
Dave A. May (ETH Zürich), Patrick Sanan (USI Lugano, ETH Zürich), Karl Rupp, 
Matthew G. Knepley (Rice University), Barry F. Smith (Argonne National Lab)

Extreme-scale Multigrid Components 
within PETSc



1. Motivation : The need for (easy-to-use) agglomeration 
within extreme-scale geometric multigrid 

2. Implementation :  
1. The PCTelescope implementation 
2. Use cases 

3. Numerical Experiments

4. Future Development : Extensions for unstructured grids

Outline



The Need for Agglomeration 
in Parallel Multigrid



Re-discretised Geometric Multigrid (RMG)
Ax = bGiven let v denote our guess for x 

Two-level RMG algorithm (Simplest Form)

v = v + !(b�Av)

rh = b�Av

Solve A2he2h = r2h

v = v + eh

Interpolate e2h ! ⌦

h
, yielding eh

yielding eh
Restrict rh ! ⌦2h, yielding r2h

yielding r2h

v = v + !(b�Av)
“Smooth” N times

Compute residual Compute residual correction

Compute error

“Smooth” N times
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Re-discretised Geometric Multigrid (RMG)
• Ingredients 

• A mesh hierarchy (fine    coarse) on which will discretise our PDE 
• A restriction operator (maps field from fine    coarse) 
• An interpolation operator (maps field from coarse     fine) 
• A smoother on each level  
• A coarse grid solver

Exact Solve



6

3000 km x 2000 km x 200 km - 3 velocity components 
            with mesh resolution of 11 km  -->  110 million unknowns
            with mesh resolution of 20 km  -->  1.8 million unknowns
            with mesh resolution of  34 km  -->  0.34 million unknowns 

(single core)

Why Multigrid (MG)?
• Theoretically optimal solve time O(n)        scalable

THIS IS MG

Figure courtesy Jed Brown [CU Boulder]



Why Are More Levels Better?
• Fewer levels implies the coarse grid will contain a large number of 

unknowns. Recall that the coarse grid correction requires an 
accurate solve (usually expensive, non-scalable). 

• Optimality of MG comes from having a tiny coarse grid problem. 



• Fewer levels implies the coarse grid will contain a large number of 
unknowns. Recall that the coarse grid correction requires an 
accurate solve (usually expensive, non-scalable). 

• Optimality of MG comes from having a tiny coarse grid problem. 

• When RMG breaks down and the effective coarsest grid is not 
“coarse enough”      change to another scalable method

$PETSC_DIR/src/ksp/ksp/examples/tutorials/ex45.c

Mesh Time Factor
17^3 1.22E-02 -

33^3 1.25E-01 10x

65^3 3.87E+00 31x

129^3 1.42E+02 63x

Mesh Levels Time Factor
17^3 2 1.22E-02 -

33^3 3 7.14E-02 6x

65^3 4 6.51E-01 9x

129^3 5 5.48E+00 8x

257^3 6 4.37E+01 8x

Two-level method

Why Are More Levels Better?
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Multigrid in Parallel
• Multigrid levels are sometimes limited in practice 

• Practical restrictions often apply; e.g. a minimum of 1 finite element 
per rank 

• “Empty” ranks may still impose collective communication costs 
• Coarse grids may be limited in their ability to resolve features

• A multigrid V-cycle (with an exact coarse grid solve) is all-to-all 
communication, with a fundamental log(P) communication cost



Multigrid in Parallel - Where to Communicate?
• Should the cost be incurred within a solve on a coarse grid? 

• AMG or another multilevel method (e.g. PCGAMG)
• Setup stage doesn’t scale for AMG 
• Shifts the question but doesn’t fundamentally answer it 

• Hierarchical Krylov methods [May et. al CMAME 2015] 
• Doesn’t scale forever - network latency eventually dominates 

• Redundant solve on all cores (PETSc’s PCREDUNDANT) 
• Slow and expensive 

• Or at intermediate points in the hierarchy?         Agglomeration
• As we coarsen, use smaller sets of processors (MPI ranks) 
• Allows balance of communication and computation 
• Well-known, but requires implementation effort
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Repartitioning Coarse Grids

Local element ordering (p5)

Mesh: 16 x 16 elements Partition: 4 x 4 processors

p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p10 p11

p12 p13 p14 p15

A

16
x

16 = b

16

We wish to solve

on a smaller number of processors



Repartitioning Coarse Grids
Repartition: 2 x 2 processors
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�⌘ = 104
R = 0.25

• 96^3  Q2-P1 elements 
• 3-level method 
• Chebyshev(10)/Jacobi 
• Coarse grid solvers: 

• Hierarchical Krylov 
• PCGAMG

• Repartitioned (custom precursor to PCTelescope) by a factor of 16

MPI-ranks 64 512 4096
Strategy Task

H-Krylov Coarse solve 1.8872e+02 3.3849e+01 9.1787e+00
Smoother 4.8848e+02 5.1566e+01 7.2146e+00
Solve 9.9545e+02 1.1651e+02 1.9926e+01

