
Dave A. May (ETH Zürich), Patrick Sanan (USI Lugano, ETH Zürich), Karl Rupp,
Matthew G. Knepley (Rice University), Barry F. Smith (Argonne National Lab)

Extreme-scale Multigrid Components
within PETSc

1. Motivation : The need for (easy-to-use) agglomeration
within extreme-scale geometric multigrid

2. Implementation :
1. The PCTelescope implementation
2. Use cases

3. Numerical Experiments

4. Future Development : Extensions for unstructured grids

Outline

The Need for Agglomeration
in Parallel Multigrid

Re-discretised Geometric Multigrid (RMG)
Ax = bGiven let v denote our guess for x

Two-level RMG algorithm (Simplest Form)

v = v + !(b�Av)

rh = b�Av

Solve A2he2h = r2h

v = v + eh

Interpolate e2h ! ⌦

h
, yielding eh

yielding eh
Restrict rh ! ⌦2h, yielding r2h

yielding r2h

v = v + !(b�Av)
“Smooth” N times

Compute residual Compute residual correction

Compute error

“Smooth” N times

⌦2h

⌦hFINE

COARSE

Re-discretised Geometric Multigrid (RMG)
• Ingredients

• A mesh hierarchy (fine coarse) on which will discretise our PDE
• A restriction operator (maps field from fine coarse)
• An interpolation operator (maps field from coarse fine)
• A smoother on each level
• A coarse grid solver

Exact Solve

6

3000 km x 2000 km x 200 km - 3 velocity components
 with mesh resolution of 11 km --> 110 million unknowns
 with mesh resolution of 20 km --> 1.8 million unknowns
 with mesh resolution of 34 km --> 0.34 million unknowns

(single core)

Why Multigrid (MG)?
• Theoretically optimal solve time O(n) scalable

THIS IS MG

Figure courtesy Jed Brown [CU Boulder]

Why Are More Levels Better?
• Fewer levels implies the coarse grid will contain a large number of

unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

• Optimality of MG comes from having a tiny coarse grid problem.

• Fewer levels implies the coarse grid will contain a large number of
unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

• Optimality of MG comes from having a tiny coarse grid problem.

• When RMG breaks down and the effective coarsest grid is not
“coarse enough” change to another scalable method

$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex45.c

Mesh Time Factor
17^3 1.22E-02 -

33^3 1.25E-01 10x

65^3 3.87E+00 31x

129^3 1.42E+02 63x

Mesh Levels Time Factor
17^3 2 1.22E-02 -

33^3 3 7.14E-02 6x

65^3 4 6.51E-01 9x

129^3 5 5.48E+00 8x

257^3 6 4.37E+01 8x

Two-level method

Why Are More Levels Better?

$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex45.c

Mesh Time Factor
17^3 1.22E-02 -

33^3 1.25E-01 10x

65^3 3.87E+00 31x

129^3 1.42E+02 63x

Mesh Levels Time Factor
17^3 2 1.22E-02 -

33^3 3 7.14E-02 6x

65^3 4 6.51E-01 9x

129^3 5 5.48E+00 8x

257^3 6 4.37E+01 8x

Two-level method

Why Are More Levels Better?
• Fewer levels implies the coarse grid will contain a large number of

unknowns. Recall that the coarse grid correction requires an
accurate solve (usually expensive, non-scalable).

• Optimality of MG comes from having a tiny coarse grid problem.

• When RMG breaks down and the effective coarsest grid is not
“coarse enough” change to another scalable method

Multigrid in Parallel
• Multigrid levels are sometimes limited in practice

• Practical restrictions often apply; e.g. a minimum of 1 finite element
per rank

• “Empty” ranks may still impose collective communication costs
• Coarse grids may be limited in their ability to resolve features

• A multigrid V-cycle (with an exact coarse grid solve) is all-to-all
communication, with a fundamental log(P) communication cost

Multigrid in Parallel - Where to Communicate?
• Should the cost be incurred within a solve on a coarse grid?

