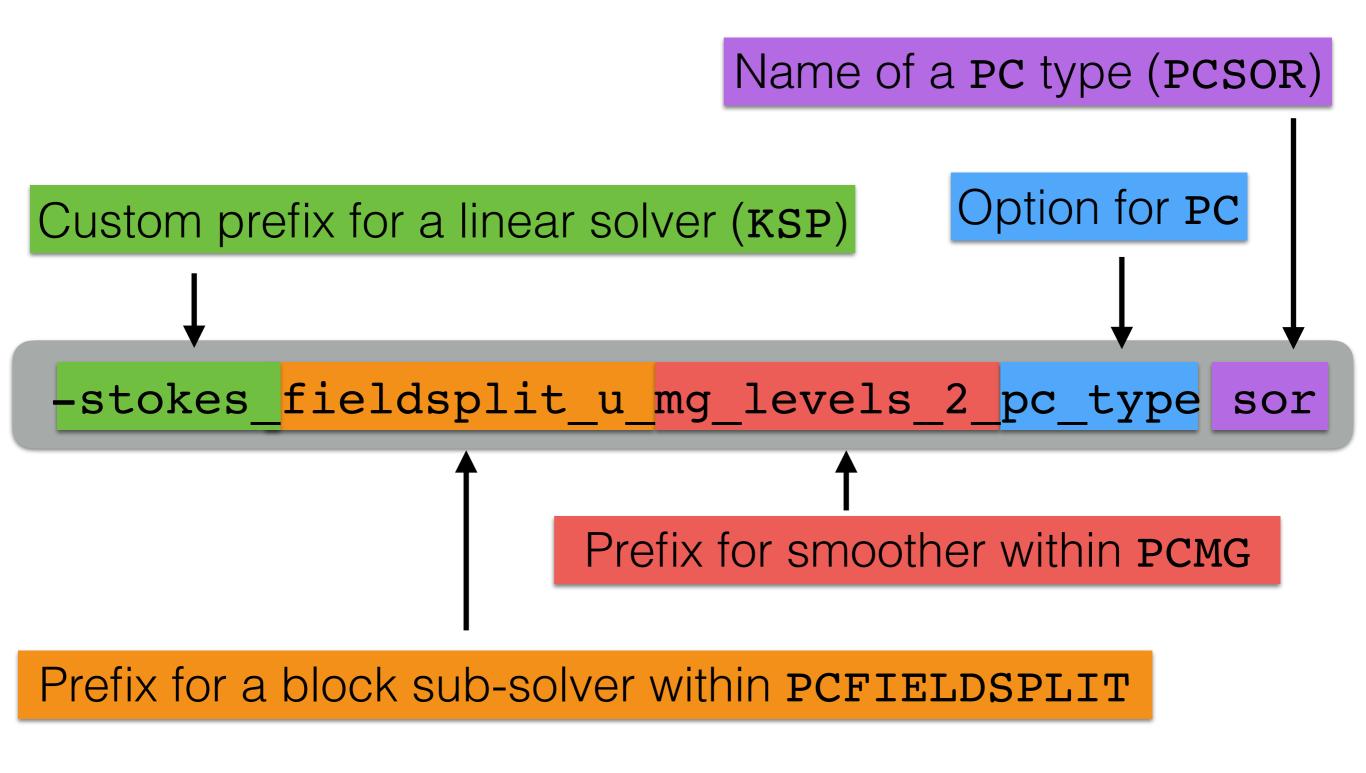
*See our paper for many references

Design Philosophy

- Portable, Extensible Toolkit for Scientific computation
- Portable, Extensible Toolkit for Solver composability?
- Composable building blocks
 - KSP : iterative linear solver
 - PC : preconditioner within KSP
 - Also used for direct solvers
 - Nested KSP objects as subsolvers or smoothers
 - **SNES** : nonlinear solver
 - DM : domain management
- Runtime configurability is a central design decision.
 - experimentation usually required to choose solver parameters
 - Solvers and subsolvers addressed with options prefixes