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Repartitioned Coarse solve 1.4028e+02 1.7607e+01 2.9893e+00
Nested coarse solve 1.5587e+01 1.9563e+00 3.3214e�01
Smoother 3.0379e+02 3.8059e+01 5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01
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)
Linear Stokes Solver: Strong Scaling
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45% Strong scaling efficiency

85% Strong scaling efficiency

-mg_coarse_pc_type gamg

—mg_coarse_ksp_type fgmres
-mg_coarse_pc_type ksp
-mg_coarse_ksp_ksp_type chebyshev
-mg_coarse_ksp_ksp_max_it <maxit>
-mg_coarse_ksp_ksp_norm_type none
-mg_coarse_ksp_ksp_convergence_test skip
-mg_coarse_ksp_pc_type <pctype>

78% Strong scaling efficiency

64    4096 ranks

-mg_coarse_pc_type ????

�⌘ = 104
R = 0.25
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45% Strong scaling efficiency

85% Strong scaling efficiency

-mg_coarse_pc_type gamg

-mg_coarse_pc_type telescope

64    4096 ranks
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PCTelescope: 
Agglomeration in 

PETSc



Flavours of Multigrid for Variable Coefficients

Cheap (“W
eak”)

Expensive (“R
obust”)

[Chan & Wan, JCP, 2000]



Flavours of Multigrid for Variable Coefficients
[Chan & Wan, JCP, 2000]

Cheap (“W
eak”)

Expensive (“R
obust”)

Make modular and simple



Implementing Agglomeration for Multigrid

*See our paper for many references

• Not new, not impossible to 
implement*, but as an extreme-
scale component, rarely 
implemented at first, and often 
not at all if code is insufficiently 
modular 

• Predictive performance models 
are lacking, so runtime 
configurability is useful 

• Agglomeration has uses outside 
of MG



• We implement agglomeration as a preconditioner within PETSc, 
to provide a reusable building block 
• Simple, composable design  
• Not optimal for all usage, particularly in memory footprint.  

• We focus on agglomeration which is aware of domain 
connectivity via PETSc’s DM class

Implementing Agglomeration for Multigrid
• Not new, not impossible to 

implement*, but as an extreme-
scale component, rarely 
implemented at first, and often 
not at all if code is insufficiently 
modular 

• Predictive performance models 
are lacking, so runtime 
configurability is useful 

• Agglomeration has uses outside 
of MG

*See our paper for many references



Design Philosophy
• Portable, Extensible Toolkit for Scientific computation  
• Portable, Extensible Toolkit for Solver composability ? 
• Composable building blocks 

• KSP : iterative linear solver 
• PC : preconditioner within KSP 

• Also used for direct solvers 
• Nested KSP objects as subsolvers or smoothers 

• SNES : nonlinear solver  
• DM : domain management 

• Runtime configurability is a central design decision.  
• experimentation usually required to choose solver 

parameters 
• Solvers and subsolvers addressed with options prefixes

-stokes_fieldsplit_u_mg_levels_2_ksp_type sor



-stokes_fieldsplit_u_mg_levels_2_pc_type sor

Custom prefix for a linear solver (KSP)

Prefix for a block sub-solver within PCFIELDSPLIT

Prefix for smoother within PCMG

Name of a PC type (PCSOR)

Anatomy of a Prefix

Option for PC



PCMG
• It’s not entirely obvious that a solver library should 

include domain information 
• However, geometric multigrid is facilitated with this 

information, so PCMG couples strongly to DM  
• PCTelescope is also “DM aware” 
• Following the design pattern of providing composable, 

nestable solvers, the smoothers on each level of the 
multigrid hierarchy, as well as the coarse grid solver, are 
KSP objects

DM
• A class to provide the required interface between solvers 

and distributed domains 
• Geometric primitives, topological relationships between 

them, and field information



PCTelescope Design - Assembled Matrices

[Section 3.1]

Nullspaces attached to A are automatically propagated!



DM Repartitioning

• PETSc allows DM’s to be associated with KSP objects, 
which in turn makes them available to PC’s like 
PCTelescope 

• PCTelescope can automatically repartition regular 2D 
and 3D grids represented with DMDA objects 

• This involves constructing a permutation to account for the 
new ordering

PPT
p2

p0 p1

p3



Use Cases



Multigrid with Truncation

-pc_type mg
-pc_mg_levels <N>
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor <r>
-mg_coarse_telescope_pc_type lu
-mg_coarse_pc_telescope_subcomm_type 
                         [contiguous,interlaced]

Use an LU routine as a coarse grid solver:

Interface to your sequential or parallel  
direct solver of choice

First np/r ranks, or every rth rank?