• AMG or another multilevel method (e.g. PCGAMG)
• Setup stage doesn’t scale for AMG
• Shifts the question but doesn’t fundamentally answer it

• Hierarchical Krylov methods [May et. al CMAME 2015]
• Doesn’t scale forever - network latency eventually dominates

• Redundant solve on all cores (PETSc’s PCREDUNDANT)
• Slow and expensive

• Or at intermediate points in the hierarchy? Agglomeration
• As we coarsen, use smaller sets of processors (MPI ranks)
• Allows balance of communication and computation
• Well-known, but requires implementation effort

PCBDDC
PCGAMG

Multigrid in Parallel - Where to Communicate?
• Should the cost be incurred within a solve on a coarse grid?

• AMG or another multilevel method (e.g. PCGAMG)
• Setup stage doesn’t scale for AMG
• Shifts the question but doesn’t fundamentally answer it

• Hierarchical Krylov methods [May et. al CMAME 2015]
• Doesn’t scale forever - network latency eventually dominates

• Redundant solve on all cores (PETSc’s PCREDUNDANT)
• Slow and expensive

• Or at intermediate points in the hierarchy? Agglomeration
• As we coarsen, use smaller sets of processors (MPI ranks)
• Allows balance of communication and computation
• Well-known, but requires implementation effort

Repartitioning Coarse Grids

Local element ordering (p5)

Mesh: 16 x 16 elements Partition: 4 x 4 processors

p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p10 p11

p12 p13 p14 p15

A

16
x

16 = b

16

We wish to solve

on a smaller number of processors

Repartitioning Coarse Grids
Repartition: 2 x 2 processors

A

4

b

4

x

4

A16

b16

p2

p0 p1

p3

A16!4

b16!4

PT

Repartition: 2 x 2 processors

A

4

b

4

x

4

A16

b16

p2

p0 p1

p3

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

Repartitioning Coarse Grids

A16!4

b16!4

PT

Repartition: 2 x 2 processors

A

4

b

4

x

4

A16

b16

p2

p0 p1

p3

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

Repartitioning Coarse Grids

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

⇢ = 3300 kg/m3, ⌘ = 1021 Pa s

A

16!4 = P

T
A

16
P

A

4 = GATHER[A16!4]

b

16!4 = P

T
b

16

b

4 = GATHER[b16!4]

Perform solve A

4
x

4 = b

4

x

4!16 = SCATTER[x4]

x

16 = Px

4!16

1

P

A16!4

b16!4

PT

Repartition: 2 x 2 processors

A

4

b

4

x

4

A16

b16

p2

p0 p1

p3

Repartitioning Coarse Grids

�⌘ = 104
R = 0.25

• 96^3 Q2-P1 elements
• 3-level method
• Chebyshev(10)/Jacobi
• Coarse grid solvers:

• Hierarchical Krylov
• PCGAMG

• Repartitioned (custom precursor to PCTelescope) by a factor of 16

MPI-ranks 64 512 4096
Strategy Task

H-Krylov Coarse solve 1.8872e+02 3.3849e+01 9.1787e+00
Smoother 4.8848e+02 5.1566e+01 7.2146e+00
Solve 9.9545e+02 1.1651e+02 1.9926e+01

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Repartitioned Coarse solve 1.4028e+02 1.7607e+01 2.9893e+00
Nested coarse solve 1.5587e+01 1.9563e+00 3.3214e�01
Smoother 3.0379e+02 3.8059e+01 5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01

W
al

l c
lo

ck
 ti

m
es

 (s
ec

)
Linear Stokes Solver: Strong Scaling

• 96^3 Q2-P1 elements
• 3-level method
• Chebyshev(10)/Jacobi
• Coarse grid solvers:

• Hierarchical Krylov
• PCGAMG

• Repartitioned (custom precursor to PCTelescope) by a factor of 16

Linear Stokes Solver: Strong Scaling

MPI-ranks 64 512 4096
Strategy Task

H-Krylov Coarse solve 1.8872e+02 3.3849e+01 9.1787e+00
Smoother 4.8848e+02 5.1566e+01 7.2146e+00
Solve 9.9545e+02 1.1651e+02 1.9926e+01

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Repartitioned Coarse solve 1.4028e+02 1.7607e+01 2.9893e+00
Nested coarse solve 1.5587e+01 1.9563e+00 3.3214e�01
Smoother 3.0379e+02 3.8059e+01 5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01

W
al

l c
lo

ck
 ti

m
es

 (s
ec

)

45% Strong scaling efficiency

85% Strong scaling efficiency

-mg_coarse_pc_type gamg

—mg_coarse_ksp_type fgmres
-mg_coarse_pc_type ksp
-mg_coarse_ksp_ksp_type chebyshev
-mg_coarse_ksp_ksp_max_it <maxit>
-mg_coarse_ksp_ksp_norm_type none
-mg_coarse_ksp_ksp_convergence_test skip
-mg_coarse_ksp_pc_type <pctype>

78% Strong scaling efficiency

64 4096 ranks

-mg_coarse_pc_type ????

�⌘ = 104
R = 0.25

Linear Stokes Solver: Strong Scaling

MPI-ranks 64 512 4096
Strategy Task

H-Krylov Coarse solve 1.8872e+02 3.3849e+01 9.1787e+00
Smoother 4.8848e+02 5.1566e+01 7.2146e+00
Solve 9.9545e+02 1.1651e+02 1.9926e+01

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Repartitioned Coarse solve 1.4028e+02 1.7607e+01 2.9893e+00
Nested coarse solve 1.5587e+01 1.9563e+00 3.3214e�01
Smoother 3.0379e+02 3.8059e+01 5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01

W
al

l c
lo

ck
 ti

m
es

 (s
ec

)

45% Strong scaling efficiency

85% Strong scaling efficiency

-mg_coarse_pc_type gamg

-mg_coarse_pc_type telescope

64 4096 ranks

�⌘ = 104
R = 0.25

• 96^3 Q2-P1 elements
• 3-level method
• Chebyshev(10)/Jacobi
• Coarse grid solvers:

• Hierarchical Krylov
• PCGAMG

• Repartitioned (custom precursor to PCTelescope) by a factor of 16

—mg_coarse_ksp_type fgmres
-mg_coarse_pc_type ksp
-mg_coarse_ksp_ksp_type chebyshev
-mg_coarse_ksp_ksp_max_it <maxit>
-mg_coarse_ksp_ksp_norm_type none
-mg_coarse_ksp_ksp_convergence_test skip
-mg_coarse_ksp_pc_type <pctype>

78% Strong scaling efficiency

PCTelescope:
Agglomeration in

PETSc

Flavours of Multigrid for Variable Coefficients

Cheap (“W
eak”)

Expensive (“R
obust”)

[Chan & Wan, JCP, 2000]

Flavours of Multigrid for Variable Coefficients
[Chan & Wan, JCP, 2000]

Cheap (“W
eak”)

Expensive (“R
obust”)

Make modular and simple

Implementing Agglomeration for Multigrid

*See our paper for many references

• Not new, not impossible to
implement*, but as an extreme-
scale component, rarely
implemented at first, and often
not at all if code is insufficiently
modular

• Predictive performance models
are lacking, so runtime
configurability is useful

• Agglomeration has uses outside
of MG

• We implement agglomeration as a preconditioner within PETSc,
to provide a reusable building block
• Simple, composable design
• Not optimal for all usage, particularly in memory footprint.