-stokes_fieldsplit_u_mg_levels_2_ksp_type sor

Anatomy of a Prefix



DM

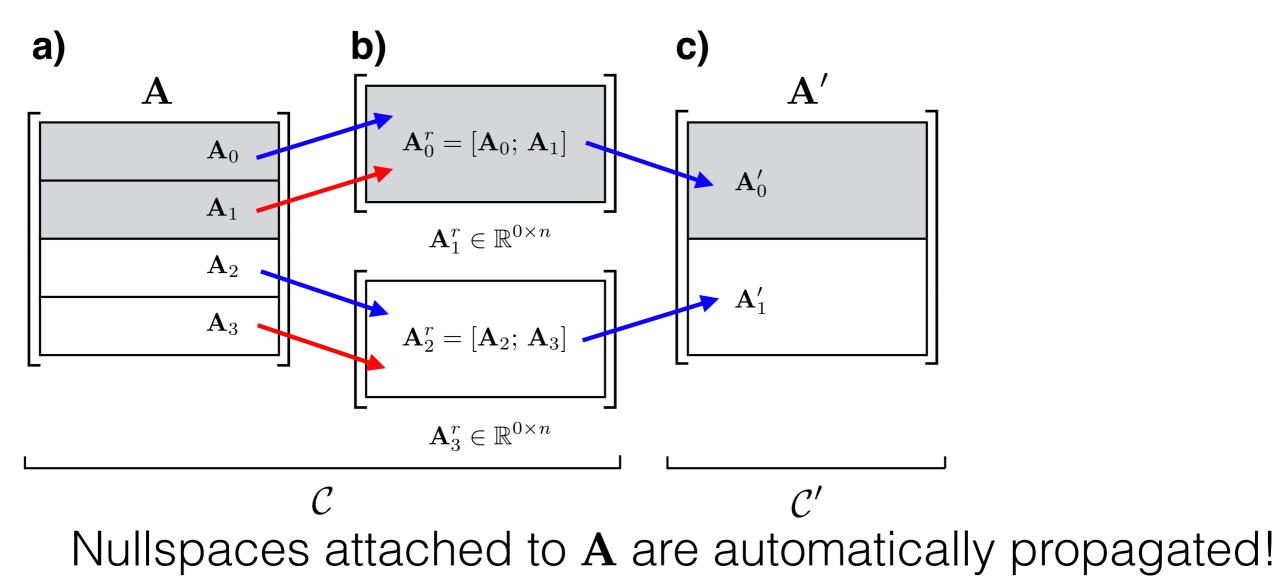
- A class to provide the required interface between solvers and distributed domains
- Geometric primitives, topological relationships between them, and field information

PCMG

- It's not entirely obvious that a solver library should include domain information
- However, geometric multigrid is facilitated with this information, so **PCMG** couples strongly to **DM**
- PCTelescope is also "DM aware"
- Following the design pattern of providing composable, nestable solvers, the smoothers on each level of the multigrid hierarchy, as well as the coarse grid solver, are KSP objects

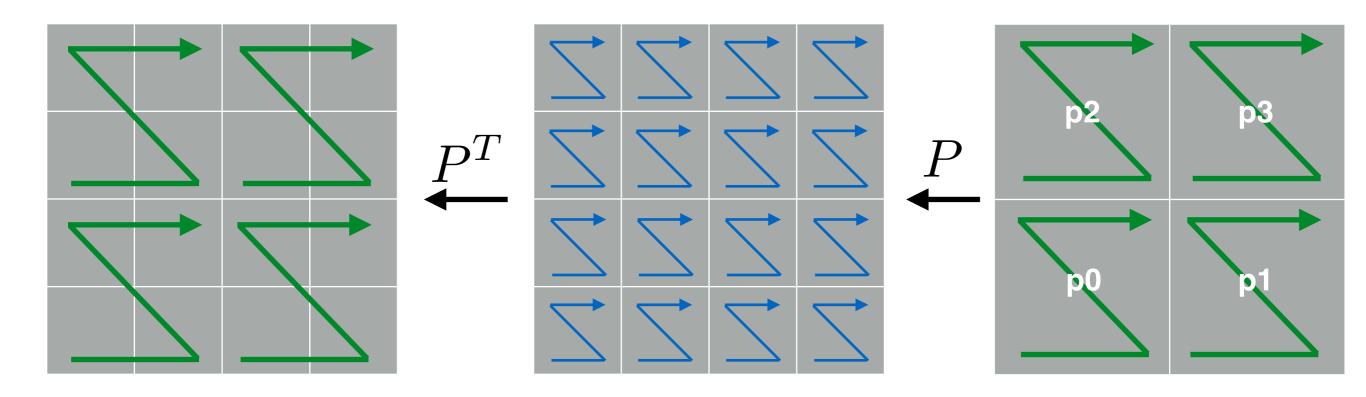
PCTelescope Design - Assembled Matrices

- 1. Given an MPI communicator C, create a new communicator C'.
- 2. Repartition the input matrix \mathbf{A} and vector \mathbf{x} onto \mathcal{C}' , yielding \mathbf{A}' and \mathbf{x}' .
- 3. Apply a Krylov method to solve $\mathbf{A}'\mathbf{y}' = \mathbf{x}'$ on \mathcal{C}' .
- 4. Scatter the solution \mathbf{y}' to \mathcal{C} to obtain \mathbf{y} .



