

Overview of SLEPc and Recent Additions

Jose E. Roman

D. Sistemes Informàtics i Computació Universitat Politècnica de València, Spain

PETSc User Meeting, Vienna - June, 2016

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on parallel computers

- Linear eigenproblems (standard or generalized, real or complex, Hermitian or non-Hermitian)
- Also support for related problems

$$Ax = \lambda x$$
 $Ax = \lambda Bx$ $Av_i = \sigma_i u_i$ $T(\lambda)x = 0$

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas

http://slepc.upv.es

Current version: 3.7 (released May 2016)

Applications

Google Scholar: 400 citations of main paper (ACM TOMS 2005)

Computational Physics, Materials Science, Electronic Structure	24	%
Computational Fluid Dynamics	13	%
PDE's, Numerical Methods	10	%
Plasma Physics	9	%
Computational Electromagnetics, Electronics, Photonics	8	%
Nuclear Engineering	6	%
Earth Sciences, Oceanology, Hydrology, Geophysics	6	%
Information Retrieval, Machine Learning, Graph Algorithms	6	%
Structural Analysis, Mechanical Engineering	5	%
Acoustics	4	%
Visualization, Computer Graphics, Image Processing	3	%
Dynamical Systems, Model Reduction, Inverse Problems	3	%
Bioengineering, Computational Neuroscience	2	%
Astrophysics	1	%

Problem Classes

The user must choose the most appropriate solver for each problem class

Problem class	Model equation	Module
Linear eigenproblem	$Ax = \lambda x, Ax = \lambda Bx$	EPS
Quadratic eigenproblem	$(K + \lambda C + \lambda^2 M)x = 0$	†
Polynomial eigenproblem	$(A_0 + \lambda A_1 + \dots + \lambda^d A_d)x = 0$	PEP
Nonlinear eigenproblem	$T(\lambda)x = 0$	NEP
Singular value decomp.	$Av = \sigma u$	SVD
Matrix function	y = f(A)v	MFN

[†] QEP removed in version 3.5

Auxiliary classes: ST, BV DS, RG, FN

PETSc SLEPc

Nonli	near Syst	ems		Time	Stepp	ers	
Line Search	Trust Region		Euler	Backward Euler	RK	BDF	

			Krylov Su	ıbspace	Methods		
GMRES	CG	CGS	Bi-CGStab	TFQMR	Richardson	Chebychev	

	Preconditioners									
Additive Schwarz	Block Jacobi	Jacobi	ILU	ICC	LU					

		Matrices	1		
Compressed Sparse Row	Block CSR	Symmetric Block CSR	Dense	CUSPARSE	

Vectors						
Standard	CUDA	ViennaCL				

Index Sets							
General	Block	Stride					

	No	nlinear	Eigen	solver		M. Fu	ınctior
SLP	RII	N- Arnoldi	Interp.	CISS	NLEIGS	Krylov	Expok

				L			
Poly	nomial	Eigensol		S۱	/D Sol	ver	
TOAR	Q- Arnoldi	Linear- ization	JD		Cross Product	Cyclic Matrix	Thick R. Lanczos

'	Lin	ear E	igenso	lver		
Krylov-Schur	Subspace	GD	JD	LOBPCG	CISS	

Spe	ctral Tr	ansforn	nation	BV	DS	RG	FN
Shift	Shift- invert	Cayley	Precond.				

Outline

- 1 Linear Eigenvalue Problems
 - EPS: Eigenvalue Problem Solver
 - Selection of wanted eigenvalues
 - Preconditioned eigensolvers
- Non-Linear Eigenvalue Problems
 - PEP: Polynomial Eigensolvers
 - NEP: General Nonlinear Eigensolvers
- Additional Features
 - MFN: Matrix Function
 - Auxiliary Classes

EPS: Eigenvalue Problem Solver

Compute a few eigenpairs (x, λ) of

Standard Eigenproblem

$$Ax = \lambda x$$

Generalized Eigenproblem

$$Ax = \lambda Bx$$

where A,B can be real or complex, symmetric (Hermitian) or not

User can specify:

- Number of eigenpairs (nev), subspace dimension (ncv)
- Tolerance, maximum number of iterations
- The solver
- Selected part of spectrum
- Advanced: extraction type, initial guess, constraints, balancing