• We focus on agglomeration which is aware of domain
connectivity via PETSc’s DM class

Implementing Agglomeration for Multigrid
• Not new, not impossible to

implement*, but as an extreme-
scale component, rarely
implemented at first, and often
not at all if code is insufficiently
modular

• Predictive performance models
are lacking, so runtime
configurability is useful

• Agglomeration has uses outside
of MG

*See our paper for many references

Design Philosophy
• Portable, Extensible Toolkit for Scientific computation
• Portable, Extensible Toolkit for Solver composability ?
• Composable building blocks

• KSP : iterative linear solver
• PC : preconditioner within KSP

• Also used for direct solvers
• Nested KSP objects as subsolvers or smoothers

• SNES : nonlinear solver
• DM : domain management

• Runtime configurability is a central design decision.
• experimentation usually required to choose solver

parameters
• Solvers and subsolvers addressed with options prefixes

-stokes_fieldsplit_u_mg_levels_2_ksp_type sor

-stokes_fieldsplit_u_mg_levels_2_pc_type sor

Custom prefix for a linear solver (KSP)

Prefix for a block sub-solver within PCFIELDSPLIT

Prefix for smoother within PCMG

Name of a PC type (PCSOR)

Anatomy of a Prefix

Option for PC

PCMG
• It’s not entirely obvious that a solver library should

include domain information
• However, geometric multigrid is facilitated with this

information, so PCMG couples strongly to DM
• PCTelescope is also “DM aware”
• Following the design pattern of providing composable,

nestable solvers, the smoothers on each level of the
multigrid hierarchy, as well as the coarse grid solver, are
KSP objects

DM
• A class to provide the required interface between solvers

and distributed domains
• Geometric primitives, topological relationships between

them, and field information

PCTelescope Design - Assembled Matrices

[Section 3.1]

Nullspaces attached to A are automatically propagated!

DM Repartitioning

• PETSc allows DM’s to be associated with KSP objects,
which in turn makes them available to PC’s like
PCTelescope

• PCTelescope can automatically repartition regular 2D
and 3D grids represented with DMDA objects

• This involves constructing a permutation to account for the
new ordering

PPT
p2

p0 p1

p3

Use Cases

Multigrid with Truncation

-pc_type mg
-pc_mg_levels <N>
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor <r>
-mg_coarse_telescope_pc_type lu
-mg_coarse_pc_telescope_subcomm_type
 [contiguous,interlaced]

Use an LU routine as a coarse grid solver:

Interface to your sequential or parallel
direct solver of choice

First np/r ranks, or every rth rank?

(recent addition in PETSc master)

-pc_type mg
-pc_mg_levels 2
-pc_mg_galerkin
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor 4

-mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_pc_mg_levels 2
-mg_coarse_telescope_pc_mg_galerkin
-mg_coarse_telescope_mg_coarse_pc_type telescope
-mg_coarse_telescope_mg_coarse_pc_telescope_reduction_factor 16

-mg_coarse_telescope_mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_mg_coarse_telescope_pc_mg_levels 2
-mg_coarse_telescope_mg_coarse_telescope_pc_mg_galerkin

Repartitioned Coarse Grids

Hybrid Coarse Operator Construction
-pc_type mg
-pc_mg_levels <N1>
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor <r>
-mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_pc_mg_levels <N2>
-mg_coarse_telescope_pc_mg_galerkin
-mg_coarse_telescope_mg_coarse_pc_type gamg

G
e

o
m

e
t
r

i
c

 c
o

a
r

s
e

n
i
n

g
A

l
g

e
b

r
a

i
c

 c
o

a
r

s
e

n
i
n

g

H
ie

r
a

r
c
h

y
 d

e
s
c
e

n
t

(i)

(ii)

Re-disc. geom. MG
Galerkin MG

Algebraic MG (iii)

Subdomain Smoothers with Constant Size
-pc_type mg
-pc_mg_levels <N>
-mg_levels_pc_type telescope
-mg_levels_pc_telescope_reduction_factor <rn>
-mg_levels_telescope_pc_type bjacobi
-mg_levels_telescope_sub_pc_type <xxx>