DM Repartitioning

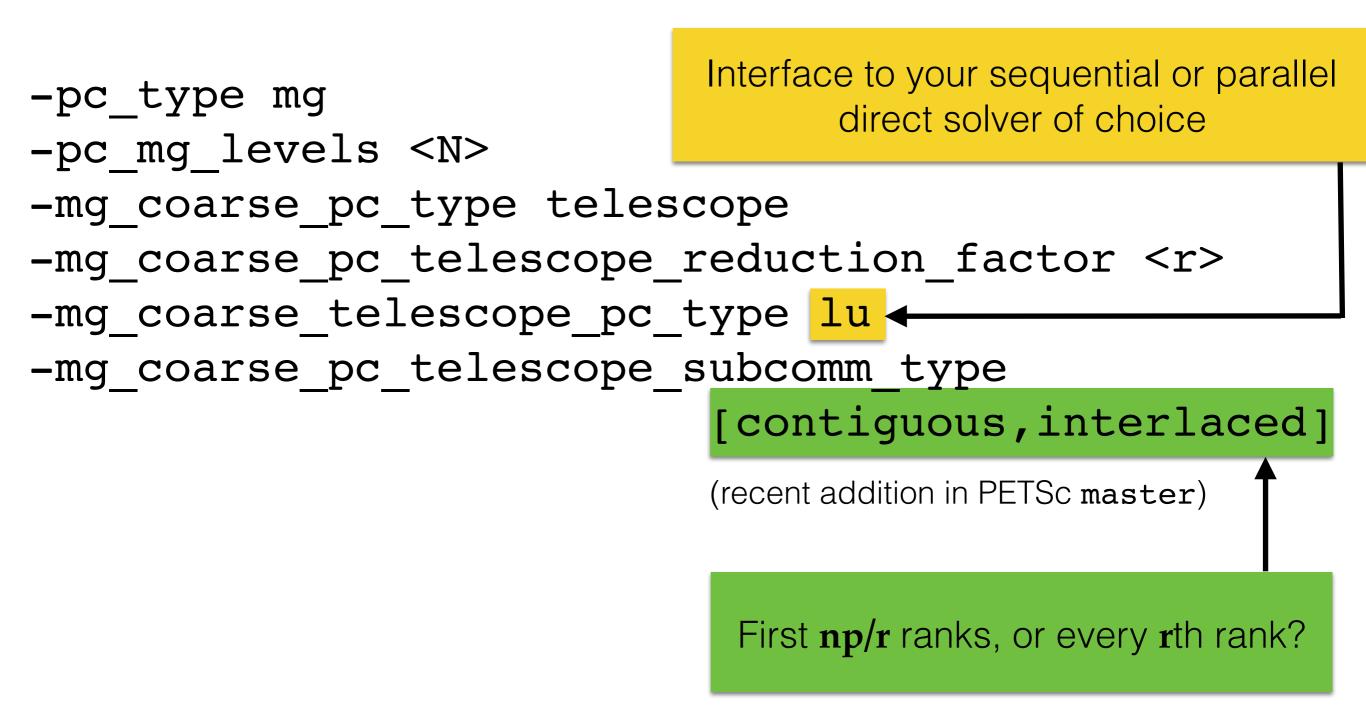
- PETSc allows DM's to be associated with KSP objects, which in turn makes them available to PC's like PCTelescope
- PCTelescope can automatically repartition regular 2D and 3D grids represented with DMDA objects
- This involves constructing a permutation to account for the new ordering



Use Cases

Multigrid with Truncation

Use an LU routine as a coarse grid solver:



-mg_coarse_telescope_mg_coarse_telescope_pc_type mg -mg coarse telescope mg coarse telescope pc mg levels 2 -mg_coarse_telescope_mg_coarse_telescope_pc_mg_galerkin