Available Eigensolvers

User code is independent of the selected solver

- 1. Basic methods
 - Single vector iteration: power iteration, inverse iteration, RQI
 - Subspace iteration with Rayleigh-Ritz projection and locking
 - Explicitly restarted Arnoldi and Lanczos
- 2. Krylov-Schur, including thick-restart Lanczos
- 3. Generalized Davidson, Jacobi-Davidson
- 4. Conjugate gradient methods: LOBPCG, RQCG
- 5. CISS, a contour-integral solver
- 6. External packages, and LAPACK for testing

... but some solvers are specific for a particular case:

- ▶ LOBPCG computes smallest λ_i of symmetric problems
- ightharpoonup CISS allows computation of all λ_i within a region

Selection of Eigenvalues (1): Basic

Largest/smallest magnitude, or real (or imaginary) part

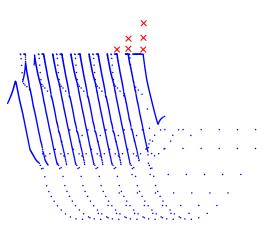
Example: QC2534

-eps_nev 6

-eps_ncv 128

-eps_largest_imaginary

Computed eigenvalues



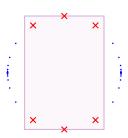
Selection of Eigenvalues (2): Region Filtering

RG: Region

- ► A region of the complex plane (interval, polygon, ellipse, ring)
- ▶ Used as an inclusion (or exclusion) region

Example: sign1 (NLEVP) n=225, all λ lie at unit circle, accumulate at ± 1

- -eps_nev 6
- -rg_type interval
- -rg_interval_endpoints -0.7,0.7,-1,1



Selection of Eigenvalues (3): Closest to Target

Shift-and-invert is used to compute interior eigenvalues

$$Ax = \lambda Bx$$
 \Longrightarrow $(A - \sigma B)^{-1}Bx = \theta x$

- ▶ Trivial mapping of eigenvalues: $\theta = (\lambda \sigma)^{-1}$
- Eigenvectors are not modified
- ightharpoonup Very fast convergence close to σ

Things to consider:

- ▶ Implicit inverse $(A \sigma B)^{-1}$ via linear solves
- Direct linear solver for robustness
- lacktriangle Less effective for eigenvalues far away from σ

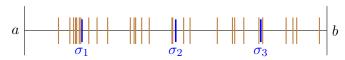
Selection of Eigenvalues (4): Interval (in GHEP)

Indefinite (block-)triangular factorization: $A - \sigma B = LDL^T$ A byproduct is the number of eigenvalues on the left of σ (inertia)

$$\nu(A - \sigma B) = \nu(D)$$

Spectrum Slicing strategy:

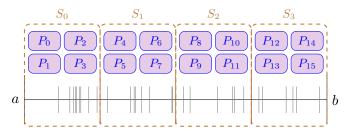
- Multi-shift scheme that sweeps all the interval
- Compute eigenvalues by chunks
- Use inertia to validate sub-intervals



C. Campos and J. E. Roman, "Strategies for spectrum slicing based on restarted Lanczos methods", *Numer. Algorithms*, 60(2):279–295, 2012.

Selection of Eigenvalues (4): Interval (in GHEP)

Multi-communicator version, one subinterval per partition



Each group factorizes at one endpoint, sends inertia to neighbor Load balancing of groups

- ▶ Number of eigenvalues in each sub-interval should be similar
- ▶ Allow user to provide hints about sub-interval boundaries

Selection of Eigenvalues (5): All inside a Region

CISS solver¹: compute all eigenvalues inside a given region

Example: QC2534

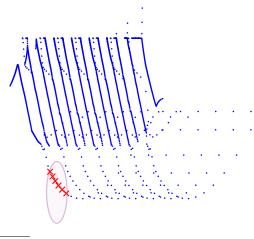
-eps_type ciss

-rg_type ellipse

-rg_ellipse_center -.8-.1i

 $-rg_ellipse_radius$ 0.2

-rg_ellipse_vscale 0.1

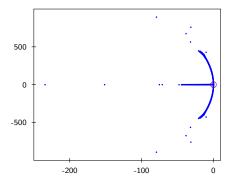


¹Contributed by Y. Maeda, T. Sakurai

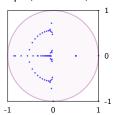
Selection of Eigenvalues (5): All inside a Region

Example: MHD1280 with CISS

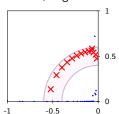
 Alfvén spectra: eigenvalues in intersection of the branches



RG=ellipse, center=0, radius=1



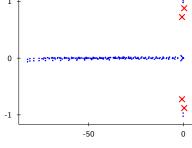
RG=ring, center=0, radius=0.5, width=0.2, angle=0.25..0.5



