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Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

Linear eigenproblems (standard or generalized, real or
complex, Hermitian or non-Hermitian)

Also support for related problems
Azr = Mz Az = \Bzx Av; = oju; TNz =0

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas
http://slepc.upv.es

Current version: (released May 2016)
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Non-Linear Eigenvalue Problems
Additional Features

Google Scholar: 400 citations of main paper (ACM TOMS 2005)

Computational Physics, Materials Science, Electronic Structure ... .. 24 %
Computational Fluid Dynamics ........... .. ... . ... ... 13 %
PDE'’s, Numerical Methods ......... ... .. 10 %
Plasma Physics .. ... ... 9 %
Computational Electromagnetics, Electronics, Photonics ............ 8 %
Nuclear ENgineering . ......oooniiiii e 6 %
Earth Sciences, Oceanology, Hydrology, Geophysics ................. 6 %
Information Retrieval, Machine Learning, Graph Algorithms ......... 6 %
Structural Analysis, Mechanical Engineering ....................... 5%
ACOUSEICS ..t 4%
Visualization, Computer Graphics, Image Processing ................ 3%
Dynamical Systems, Model Reduction, Inverse Problems ............ 3%
Bioengineering, Computational Neuroscience ....................... 2%
ASErOPNYSICS .o 1%
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The user must choose the most appropriate solver for each
problem class

Problem class Model equation Module
Linear eigenproblem Ax =Xz, Ax = ABzx EPS
Quadratic eigenproblem (K+XC + XN M)x =0 T
Polynomial eigenproblem (A +AA; 4 --- + A9 A )z =0 PEP
Nonlinear eigenproblem TNz =0 NEP
Singular value decomp. Av =ou SVD
Matrix function y=f(Av MFN

1 QEP removed in version 3.5

Auxiliary classes: ST, BV DS, RG, FN
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PETSc SLEPc
Nonlinear Systems Time Steppers Nonlinear Eigensolver M. Function
Line Trust Backward N- .
Search | Region Euler Euler RK | BDF SLP | RII Arnoldi Interp.| CISS [NLEIGS| |Krylov | Expokit
Krylov Subspace Methods Polynomial Eigensolver SVD Solver
. . Q- | Linear- Cross | Cyclic [Thick R.
GMRES| CG | CGS |Bi-CGStab| TFQMR [Richardson|Chebychev TOAR Arnoldi | ization D Product| Matrix | Lanczos
Preconditioners Linear Eigensolver
Additive | - Block ) b | v | 1cc | w Krylov-Schur |Subspace| GD | JD |LOBPCG| CISS
Schwarz Jacobi
Matrices Spectral Transformation m FN
Compressed | Block | Symmetric .. | Shift-
Sparse Row | CSR | Block CSR Dense |CUSPARSE Shift invert Cayley | Precond. I I I
Vectors Index Sets
Standard CUDA | ViennaCL General | Block | Stride
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Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

EPS: Eigenvalue Problem Solver
Selection of wanted eigenvalues
Preconditioned eigensolvers

PEP: Polynomial Eigensolvers

o NEP: General Nonlinear Eigensolvers

© ©

MFEN: Matrix Function
Auxiliary Classes
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Compute a few eigenpairs (x, \) of

Ax = \x Ax = \Bx

where A, B can be real or complex, symmetric (Hermitian) or not

User can specify:
Number of eigenpairs (nev), subspace dimension (ncv)

Tolerance, maximum number of iterations

The solver
Selected part of spectrum
Advanced: extraction type, initial guess, constraints, balancing
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User code is independent of the selected solver

Basic methods
Single vector iteration: power iteration, inverse iteration, RQI
Subspace iteration with Rayleigh-Ritz projection and locking
Explicitly restarted Arnoldi and Lanczos

Krylov-Schur, including thick-restart Lanczos

Generalized Davidson, Jacobi-Davidson

Conjugate gradient methods: LOBPCG, RQCG

CISS, a contour-integral solver

External packages, and LAPACK for testing

... but some solvers are specific for a particular case:

LOBPCG computes smallest \; of symmetric problems
CISS allows computation of all A; within a region
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Largest/smallest magnitude, or real (or imaginary) part