(recent addition in PETSc master)



-pc_type mg
-pc_mg_levels 2
-pc_mg_galerkin
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor 4

-mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_pc_mg_levels 2
-mg_coarse_telescope_pc_mg_galerkin
-mg_coarse_telescope_mg_coarse_pc_type telescope
-mg_coarse_telescope_mg_coarse_pc_telescope_reduction_factor 16

-mg_coarse_telescope_mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_mg_coarse_telescope_pc_mg_levels 2
-mg_coarse_telescope_mg_coarse_telescope_pc_mg_galerkin

Repartitioned Coarse Grids



Hybrid Coarse Operator Construction
-pc_type mg
-pc_mg_levels <N1>
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor <r>
-mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_pc_mg_levels <N2>
-mg_coarse_telescope_pc_mg_galerkin
-mg_coarse_telescope_mg_coarse_pc_type gamg
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Re-disc. geom. MG
Galerkin MG

Algebraic MG (iii)



Subdomain Smoothers with Constant Size
-pc_type mg
-pc_mg_levels <N>
-mg_levels_pc_type telescope
-mg_levels_pc_telescope_reduction_factor <rn>
-mg_levels_telescope_pc_type bjacobi
-mg_levels_telescope_sub_pc_type <xxx>

Smoothers with Different Spatial Decomposition
-pc_type mg
-pc_mg_levels <N>
-mg_levels_pc_type telescope
-mg_levels_pc_telescope_reduction_factor <r>
-mg_levels_telescope_repart_da_processors_z 1



Numerical Experiments
Piz Daint

courtesy Sascha M. Schnepp7.787 PFlop/s peak 2,968m peak

Edison

2.57 PFlop/s peak



Agglomeration Profiling
• Profile Setup and Application times 

for PCTelescope on Piz Daint  

• 3D FD Laplacian (N^3 DOF) 
• $PETSC_DIR/src/ksp/ksp/examples/

tutorials/ex45.c

• 3D Q1-Q1 stabilized Stokes problem (M^3 elements) 
• $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex42.c



Repartitioning at Scale
• 3D linear elasticity example, run on Edison 
• Q2 finite elements implemented on top of DMDA 
• FGMRES preconditioned with a single V-cycle of 

geometric multigrid 
• Strong-scaling test to stress communication 
• “Easy” with constant coefficents: variable coefficients 

cause further problems for the truncated approach



Hybrid CPU-GPU Subdomain Smoothers
• On a hybrid system, one may wish to use agglomerated 

communicators with a single rank per available 
accelerator 

• We can do so on Piz Daint, assigning a single rank per 
GPU in the agglomerated communicator 

• This allows comparison of SpMV performanceFrom the 
command line 
• With no need for threads (flat MPI + subcommunicators) 



• We can also compare time to solution of a 
full solve using GPU subdomain smoothers

Hybrid CPU-GPU Subdomain Smoothers



Future Development: 
Agglomeration for Multigrid 

on Unstructured Meshes



Extending to Support Unstructured Grids
• PETSc supports unstructured grids via the DMPlex class 
• Ordering is more complicated 

• “Reduction factor” is less clear 
• Permutation and Scatter objects more complex to 

generate 
• More attached structure must be considered and 

repartitioned  
• Regardless, all required operations are algebraic and can 

be defined - the key is to lower the burden on a typical 
user  

• Proposed Solution 
• When working with DMPlex (or more exotic DM 

implementations), return the responsibility of defining the 
reduced communicator and required mappings to the 
DM, requiring a call to DMPlexGetReducedComm()



Concluding Remarks
• Subdomain agglomeration in extreme-scale geometric 

multigrid allows for scalability 
• This pattern can be encapsulated as a component with 

preconditioner semantics 
• A single simple design, aware of operator nullspaces and 

underlying domain descriptions, can be effectively used 
in several ways 
• Coarse grid agglomeration in multigrid 
• Efficient construction of agglomerated subdomains to 

use with factorization-based sub-solvers 
• Efficient construction of agglomerated subdomains for 

use with coprocessors associated with multiple CPU 
cores in a flat MPI environment 



Concluding Remarks

• Composable tool for MPI rank agglomeration, 
implemented as a PETSc PC 

• Aware of operator nullspaces and structured grids (DMDA) 
• Useful for multigrid hierarchies as well as other tasks 

requiring agglomeration 
• Controllable at runtime from the command line 
• Main use case: (hybrid) MG hierarchies 
• Auxiliary use cases: easy plumbing to define nested 

operators 
• Also supports matrix-free / unassembled operators 

• Override DMCreateMatrix() and use 
KSPSetComputeOperators()

PCTelescope available in PETSc 3.7



Thank You for Your Attention, and Try It Out!
• PCTelescope in current PETSc release 3.7.x  

• mcs.anl.gov/petsc 
• Ongoing improvements in PETSc master  

• https://bitbucket.org/petsc/petsc 
• Get in touch if you are interested in the development of 
PCTelescope for unstructured meshes used DMPlex  
• dave.may@erdw.eth.ch
• patrick.sanan@{usi.ch,erdw.ethz.ch}

• Paper: 
• Dave A. May, Patrick Sanan, Karl Rupp, Matthew G. Knepley, and Barry F. Smith. 

2016. Extreme-Scale Multigrid Components within PETSc. In Proceedings of the 
Platform for Advanced Scientific Computing Conference (PASC '16)