Selection of Eigenvalues (6): User-Defined

Selection with user-defined function for sorting eigenvalues pdde_stability n=225, wanted eigenvalues:

 $\|\lambda\| = 1$



Arbitrary selection: apply criterion to an arbitrary user-defined function $\phi(\lambda,x)$ instead of just λ

Preconditioned Eigensolvers

Pitfalls of shift-and-invert:

- Direct solvers have high cost, limited scalability
- Inexact shift-and-invert (i.e., with iterative solver) not robust

Preconditioned eigensolvers try to overcome these problems

- 1. Davidson-type solvers
 - Jacobi-Davidson: correction equation with iterative solver
 - Generalized Davidson: simple preconditioner application

```
E. Romero and J. E. Roman, "A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc", ACM Trans. Math. Softw., 40(2):13, 2014.
```

- 2. Conjugate Gradient-type solvers (for GHEP)
 - ▶ RQCG: CG for the minimization of the Rayleigh Quotient
 - ► LOBPCG: Locally Optimal Block Preconditioned CG

Nonlinear Eigenproblems

Increasing interest arising in many application domains

- Structural analysis with damping effects
- Vibro-acoustics (fluid-structure interaction)
- Linear stability of fluid flows

Problem types

- ▶ QEP: quadratic eigenproblem, $(\lambda^2 M + \lambda C + K)x = 0$
- ▶ PEP: polynomial eigenproblem, $P(\lambda)x = 0$
- ▶ REP: rational eigenproblem, $P(\lambda)Q(\lambda)^{-1}x = 0$
- ▶ NEP: general nonlinear eigenproblem, $T(\lambda)x = 0$

Test cases available in the NLEVP collection [Betcke et al. 2013] Available as SLEPc examples: acoustic_wave_1(2)d, butterfly, damped_beam,

pdde_stability, planar_waveguide, sleeper, spring, gun, loaded_string

Polynomial Eigenproblems via Linearization

$$PEP: \quad P(\lambda)x = 0$$

Monomial basis:
$$P(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \cdots + A_d\lambda^d$$

Companion linearization: $L(\lambda) = \mathcal{L}_0 - \lambda \mathcal{L}_1$, with $L(\lambda)y = 0$ and

$$\mathcal{L}_{0} = \begin{bmatrix} & I & & & & \\ & & \ddots & & \\ & & & I \\ -A_{0} & -A_{1} & \cdots & -A_{d-1} \end{bmatrix} \mathcal{L}_{1} = \begin{bmatrix} I & & & & \\ & \ddots & & \\ & & I & \\ & & & A_{d} \end{bmatrix} y = \begin{bmatrix} x \\ x\lambda \\ \vdots \\ x\lambda^{d-1} \end{bmatrix}$$

Compute an eigenpair (y, λ) of $L(\lambda)$, then extract x from y

- ▶ Pros: can leverage existing linear eigensolvers (PEPLINEAR)
- Cons: dimension of linearized problem is dn

PEP: Krylov Methods with Compact Representation

Arnoldi relation:
$$SV_j = \begin{bmatrix} V_j & v \end{bmatrix} \underline{H}_j, \qquad S := \mathcal{L}_1^{-1} \mathcal{L}_0$$
 Write Arnoldi vectors as $v = \text{vec} \begin{bmatrix} v^0, \dots, v^{d-1} \end{bmatrix}$

Block structure of S allows an implicit representation of the basis

Arnoldi relation in the compact representation:

$$S(I_d \otimes U_{j+d-1})G_j = (I_d \otimes U_{j+d}) \begin{bmatrix} G_j & g \end{bmatrix} \underline{H}_j$$

PEPTOAR is the default solver

- Memory-efficient (also in terms of computational cost)
- ▶ Many features: restart, locking, scaling, extraction, refinement

C. Campos and J. E. Roman, "Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc", SIAM J. Sci. Comput., 2016 (to appear).

Shift-and-Invert on the Linearization

Set
$$S_{\sigma} := (\mathcal{L}_0 - \sigma \mathcal{L}_1)^{-1} \mathcal{L}_1$$

Linear solves required to extend the Arnoldi basis $z = S_{\sigma} w$

$$\begin{bmatrix} -\sigma I & I & & & & \\ & -\sigma I & \ddots & & & \\ & & \ddots & I & & \\ & & & -\sigma I & I \\ -A_0 & -A_1 & \cdots & -\tilde{A}_{d-2} & -\tilde{A}_{d-1} \end{bmatrix} \begin{bmatrix} z^0 \\ z^1 \\ \vdots \\ z^{d-2} \\ z^{d-1} \end{bmatrix} = \begin{bmatrix} w^0 \\ w^1 \\ \vdots \\ w^{d-2} \\ A_d w^{d-1} \end{bmatrix}$$