Example: QC2534

-eps_nev 6
-epsncv 128

-eps_largest_imaginary

x Computed
eigenvalues
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RG: Region
A region of the complex plane (interval, polygon, ellipse, ring)

Used as an inclusion (or exclusion) region

X
. X X
Example: signl (NLEVP) n = 225, all
A lie at unit circle, accumulate at +1 )
-epsnev 6 i !
-rg_type interval
-rg_interval_endpoints -0.7,0.7,-1,1 » »
X
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Shift-and-invert is used to compute interior eigenvalues

Az = \Bx — (A—oB)™'Br = 0x

Trivial mapping of eigenvalues: 8 = (A —o)~!
Eigenvectors are not modified

Very fast convergence close to o

Things to consider:
Implicit inverse (A — o B)~! via linear solves
Direct linear solver for robustness

Less effective for eigenvalues far away from o
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Indefinite (block-)triangular factorization: A —oB = LDL”
A byproduct is the number of eigenvalues on the left of o (inertia)

v(A—oB)=v(D)
Spectrum Slicing strategy:
Multi-shift scheme that sweeps all the interval

Compute eigenvalues by chunks

Use inertia to validate sub-intervals

‘ | | | ‘

a

‘ | | | ‘ b
o1 g2 g3

C. Campos and J. E. Roman, “Strategies for spectrum slicing based on restarted Lanczos
methods”, Numer. Algorithms, 60(2):279-295, 2012.
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Multi-communicator version, one subinterval per partition
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Each group factorizes at one endpoint, sends inertia to neighbor
Load balancing of groups
Number of eigenvalues in each sub-interval should be similar

Allow user to provide hints about sub-interval boundaries
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CISS solver!: compute all eigenvalues inside a given region

Example: QC2534

-eps_type ciss

-rg_type ellipse
-rg_ellipse_center -.8-.1i
-rg_ellipse_radius 0.2

-rg_ellipse_vscale 0.1

!Contributed by Y. Maeda, T. Sakurai
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RG=ellipse, center=0, radius=1
1

Example: MHD1280 with CISS .
iy
Alfvén spectra: eigenvalues in
intersection of the branches soon= o 0
o
-1
-1 0 1
500 T+
RG=ring, center=0, radius=0.5,
. width=0.2, angle=0.25..0.5
1
-500 1

e

-200 -100 0 X
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14 H

Selection with %
user-defined function for

sorting eigenvalues ol sy

pdde_stability n = 225,

wanted eigenvalues: x

X

X =1 + # :

-50 0

PetscErrorCode MyEigenSort(PetscScalar ar,PetscScalar ai,
PetscScalar br,PetscScalar bi,PetscInt *r,void *ctx) {
PetscReal aa,ab;
PetscFunctionBeginUser;
aa = PetscAbsReal(SlepcAbsEigenvalue(ar,ai)-1.0);
ab = PetscAbsReal(SlepcAbsEigenvalue (br,bi)-1.0);
*r =aa>ab?1: (aa<ab?-1:0);
PetscFunctionReturn(0);

}

Arbitrary selection: apply criterion to an arbitrary user-defined
function ¢(\, ) instead of just A
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Pitfalls of shift-and-invert:
Direct solvers have high cost, limited scalability
Inexact shift-and-invert (i.e., with iterative solver) not robust

try to overcome these problems

Davidson-type solvers
Jacobi-Davidson: correction equation with iterative solver

Generalized Davidson: simple preconditioner application

E. Romero and J. E. Roman, “A parallel implementation of Davidson methods for large-
scale eigenvalue problems in SLEPc", ACM Trans. Math. Softw., 40(2):13, 2014.