Smoothers with Different Spatial Decomposition
-pc_type mg
-pc_mg_levels <N>
-mg_levels_pc_type telescope
-mg_levels_pc_telescope_reduction_factor <r>
-mg_levels_telescope_repart_da_processors_z 1

Numerical Experiments
Piz Daint

courtesy Sascha M. Schnepp7.787 PFlop/s peak 2,968m peak

Edison

2.57 PFlop/s peak

Agglomeration Profiling
• Profile Setup and Application times

for PCTelescope on Piz Daint

• 3D FD Laplacian (N^3 DOF)
• $PETSC_DIR/src/ksp/ksp/examples/

tutorials/ex45.c

• 3D Q1-Q1 stabilized Stokes problem (M^3 elements)
• $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex42.c

Repartitioning at Scale
• 3D linear elasticity example, run on Edison
• Q2 finite elements implemented on top of DMDA
• FGMRES preconditioned with a single V-cycle of

geometric multigrid
• Strong-scaling test to stress communication
• “Easy” with constant coefficents: variable coefficients

cause further problems for the truncated approach

Hybrid CPU-GPU Subdomain Smoothers
• On a hybrid system, one may wish to use agglomerated

communicators with a single rank per available
accelerator

• We can do so on Piz Daint, assigning a single rank per
GPU in the agglomerated communicator

• This allows comparison of SpMV performanceFrom the
command line
• With no need for threads (flat MPI + subcommunicators)

• We can also compare time to solution of a
full solve using GPU subdomain smoothers

Hybrid CPU-GPU Subdomain Smoothers

Future Development:
Agglomeration for Multigrid

on Unstructured Meshes

Extending to Support Unstructured Grids
• PETSc supports unstructured grids via the DMPlex class
• Ordering is more complicated

• “Reduction factor” is less clear
• Permutation and Scatter objects more complex to

generate
• More attached structure must be considered and

repartitioned
• Regardless, all required operations are algebraic and can

be defined - the key is to lower the burden on a typical
user

• Proposed Solution
• When working with DMPlex (or more exotic DM

implementations), return the responsibility of defining the
reduced communicator and required mappings to the
DM, requiring a call to DMPlexGetReducedComm()

Concluding Remarks
• Subdomain agglomeration in extreme-scale geometric

multigrid allows for scalability
• This pattern can be encapsulated as a component with

preconditioner semantics
• A single simple design, aware of operator nullspaces and

underlying domain descriptions, can be effectively used
in several ways
• Coarse grid agglomeration in multigrid
• Efficient construction of agglomerated subdomains to

use with factorization-based sub-solvers
• Efficient construction of agglomerated subdomains for

use with coprocessors associated with multiple CPU
cores in a flat MPI environment

Concluding Remarks

• Composable tool for MPI rank agglomeration,
implemented as a PETSc PC

• Aware of operator nullspaces and structured grids (DMDA)
• Useful for multigrid hierarchies as well as other tasks

requiring agglomeration
• Controllable at runtime from the command line
• Main use case: (hybrid) MG hierarchies
• Auxiliary use cases: easy plumbing to define nested

operators
• Also supports matrix-free / unassembled operators

• Override DMCreateMatrix() and use
KSPSetComputeOperators()

PCTelescope available in PETSc 3.7

Thank You for Your Attention, and Try It Out!
• PCTelescope in current PETSc release 3.7.x

• mcs.anl.gov/petsc
• Ongoing improvements in PETSc master

• https://bitbucket.org/petsc/petsc
• Get in touch if you are interested in the development of
PCTelescope for unstructured meshes used DMPlex
• dave.may@erdw.eth.ch
• patrick.sanan@{usi.ch,erdw.ethz.ch}

• Paper:
• Dave A. May, Patrick Sanan, Karl Rupp, Matthew G. Knepley, and Barry F. Smith.

2016. Extreme-Scale Multigrid Components within PETSc. In Proceedings of the
Platform for Advanced Scientific Computing Conference (PASC '16)