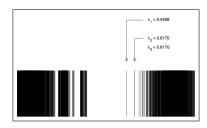
with
$$\tilde{A}_{d-2} = A_{d-2} + \sigma I$$
 and $\tilde{A}_{d-1} = A_{d-1} + \sigma A_d$

From the block LU factorization, we can derive a simple recurrence to compute $z^i \longrightarrow$ involves a linear solve with $P(\sigma)$

Quantum Dot Simulation

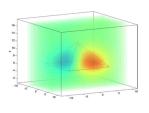
3D pyramidal quantum dot discretized with finite volumes

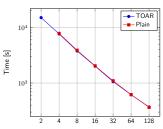
Tsung-Min Hwang et al. (2004). "Numerical Simulation of Three Dimensional Pyramid Quantum Dot," Journal of Computational Physics, 196(1): 208-232.



Quintic polynomial, $n \approx 12$ mill.

Scaling for tol= 10^{-8} , nev=5, ncv=40 with inexact shift-and-invert (bcgs+bjacobi)





PEP: Additional Features

Non-Monomial polynomial basis

$$P(\lambda) = A_0 \phi_0(\lambda) + A_1 \phi_1(\lambda) + \dots + A_d \phi_d(\lambda)$$

- Implemented for Chebyshev, Legendre, Laguerre, Hermite
- Enables polynomials of arbitrary degree

Newton iterative refinement

- Disabled by default, only needed if bad accuracy
- Implemented for single eigenpairs as well as invariant pairs

C. Campos and J. E. Roman, "Parallel iterative refinement in polynomial eigenvalue problems", Numer. Linear Algebra Appl., 2016 (to appear).

Other solvers not based on linearization

 PEPJD: Jacobi-Davidson for polynomial eigenproblems, can compute several eigenvalues via deflation [Effenberger 2013]

General Nonlinear Eigenproblems

NEP:

$$T(\lambda)x = 0, \qquad x \neq 0$$

 $T:\Omega\to\mathbb{C}^{n\times n}$ is a matrix-valued function analytic on $\Omega\subset\mathbb{C}$

Example 1: Rational eigenproblem arising in the study of free vibration of plates with elastically attached masses

$$-Kx + \lambda Mx + \sum_{j=1}^{k} \frac{\lambda}{\sigma_j - \lambda} C_j x = 0$$

All matrices symmetric, K>0, M>0 and C_j have small rank

Example 2: Discretization of parabolic PDE with time delay au

$$(-\lambda I + A + e^{-\tau \lambda}B)x = 0$$

NEP User Interface - Two Alternatives

Callback functions

The user provides code to compute $T(\lambda)$, $T'(\lambda)$

Split form

 $T(\lambda)x = 0$ can always be rewritten as

$$(A_0 f_0(\lambda) + A_1 f_1(\lambda) + \dots + A_{\ell-1} f_{\ell-1}(\lambda)) x = \left(\sum_{i=0}^{\ell-1} A_i f_i(\lambda)\right) x = 0,$$

with A_i $n \times n$ matrices and $f_i : \Omega \to \mathbb{C}$ analytic functions

- Often, the formulation from applications already has this form
- lacktriangle We need a way for the user to define f_i

FN: Mathematical Functions

The FN class provides a few predefined functions

- ► The user specifies the type and relevant coefficients
- Also supports evaluation of $f_i(X)$ on a small matrix

Basic functions:

1. Rational function (includes polynomial)

$$r(x) = \frac{p(x)}{q(x)} = \frac{\alpha_1 x^{n-1} + \dots + \alpha_{n-1} x + \alpha_n}{\beta_1 x^{m-1} + \dots + \beta_{m-1} x + \beta_m}$$

2. Other: exp, log, sqrt, φ -functions

and a way to combine functions (with addition, multiplication, division or function composition), e.g.:

$$f(x) = (1 - x^2) \exp\left(\frac{-x}{1 + x^2}\right)$$

NEP Usage in Split Form

The user provides an array of matrices A_i and functions f_i

```
FNCreate(PETSC COMM WORLD.&f1): /* f1 = -lambda */
FNSetType(f1,FNRATIONAL);
coeffs[0] = -1.0; coeffs[1] = 0.0;
FNRationalSetNumerator(f1,2,coeffs);
FNCreate(PETSC_COMM_WORLD,&f2); /* f2 = 1 */
FNSetType(f2,FNRATIONAL);
coeffs[0] = 1.0;
FNRationalSetNumerator(f2.1.coeffs):
FNCreate(PETSC_COMM_WORLD,&f3);
                               /* f3 = exp(-tau*lambda) */
FNSetType(f3,FNEXP);
FNSetScale(f3,-tau,1.0);
mats[0] = A; funs[0] = f2;
mats[1] = Id; funs[1] = f1;
mats[2] = B; funs[2] = f3;
NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN);
```