Conjugate Gradient-type solvers (for GHEP)
RQCG: CG for the minimization of the Rayleigh Quotient
LOBPCG: Locally Optimal Block Preconditioned CG
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Increasing interest arising in many application domains

Structural analysis with damping effects
Vibro-acoustics (fluid-structure interaction)

Linear stability of fluid flows

QEP: quadratic eigenproblem, ()\QM +AMC+K)x=0
PEP: polynomial eigenproblem, P(\)z =0
REP: rational eigenproblem, P(A\)Q(\) "tz =0
NEP: general nonlinear eigenproblem, T'(A)x = 0
Test cases available in the NLEVP collection [Betcke et al. 2013]

Available as . acoustic_wave_1(2)d, butterfly, damped_beam,
pdde_stability, planar_.waveguide, sleeper, spring, gun, loaded_string
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PEP: P(\)z =0
Monomial basis:  P(\) = Ag + A1\ + A2A? + - + A \?
Companion linearization: L(\) = Ly — ALy, with L(A\)y = 0 and

I I T
r r TA
o I e I O
—Ay —A; - —Ag Ay zAd1

Compute an eigenpair (y, A) of L(\), then extract x from y

Pros: can leverage existing linear eigensolvers (PEPLINEAR)

Cons: dimension of linearized problem is dn
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Arnoldi relation: SV; = [VJ v] ﬁj S = Eflﬁo

Write Arnoldi vectors as v = vec [00, ..., v%71]

Block structure of S allows an implicit representation of the basis
Q-Arnoldi: V! = [Vi '] H,
TOAR: [Vj’ Ui] =Ujtd [G; gi]

Arnoldi relation in the compact representation:

S(Ia®Ujra1)Gj = (Ia® Ujra) [G; 9] H,

PEPTOAR is the default solver

Memory-efficient (also in terms of computational cost)

Many features: restart, locking, scaling, extraction, refinement

C. Campos and J. E. Roman, “Parallel Krylov solvers for the polynomial eigenvalue problem
in SLEPc”, SIAM J. Sci. Comput., 2016 (to appear).
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Set S, := ([,0 — Uﬁl)flﬁl

Linear solves required to extend the Arnoldi basis z = S,w

ol I F 07 T w0 ]
ol - 2! wt
I N :

o] 7 Ld—2 w2

Ao —A1 - —Agg —Ag] T [Aaw™

with Ad_g = Ag_o + ol and Ad—l =Ay_1+0Ay

From the block LU factorization, we can derive a simple recurrence
to compute 2z — involves a linear solve with P(o)
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3D pyramidal quantum dot discretized with finite volumes

Tsung-Min Hwang et al. (2004). “Numerical Simulation
of Three Dimensional Pyramid Quantum Dot,” Journal of
Computational Physics, 196(1): 208-232.

(———— h =04408

3,= 06170

3= 06170
v ¥

mll |

Quintic polynomial, n =~ 12 mill.

Scaling for tol=10"%, nev=>5, ncv=40 with
inexact shift-and-invert (bcgs+bjacobi)

32

64

128
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polynomial basis
P(A) = Aogo(A) + A191(A) + -+ + Aada(N)
Implemented for Chebyshev, Legendre, Laguerre, Hermite

Enables polynomials of arbitrary degree

iterative refinement
Disabled by default, only needed if bad accuracy

Implemented for single eigenpairs as well as invariant pairs

C. Campos and J. E. Roman, “Parallel iterative refinement in polynomial eigenvalue prob-
lems”, Numer. Linear Algebra Appl., 2016 (to appear).
not based on linearization

PEPJD: Jacobi-Davidson for polynomial eigenproblems, can
compute several eigenvalues via deflation [Effenberger 2013]
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T:Q — C™" is a matrix-valued function analytic on Q c C

: Rational eigenproblem arising in the study of free
vibration of plates with eIasticaIIy attached masses

—K:E—I—)\M.T—}-Z

All matrices symmetric, K > 0, M > 0 and C} have small rank

. Discretization of parabolic PDE with time delay 7

(=M +A+e ™ B)z=0
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The user provides code to compute T'(\), T"(\)

T(A)z = 0 can always be rewritten as
-1

(AofoN) +ALfI(N)+- -+ A1 fer1 (V) z = (Z Az’fi()‘)> z =0,
=0

with A; n X n matrices and f; : 2 — C analytic functions
Often, the formulation from applications already has this form

We need a way for the user to define f;
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The FN class provides a few predefined functions
The user specifies the type and relevant coefficients
Also supports evaluation of f;(X) on a small matrix
Basic functions:

Rational function (includes polynomial)

plz) oz 4t a1z,

Other: exp, log, sqrt, ¢-functions

and a way to functions (with addition, multiplication,
division or function composition), e.g.:

F) = (1- x2>exp( ‘“”” )

14 22

28/36



Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

The user provides an array of matrices A; and functions f;

FNCreate (PETSC_COMM_WORLD, &f1) ; /* f1
FNSetType (£1,FNRATIONAL) ;

coeffs[0] = -1.0; coeffs[1] = 0.0;
FNRationalSetNumerator (f1,2,coeffs);

-lambda */

FNCreate (PETSC_COMM_WORLD, &£f2) ; /x £2
FNSetType (£2,FNRATIONAL) ;

coeffs[0] = 1.0;

FNRationalSetNumerator (£2,1,coeffs);

1 %/

FNCreate (PETSC_COMM_WORLD, &f3) ; /* £3 = exp(-tau*lambda) */
FNSetType (£3,FNEXP) ;
FNSetScale(f3,-tau,1.0);

mats[0] = A; funs[0] = f2;
mats[1] = Id; funs[1] = f1;
mats[2] = B; funs[2] = £3;
NEPSetSplitOperator (nep,3,mats,funs,SUBSET_NONZERO_PATTERN) ;
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Single-vector iterations
Residual inverse iteration (RIl) [Neumaier 1985]
Successive linear problems (SLP) [Ruhe 1973]

Nonlinear Arnoldi [Voss 2004]
Performs a projection on Rl iterates, V]*T(S\)V]y =0
Requires the split form

Polynomial Interpolation: use PEP to solve P(\)z =0
P(-) is the interpolation polynomial in Chebyshev basis

Contour Integral (CISS)

Rational Interpolation: NLEIGS [Giittel et al. 2014]
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Rational approximation T(A) = Qn(A) = Z;V:o bj(A)D;
: A—0p-1 T(0j)=Qj-1(0;)
th b;( and D; = —1——

" H - Be(1 - Nén) bito5)

Interpolation nodes and poles {(0;,&;)} are Leja-Bagby points
from discretized ¥ and =

Gun problem g X x !
X
T(\) =K — AM+ZZ A — K2W;
j=1
L]
L]

0 & X
. o comt o X XX X-XX-oo—X— % KXo

Rational companion linearization (similar to PEP): Ly (A)y =0
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Many applications require the computation of y = f(A)v for
Brownian dynamics simulation, f(A) = A~ 2
Ensemble Kalman filter, f(A) = (A + A2)~1
Time-dependent Schrédinger equation, f(A) = e4

Compute rightmost eigenvalues of A via e?

(Rational) Krylov methods can be a good approach
AV, = m1H Yy~ ||’L}H2me(Hm)€1

What is needed:
Efficient construction of the Krylov subspace

Computation of f(X) for a small dense matrix — FN
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: Spectral Transformation

: Mathematical Function
Represent the constituent functions of the nonlinear operator
in split form
Function to be used when computing f(A)v

: Region (of the complex plane)

Discard eigenvalues outside the wanted region
Compute all eigenvalues inside a given region

: Direct Solver (or Dense System)
High-level wrapper to LAPACK functions

: Basis Vectors
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BV provides the concept of a block of vectors that represent the
basis of a subspace; sample operations:

BVMult Y =8Y +aXQ
BVAXPY Y=Y +aX
BVDot M=Y*X
BVMatProject M =Y AX
BVScale Y =aY
Goal: to increase (BLAS-2 vs BLAS-1)
$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type vecs
BVMult 32563 1.0 3.2903e+01 1.0 6.61e+10 1.0 0.0e+00 0.0e+00 ... 2009
BVDot 32064 1.0 1.6213e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3128

$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type mat
BVMult 32563 1.0 2.4755e+01 1.0 8.24e+10 1.0 0.0e+00 0.0e+00 ... 3329
BVDot 32064 1.0 1.4507e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3497

Even better in block solvers (LOBPCG): BLAS-3, MatMatMult
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Wish list:
Add more solvers in EPS, PEP, NEP, MFN
Improved GPU support in BV
A new solver class for JAX + XAT =
Improved scalability
Factorization-free spectrum slicing

Multi-level eigensolvers

¥ COMPETITIVIDAD
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