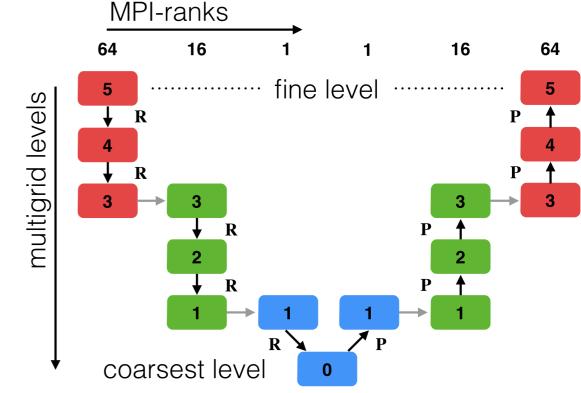
-mg_coarse_telescope_pc_type mg -mg coarse telescope pc mg levels 2 -mg_coarse_telescope_pc_mg_galerkin -mg_coarse_telescope_mg_coarse_pc_type telescope -mg coarse telescope mg coarse pc telescope reduction factor 16

-mg_coarse_pc_type telescope -mg_coarse_pc_telescope_reduction factor 4

-pc_mg_galerkin

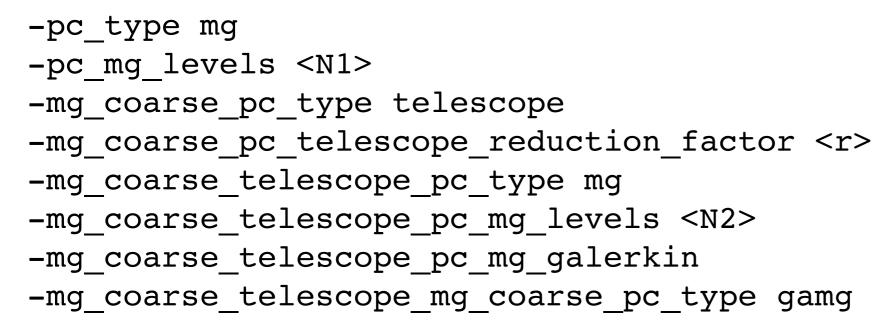
-pc_mg_levels 2

-pc type mg



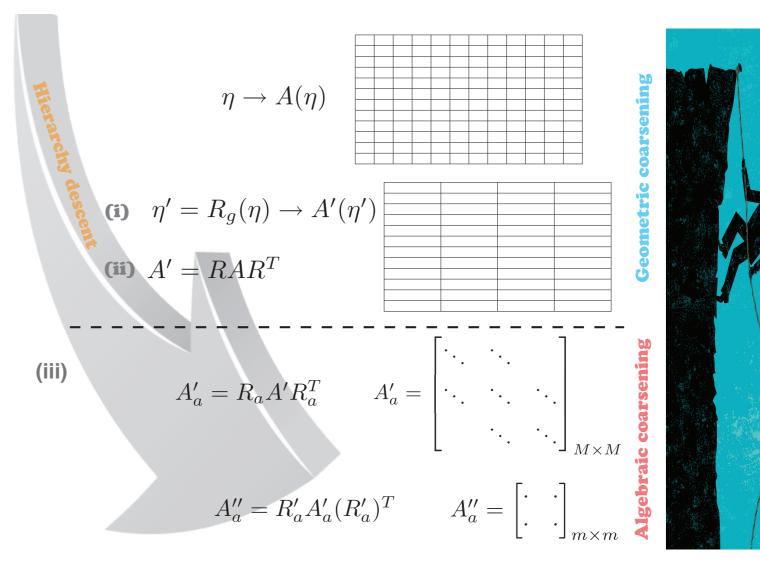
Repartitioned Coarse Grids

Hybrid Coarse Operator Construction



Re-disc. geom. MG Galerkin MG

Algebraic MG



Subdomain Smoothers with Constant Size

-pc_type mg -pc_mg_levels <N> -mg_levels_pc_type telescope -mg_levels_pc_telescope_reduction_factor <rn> -mg_levels_telescope_pc_type bjacobi -mg_levels_telescope sub pc type <xxx>

Smoothers with Different Spatial Decomposition

- -pc_type mg
- -pc_mg_levels <N>
- -mg_levels_pc_type telescope

-mg_levels_pc_telescope_reduction_factor <r>

-mg_levels_telescope_repart_da_processors_z 1

2.57 PFlop/s peak

Numerical Experiments

Piz Daint

7.787 PFlop/s peak

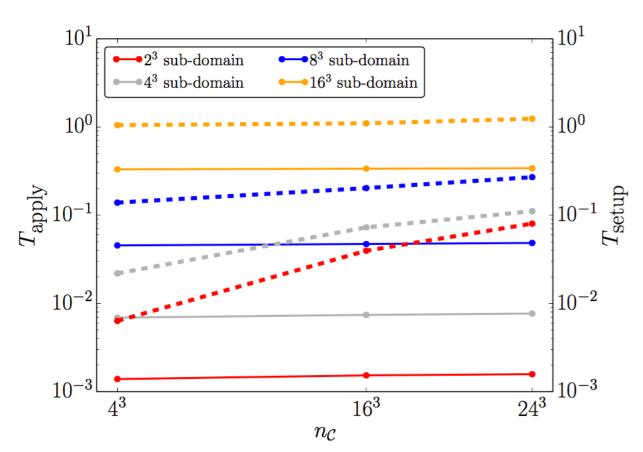
2,968m peak courtesy Sascha M. Schnepp

Agglomeration Profiling

- Profile Setup and Application times for PCTelescope on Piz Daint
- 3D FD Laplacian (N^3 DOF)
 - \$PETSC_DIR/src/ksp/ksp/examples/ tutorials/ex45.c

$n_{\mathcal{C}}$	N	r	$T_{\rm setup}$ (s)	$T_{\rm apply}$ (s)
64	8	8	1.64 E - 03	8.11 E - 05
64	8	16	$1.77\mathrm{E}{-03}$	1.00E - 04
64	8	32	1.88E - 03	$1.51E{-}04$
64	8	64	$2.05 \mathrm{E}{-03}$	$2.80 \text{E}{-04}$
4096	32	8	3.02E - 02	5.63 E - 04
4096	32	16	$3.82\mathrm{E}{-02}$	$3.84 \text{E}{-04}$
4096	32	32	$3.19E{-}02$	$3.74 \mathrm{E}{-04}$
4096	32	64	$3.12\mathrm{E}{-02}$	$6.21 E{-}04$
13824	48	8	4.37 E - 02	4.30E-04
13824	48	16	$4.55 E{-}02$	$3.53\mathrm{E}{-04}$
13824	48	32	$5.76\mathrm{E}{-02}$	5.58 E - 04
13824	48	64	5.50 E - 02	5.62 E - 04

- 3D Q1-Q1 stabilized Stokes problem (M^3 elements)
 - \$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex42.c



$n_{\mathcal{C}}$	M	r	$T_{\rm setup}$ (s)	$T_{\rm apply}$ (s)
64	8	8	6.34 E - 03	1.39E-03
64	8	16	$1.02\mathrm{E}{-02}$	$2.06\mathrm{E}{-03}$
64	8	32	$1.23\mathrm{E}{-02}$	3.26E - 03
64	8	64	$1.72E{-}02$	$4.44E{-}03$
4096	32	8	3.96E - 02	$1.53E{-}03$
4096	32	16	4.93 E - 02	$2.58\mathrm{E}{-03}$
4096	32	32	$5.76\mathrm{E}{-02}$	4.20 E - 03
4096	32	64	7.39E - 02	7.33E - 03
13824	48	8	8.04 E - 02	1.58E - 03
13824	48	16	8.91E - 02	$2.60\mathrm{E}{-03}$
13824	48	32	1.02E - 01	4.20 E - 03
13824	48	64	1.30E-01	7.37E-03

Repartitioning at Scale

- 3D linear elasticity example, run on Edison
- Q2 finite elements implemented on top of DMDA
- FGMRES preconditioned with a single V-cycle of geometric multigrid
- Strong-scaling test to stress communication
- "Easy" with constant coefficents: variable coefficients cause further problems for the truncated approach

M	levels	N_L	ranks	$T_{ m setup}^{tele}$ (s)	$T_{\rm solve}$ (s)
32	2	2	16^{3}	_	8.34E - 01
32	2, 3	4	$16^3, 4^3$	8.56E - 02	5.23E - 01
32	2,3,3	6	$16^3, 4^3, 1$	$9.54\mathrm{E}{-02}$	1.27 E - 01
64	2	_	32^{3}	_	1.48E + 01
64	2,3	4	$32^3, 8^3$	2.30E - 01	1.40E - 01
64	2,3,3	6	$32^3, 8^3, 2^3$	3.71E - 01	1.82E - 01
64	2,2,3	5	$32^3, 16^3, 4^3$	3.43E - 01	$1.39E{-}01$
64	2,2,3,3	7	$32^3, 16^3, 4^3, 1$	3.71E - 01	1.51E - 01

Hybrid CPU-GPU Subdomain Smoothers

- On a hybrid system, one may wish to use agglomerated communicators with a single rank per available accelerator
- We can do so on Piz Daint, assigning a single rank per GPU in the agglomerated communicator
- This allows comparison of SpMV performanceFrom the command line
 - With no need for threads (flat MPI + subcommunicators)

	CPU (8 MPI-ranks)			GPU		
M	Time (s)	GF/s	E/s	Time (s)	$\mathrm{GF/s}$	E/s
4	8.89 E - 03	11.99	720k	2.43E - 02	4.40	264k
8	$1.27\mathrm{E}{-01}$	6.96	402k	5.90 E - 02	14.99	865k
12	4.15 E - 01	7.3	417k	1.91E - 01	15.91	908k
24	3.15E + 00	7.79	439k	1.44E + 00	17.09	963k

Hybrid CPU-GPU Subdomain Smoothers

• We can also compare time to solution of a full solve using GPU subdomain smoothers

M	levels	overlap	$T_{ m setup}$ (s)	Its.	$T_{\rm solve}$ (s)
8	2	_	1.12E - 02	12	4.27 E - 02
12	3	_	4.41E - 02	16	$2.06\mathrm{E}{-01}$
24	3	—	1.88E - 01	13	$1.55E{+}00$
_48	4	_	1.29E + 00	11	9.92E + 00
8	2	0	5.49E - 01	12	2.2813e-01
12	2	0	2.52E + 00	16	2.3985e-01
24	3	0	4.94E + 00	13	$\mathbf{1.28E}{+00}$
48	4	0	3.58E + 01	11	6.66E+00
8	2	1	5.95E - 01	12	2.40E - 01
12	2	1	1.10E + 00	16	$4.30 \text{E}{-01}$
24	3	1	5.55E + 00	13	$\mathbf{1.52E}{+00}$
48	4	1	2.30E + 01	11	7.34E + 00

Future Development: Agglomeration for Multigrid on Unstructured Meshes

Extending to Support Unstructured Grids

- PETSc supports unstructured grids via the DMPlex class
- Ordering is more complicated
 - "Reduction factor" is less clear
 - Permutation and Scatter objects more complex to generate
- More attached structure must be considered and repartitioned
- Regardless, all required operations are algebraic and can be defined - the key is to lower the burden on a typical user
- Proposed Solution
 - When working with DMPlex (or more exotic DM implementations), return the responsibility of defining the reduced communicator and required mappings to the DM, requiring a call to DMPlexGetReducedComm()

Concluding Remarks

- Subdomain agglomeration in extreme-scale geometric multigrid allows for scalability
- This pattern can be encapsulated as a component with preconditioner semantics
- A single simple design, aware of operator nullspaces and underlying domain descriptions, can be effectively used in several ways
 - Coarse grid agglomeration in multigrid
 - Efficient construction of agglomerated subdomains to use with factorization-based sub-solvers
 - Efficient construction of agglomerated subdomains for use with coprocessors associated with multiple CPU cores in a flat MPI environment

Concluding Remarks

PCTelescope available in PETSc 3.7

- Composable tool for MPI rank agglomeration, implemented as a PETSc PC
- Aware of operator nullspaces and structured grids (DMDA)
- Useful for multigrid hierarchies as well as other tasks requiring agglomeration
- Controllable at runtime from the command line
- Main use case: (hybrid) MG hierarchies
- Auxiliary use cases: easy plumbing to define nested operators
- Also supports matrix-free / unassembled operators
 - Override DMCreateMatrix() and use KSPSetComputeOperators()

Thank You for Your Attention, and Try It Out!

- **PCTelescope** in current PETSc release 3.7.x
 - mcs.anl.gov/petsc
- Ongoing improvements in PETSc master
 - https://bitbucket.org/petsc/petsc
- Get in touch if you are interested in the development of **PCTelescope** for unstructured meshes used **DMPlex**
 - dave.may@erdw.eth.ch
 - patrick.sanan@{usi.ch,erdw.ethz.ch}
- Paper:
 - Dave A. May, Patrick Sanan, Karl Rupp, Matthew G. Knepley, and Barry F. Smith.
 2016. Extreme-Scale Multigrid Components within PETSc. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '16)

COCO Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