Currently Available NEP Solvers

- 1. Single-vector iterations
 - ► Residual inverse iteration (RII) [Neumaier 1985]
 - Successive linear problems (SLP) [Ruhe 1973]
- 2. Nonlinear Arnoldi [Voss 2004]
 - Performs a projection on RII iterates, $V_{i}^{*}T(\tilde{\lambda})V_{j}y=0$
 - Requires the split form
- 3. Polynomial Interpolation: use PEP to solve $P(\lambda)x = 0$
 - $ightharpoonup P(\cdot)$ is the interpolation polynomial in Chebyshev basis
- 4. Contour Integral (CISS)
- 5. Rational Interpolation: NLEIGS [Güttel et al. 2014]

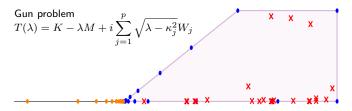
NLEIGS

Rational approximation

$$T(\lambda) \approx Q_N(\lambda) = \sum_{j=0}^{N} b_j(\lambda) D_j$$

with
$$b_j(\lambda)=\frac{1}{\beta_0}\prod_{k=1}^j\frac{\lambda-\sigma_{k-1}}{\beta_k(1-\lambda/\xi_k)}$$
 and $D_j=\frac{T(\sigma_j)-Q_{j-1}(\sigma_j)}{b_j(\sigma_j)}$

Interpolation nodes and poles $\{(\sigma_i, \xi_i)\}$ are Leja-Bagby points from discretized Σ and Ξ



Rational companion linearization (similar to PEP): $L_N(\lambda)y = 0$

MFN: Matrix Function

Many applications require the computation of y = f(A)v for

- ▶ Brownian dynamics simulation, $f(A) = A^{-\frac{1}{2}}$
- Ensemble Kalman filter, $f(A) = (A + A^{\frac{1}{2}})^{-1}$
- ▶ Time-dependent Schrödinger equation, $f(A) = e^A$
- lacktriangle Compute rightmost eigenvalues of A via e^A

(Rational) Krylov methods can be a good approach

$$AV_m = V_{m+1}\underline{H}_m, \quad y \approx ||v||_2 V_m f(H_m) e_1$$

What is needed:

- Efficient construction of the Krylov subspace
- ightharpoonup Computation of f(X) for a small dense matrix ightarrow FN

Auxiliary Classes

- ST: Spectral Transformation
- ► FN: Mathematical Function
 - Represent the constituent functions of the nonlinear operator in split form
 - ▶ Function to be used when computing f(A)v
- RG: Region (of the complex plane)
 - Discard eigenvalues outside the wanted region
 - Compute all eigenvalues inside a given region
- DS: Direct Solver (or Dense System)
 - ► High-level wrapper to LAPACK functions
- BV: Basis Vectors

BV: Basis Vectors

BV provides the concept of a block of vectors that represent the basis of a subspace; sample operations:

BVMult	$Y = \beta Y + \alpha X Q$
BVAXPY	$Y = Y + \alpha X$
BVDot	$M = Y^*X$
BVMatProject	$M = Y^*AX$
BVScale	$Y = \alpha Y$

Goal: to increase arithmetic intensity (BLAS-2 vs BLAS-1)

```
$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type vecs

BVMult 32563 1.0 3.2903e+01 1.0 6.61e+10 1.0 0.0e+00 0.0e+00 ... 2009

BVDot 32064 1.0 1.6213e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3128

$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type mat

BVMult 32563 1.0 2.4755e+01 1.0 8.24e+10 1.0 0.0e+00 0.0e+00 ... 3329

BVDot 32064 1.0 1.4507e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3497
```

Even better in block solvers (LOBPCG): BLAS-3, MatMatMult

Plans for Future Developments

Wish list:

- Add more solvers in EPS, PEP, NEP, MFN
- ► Improved GPU support in BV
- ▶ A new solver class for matrix equations, $AX + XA^T = C$
- Improved scalability
- Factorization-free spectrum slicing
- Multi-level eigensolvers

Acknowledgement:

