Bringing PETSc to the Multi-Scale Simulation of Newtonian and non-Newtonian Free-Surface Flows

Juan Luis Prieto¹

¹Department of Energy Engineering, ETSII, Madrid

2nd International PETSc User Meeting 2016

Vienna (Austria), June 28th-30th

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PET

1 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

PETSc Meeting 2016

2 / 48

INDUSTRIALES

- 2 Multi-phase Newtonian/non-Newtonian flows
- 3 Bringing PETSe into Elementix
- In Numerical simulations
- 5 Conclusions and Future Work

2 / 48

IDUSTRIALES

- 2 Multi-phase Newtonian/non-Newtonian flows
- 3 Bringing PETSc into the mix
- **1** Numerical simulations
- 5 Conclusions and Future Work

2 / 48

DUSTRIALES

- 1 Motivation
- 2 Multi-phase Newtonian/non-Newtonian flows
- 3 Bringing PETSc into the mix
- **4** Numerical simulations
 - 5 Conclusions and Future Work

2 / 48

USTRIAL ES

- 1 Motivation
- 2 Multi-phase Newtonian/non-Newtonian flows
- 3 Bringing PETSc into the mix
- 4 Numerical simulations
- **5** Conclusions and Future Work

2 / 48

Challenges and techniques

Importance of free-surface flows

Scientific, engineering and artistic applications:

- Combustion.
- Polymer extrusion.
- Bubbles.

- Waves.
- Image reconstruction.
- Shape recognition, etc.

Numerical difficulties

- Different
 - densities/viscosities.
- Breaking up, merging.
- Area (volume) loss.

Available techniques

- Lagrangian schemes: MAC, ALE, SPH.
 - Eulerian schemes: VOF, LS.
 - Hybrid schemes: CLSVOF

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016

LES

Challenges and techniques

Importance of free-surface flows

Scientific, engineering and artistic applications:

- Combustion.
- Polymer extrusion.
- Bubbles.

- Waves.
- Image reconstruction.
- Shape recognition, etc.

Numerical difficulties

- Different densities/viscosities.
- Breaking up, merging.
- Area (volume) loss.

Available techniques

- Lagrangian schemes: MAC, ALE, SPH.
- Eulerian schemes: VOF, LS.
- Hybrid schemes: CLSVOF, HPLS.

PETSc Meeting 2016

LES

3 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

Challenges and techniques

Importance of free-surface flows

Scientific, engineering and artistic applications:

- Combustion.
- Polymer extrusion.
- Bubbles.

- Waves.
- Image reconstruction.
- Shape recognition, etc.

IMPENI

Numerical difficulties

- Different densities/viscosities.
- Breaking up, merging.
- Area (volume) loss.

Available techniques

- Lagrangian schemes: MAC, ALE, SPH.
- Eulerian schemes: VOF, LS.
- Hybrid schemes: CLSVOF, HPLS.

PETSc Meeting 2016

LES

3 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

Challenges and techniques

Importance of free-surface flows

Scientific, engineering and artistic applications:

- Combustion.
- Polymer extrusion.
- Bubbles.

- Waves.
- Image reconstruction.
- Shape recognition, etc.

IMPENDI

Numerical difficulties

- Different densities/viscosities.
- Breaking up, merging.
- Area (volume) loss.

Available techniques

- Lagrangian schemes: MAC, ALE, SPH.
- Eulerian schemes: VOF, LS.
- Hybrid schemes: CLSVOF, HPLS.

PETSc Meeting 2016

LES

3 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

Challenges and techniques

Importance of free-surface flows

Scientific, engineering and artistic applications:

- Combustion.
- Polymer extrusion.
- Bubbles.

- Waves.
- Image reconstruction.
- Shape recognition, etc.

MPENDI

Numerical difficulties

- Different densities/viscosities.
- Breaking up, merging.
- Area (volume) loss.

Available techniques

- Lagrangian schemes: MAC, ALE, SPH.
- Eulerian schemes: VOF, LS.
- Hybrid schemes: CLSVOF, HPLS.

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

PETSc Meeting 2016

3 / 48

LES

Non-Newtonian multi-phase flows _{Example}

Figure: After the impact of a d = 1.27 cm steel sphere falling from h0 = 70 cm, a large air bubble (about $2 cm^3$) entrained by the sphere rises through the fluid. The images are separated by $\Delta t = 33 ms$. [Reprinted from J. Non-Newtonian Fluid Mech, Vol. 135, B. Akers and A. Belmonte, 'Impact dynamics of a solid sphere falling into a viscoelastic micellarite fluid', Pages 97-108, Copyright (2006), with permission from Elsevier].

Multi-phase Newtonian/non-Newtonian flows 2

Multi-phase simulation Available methods

Multi-phase simulation

Available methods

Semi-Lagrangian, Finite Element Level Set

Main features I: method of the characteristics

Method of the characteristics

Semi-Lagrangian formulation of the Navier-Stokes equations¹.

Makes use of

• Equations of the characteristic curves:

$$\begin{split} &\frac{d\boldsymbol{X}(\boldsymbol{x},t;\tau)}{d\tau} = \boldsymbol{v}\left(\boldsymbol{X}(\boldsymbol{x},t;\tau),\tau\right); \qquad \boldsymbol{X}(\boldsymbol{x},t;t) = \boldsymbol{x}. \\ &\boldsymbol{X}(\boldsymbol{x},t;s) = \boldsymbol{x} - \int_{\boldsymbol{x}}^{t} \boldsymbol{v}\left(\boldsymbol{X}(\boldsymbol{x},s;\tau),\tau\right) d\tau; \ \boldsymbol{X}^{n} \equiv \boldsymbol{X}\left(\boldsymbol{x},t_{n+1};t_{n}\right). \end{split}$$

• Backward Difference Formula (BDF2) for temporal discretization of momentum equation.

Semi-Lagrangian, Finite Element Level Set Main features II: improved search-and-locate algorithm

Semi-Lagrangian, Finite Element Level Set Main features II: improved search-and-locate algorithm

Level-set method

General notes

Level-set approach

- Use of implicit function $\phi(\boldsymbol{x}(t), t)$.
- Interphase Γ computed as zero iso-contour of ϕ .
- Signed-distance function (*Reinitialization*).

Level-set method

General notes

Features and flaws

- Natural breaking-up and merging.
- Normal n available.
- Marker particles (hybrid approach).
- Extension to 3-d.
- Loss of area (volume).

IDUSTRIALES

Level-set method

Mathematical formulation

Definition and procedure

- **1** ϕ initialized as signed distance function ($\|\nabla \phi\| = 1$).
- 2 Iso-contours C: $\phi(\boldsymbol{x}(t), t) C = 0$.
- **3** Evolution of ϕ with flow field: $\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \boldsymbol{v} \cdot \nabla\phi = 0.$
- **4** Density, viscosity as function of ϕ : sharp integration across Γ_h .
- 6 Reinitialization procedure:
 - Prevents irregularities from developing at Γ_h .

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

- Flow-of-time eikonal equation ⁴.
- Solution inside a band (computationally efficient):

$$\begin{cases} \frac{D_{\boldsymbol{n}_{u}}u}{Dt} \equiv \frac{\partial u}{\partial t} + \boldsymbol{n}_{u} \cdot \nabla u = 0; \quad u\left(\boldsymbol{x}, 0\right) = u_{0}\left(\boldsymbol{x}\right) = \phi_{0}\left(\boldsymbol{x}\right); \\ \frac{D_{\boldsymbol{n}_{v}}v}{Dt} \equiv \frac{\partial v}{\partial t} + \boldsymbol{n}_{v} \cdot \nabla v = 0; \quad v\left(\boldsymbol{x}, 0\right) = v_{0}\left(\boldsymbol{x}\right) = -\phi_{0}\left(\boldsymbol{x}\right), \end{cases}$$

⁴Cheng and Tsai 2008, J. Comput. Phys.

PETSc Meeting 2016

9 / 48

Level-set method Mathematical formulation

Reinitialization procedure: two examples of ϕ_0

Level set functions after the eikonal reinitialization algorithm:
$$\begin{split} \phi_0(x,y) &= \exp\left(x+y\right)\left(x^2+y^2-\frac{1}{4}\right) \text{ (left panel), and} \\ \phi_0\left(x,y\right) &= \left[\sin\left(4\pi x\right)\sin\left(4\pi y\right)+2\right]\left[\exp\left(x^2+y^2-\frac{1}{4}\right)-1\right] \text{ (right panel).} \\ \text{Time step size } \tau &= 10^{-2}, \text{ number of time steps } N_\tau = 35, \text{ and grid size } h = 10^{-2}. \end{split}$$

• More on the eikonal redistancing...

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016 9 / 48

Particle Level-set method

Hybrid scheme

Concepts for marker particles

- Improves our previous work⁴.
- Incorporated into our semi-Lagrangian scheme.
- Used in under-resolved (sub-mesh) regions.
- Local level-sets try to "correct" the global ϕ .

- Particles follow fluid trajectories: $\frac{d\boldsymbol{x}_p}{dt} = \boldsymbol{v}(\boldsymbol{x}_p, t).$
- Radius $r_p = s_p \phi(\boldsymbol{x}_p),$ $r_{min} \leq r_p \leq r_{max}$ assigned to each particle.
- Particles initially placed in band around Γ; at outer region (*positive*, s_p = 1) and inner region (*negative*, s_p = -1)

Marker particles and LS $_{\rm Algorithm}$

Stages

- Error identification:
 Only *escaped* particles used to correct φ.
- Error quantification:

A *local level set* is defined for each particle.

• Correction of ϕ :

Auxiliary positive ϕ^+ and negative ϕ^- defined using positive and negative escaped particles⁵.

⁵Enright et al. 2002, J. Comput. Phys.

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PE

Marker particles and LS Algorithm

Finite element spaces

Full level set implementation

Finite element spaces

Discontinuous pressure space

Why a discontinuous pressure space?

- ✓ To better capture pressure jumps: Surface tension, with Laplace-Beltrami operator to by-pass curvature κ .
- \checkmark To reduce spurious currents (interface). \bullet More on Laplace-Beltrami...
- ✓ Not additional degrees of freedom: Locally enriched. Outside the interface, "old" pressure space⁶.

Non-Newtonian multi-phase flows

Micro-macro, multiscale approach

- "Polymer particles" scattered over the domain.
- Brownian dynamics simulation (stochastic approach).
- Two kinetic models: Hooke (Oldroyd-B) and FENE ('Finitely Extensible Nonlinear Elastic')⁷:

$$\begin{split} d\boldsymbol{Q} &= \left(\boldsymbol{\kappa} \cdot \boldsymbol{Q} - \frac{1}{2De} \boldsymbol{Q}\right) dt + \frac{1}{\sqrt{De}} d\boldsymbol{W}, \text{Hooke}; \\ d\boldsymbol{Q} &= \left(\boldsymbol{\kappa} \cdot \boldsymbol{Q} - \frac{1}{2De} \frac{\boldsymbol{Q}}{1 - \|\boldsymbol{Q}\|^{2}/b}\right) dt + \frac{1}{\sqrt{De}} d\boldsymbol{W}, \text{FENE}. \end{split}$$

- Polymer stress tensor τ_p (extra-stress tensor) in the momentum equation.
- Variance-reduced formulation (a la 'Brownian Configution Fields').
- Compactly Supported Radial Basis Function (CSRBF) reconstruction of τ_p⁸.

PETSc Meeting 2016

INDUSTRIALES ETSII UPM E クママ 14 / 48

⁷Öttinger 1996.

⁸Prieto 2016a, J. Non-Newtonian Fluid Mech. (juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows

- 2 Multi-phase Newtonian
- 3 Bringing PETSc into the mix
- 4 Numerical simulations
- 5 Conclusions and Future Worker

Why did I start using PETSc?

Because the multi-phase simulations were running SLOW.

INDUSTRIALES

Why did I start using PETSc?

Because the multi-phase simulations were running SLOW.

□ Actually, I was looking for a way to efficiently solve the Stokes problem resulting from the semi-Lagrangian discretization of the macroscopic equations in a FE setting.

Dimensionless form

Momentum and continuity equations

$$\begin{split} \int Re\rho \frac{D\boldsymbol{u}}{Dt} - \boldsymbol{\nabla} \cdot \left[\eta \left(\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^T \right) \right] + \boldsymbol{\nabla} p &= -\rho \boldsymbol{e}_z \frac{Re}{Fr^2} + \frac{c}{De} \boldsymbol{\nabla} \cdot \boldsymbol{\tau}_p + \frac{Re}{We} \kappa \delta_{\Gamma}(\phi) \boldsymbol{n}, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0; \\ \boldsymbol{u} \left(\boldsymbol{x}, 0 \right) &= \boldsymbol{u}_0 \left(\boldsymbol{x} \right) \quad \forall \boldsymbol{x} \in D, \\ \boldsymbol{u} \left(\boldsymbol{x}, t \right) &= \boldsymbol{0} \quad \text{on} \quad \delta D_{\text{no-slip}} \subset \delta D, \forall t \in (0, T), \\ \boldsymbol{u} \left(\boldsymbol{x}, t \right) \cdot \boldsymbol{n} &= 0 \quad \text{and} \quad \boldsymbol{n} \cdot \boldsymbol{\tau}_s \cdot \boldsymbol{t} = 0 \quad \text{on} \quad \delta D_{\text{free-slip}} = \delta D \quad \delta D_{\text{no-slip}}, \forall t \in (0, T). \end{split}$$

CULTUNE

Dimensionless groups

- Reynolds $Re = \frac{\rho_s UL}{\eta_s}$.
- Froude $Fr^2 = \frac{U^2}{gL}$.
- $We = \frac{\rho_s U^2 L}{\sigma}$ (σ the surface tension coefficient).

- Deborah $De = \frac{\lambda U}{L}$ (λ the relaxation time).
- Concentration (of the non-Newtonian fluid) $c = \frac{\lambda n k_B \Theta}{\eta_s}$. ^a

^{*a*}Note that:
$$c = \frac{1-\beta}{\beta} \left(\frac{b+5}{5}\right)$$
, with $\beta = \frac{\eta_s}{\eta_s + \eta_p^0}$.

B + (B +

-

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016 16 / 48

Dimensionless form

Momentum and continuity equations: time-space discretization

$$\begin{cases} \frac{3Re}{2\Delta t} \left(\boldsymbol{\rho}^*\left(\boldsymbol{\phi}_h^n\right) \boldsymbol{u}_h^n, \varphi_h\right) + \left(\boldsymbol{\eta}^*\left(\boldsymbol{\phi}_h^n\right) \nabla \boldsymbol{u}_h^n, \nabla \varphi_h\right) - \left(\boldsymbol{p}_h^n, \nabla \cdot \varphi_h\right) = \frac{2Re}{\Delta t} \left(\boldsymbol{\rho}^*\left(\boldsymbol{\phi}_h^n\right) \bar{\boldsymbol{u}}_h^{n-1}, \varphi_h\right) - \frac{Re}{Fr^2} \left(\boldsymbol{\rho}^*\left(\boldsymbol{\phi}_h^n\right) \bar{\boldsymbol{u}}_h^{n-2}, \varphi_h\right) - \frac{Re}{Fr^2} \left(\boldsymbol{\rho}^*\left(\boldsymbol{\phi}_h^n\right) \boldsymbol{e}_z, \varphi_h\right) + \frac{c}{De} \left(\nabla \cdot \boldsymbol{\tau}_{ph}^n, \varphi_h\right) + \frac{Re}{We} \left(\kappa_h^n \delta_{\Gamma_{h/2}}(\boldsymbol{\phi}_h^n) \boldsymbol{n}_h^n, \varphi_h\right), \forall \varphi_h \in \boldsymbol{V}_{h0}; \\ \left(\nabla \cdot \boldsymbol{u}_h^n, q_h\right) = 0, \; \forall q_h \in Q_h; \qquad \text{with} : (a, b) \equiv \int_D ab \, dx \end{cases}$$

Efficient solution of saddle-point problem

✓ Extremely ill-conditioned system (as $1/h \uparrow$, $\rho_1/\rho_2 \uparrow$, $\mu_1/\mu_2 \uparrow$):

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{U} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \boldsymbol{F} \\ \boldsymbol{0} \end{pmatrix},$$

✓ Some possibilities:

1 2

Uzawa-Preconditioned Conjugate Gradient [Dean and Glowinski 1993]. Iterated penalty [Gunzburger 1989].

Schur-based block-preconditioned PETSc FieldSplit [Balay et al. 2015].

Alternatives

PROS:

- Uzawa-PCG:
 - Easy to implement.
 - Good convergence for well-conditioned problems.

2 Iterated penalty:

- Robust (insensitive to condition number).
- Few (2,3) iterations.

In Petter FieldSplit:

- Excellent convergence.
- High versatility.

CONS:

Uzawa-PCG:

- Very poor convergence (useless) for ill-conditioned problems.
- **2** Iterated penalty:
 - High memory requirements.
 - Non-zero sparsity of BB^T (slow, sparse matrix-matrix product)
 - Very ill-conditioned $(A + 1/\varepsilon BB^T)$ to update U^k .
- 8 PETSc FieldSplit:
 - Implementation into existing code (PCFieldSplit interface).

IDUSTRIALES

Alternatives

PROS:

- Uzawa-PCG:
 - Easy to implement.
 - Good convergence for well-conditioned problems.

2 Iterated penalty:

- Robust (insensitive to condition number).
- Few (2,3) iterations.

In PETSc FieldSplit:

- Excellent convergence.
- High versatility.

Uzawa-PCG:

CONS:

- Very poor convergence (useless) for ill-conditioned problems.
- **2** Iterated penalty:
 - High memory requirements.
 - Non-zero sparsity of BB^T (slow, sparse matrix-matrix product)
 - Very ill-conditioned $(A + 1/\varepsilon BB^T)$ to update U^k .
- 8 PETSc FieldSplit:
 - Implementation into existing code (PCFieldSplit interface).

IDUSTRIALES
Efficient solution of saddle-point problem

Comparison of methods

Table: Comparison of the average number of iterations, time and memory requirements for the three proposed methods of solving the saddle-point problem in a rising bubble simulation

$\frac{\rho_1}{\rho_2}$	1/h	Uzawa			Iterated penalty			Field-split		
		Iters	Time(s)	Mem(%)	Iters	Time(s)	Mem(%)	Iters	Time(s)	Mem(%)
10 10^{2}	$40\\80\\160\\320$	54.7 57 52.3	0.6 2.8 11.9 52.5	0.8 2.4 8.8 32.1	22 22 22	0.25 1.5 9.9 71.3	1.1 4.1 17.6 78.2	8 10 12 15	$0.22 \\ 0.93 \\ 4.2 \\ 21.6 \\ 0.94$	$0.9 \\ 2.6 \\ 10.5 \\ 41.5$
103	$40 \\ 80 \\ 160 \\ 320$	$ \begin{array}{r} 141 \\ 151.7 \\ 157 \\ 156 \end{array} $	$1.4 \\ 6.7 \\ 30.5 \\ 130.9$	$0.8 \\ 2.3 \\ 8.6 \\ 35.1$	2 2 2 2 2	$0.25 \\ 1.5 \\ 9.9 \\ 71.4$	$1.0 \\ 4.1 \\ 17.5 \\ 80.5$	$ \begin{array}{r} 9 \\ 11 \\ $	$0.24 \\ 0.97 \\ 4.5 \\ 21.9$	$0.9 \\ 2.7 \\ 10.2 \\ 42.1$
10	$40 \\ 80 \\ 160 \\ 320$	$203.7 \\ 242.2 \\ 302.3 \\ 333$	$1.98 \\ 10.5 \\ 56.8 \\ 266.1$	$0.8 \\ 2.3 \\ 8.8 \\ 35.2$	$2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$0.25 \\ 1.5 \\ 9.9 \\ 73.8$	$1.1 \\ 4.1 \\ 17.6 \\ 80.9$	$\begin{array}{r}10.7\\12\\14.7\\18\end{array}$	$0.27 \\ 1.0 \\ 4.9 \\ 24.4$	$0.8 \\ 2.6 \\ 10.1 \\ 41.8$
Simu	ilatior	ns run	in a 4-cor	e, i7-3770k	@4.2 GI	Hz, with 3	32 GB DD	R3-RAN	/I@1666 M	

18 / 48

Efficient solution of saddle-point problem

PCFieldSplit: auxiliary structure

Structure defined for Stokes-like problem

/* Structure with all the information required to solve a saddle-point problem */
typedef struct

```
Mat K; /*MatNest matrix with 4 sub-matrices: K = [K00 K01; K10 K11]*/
Mat K_ij[4]; /*each of the four sub-matrices of block matrix "K"*/
Mat Pmat; /*MatNest precond-matrix: Pmat = [Pmat00 Pmat01; Pmat10 Pmat11]; */
Mat Pmat_ij[4]; /*each of the four sub-matrices of precond-matrix "Pmat"*/
Vec x; /*solution of system*/
Vec b; /*right hand side vector*/
KSP ksp; /*solver context*/
MatNullSpace nullsp; /*Nullspace for pressure (in Stokes solved by PCFieldSplit)*/
PC pc; /*preconditioner context*/
IS isg[2]; /* index sets (rows) of splits "0" and "1" (e.g. velocity, pressure)*/
}
PETSC Saddle point system;
```

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016 19 / 48

= DQC

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Efficient solution of saddle-point problem

PCFieldSplit: useful functions

/*Construct index sets, vectors for Stokes System*/ ierr = fun_petsc_construct_index_sets_PETSC_Stokes_system (&Stokes_Problem_system); /*Construct KSP and PC contexts for Stokes System*/ ierr = fun_petsc_construct_KSP_and PC_PETSC_Stokes_system (&Stokes_Problem_system); /*Construct RHS side for Stokes System*/ ierr = fun_petsc_construct_rhs_and_solution_vectors_PETSC_Stokes_system (&Stokes_Problem_system); /*Perform splitting of fields for preconditioner (after the type of PC has been setup*/

ierr = fun_petsc_construct_field_splits_PC_PETSC_Stokes_system (&Stokes_Problem_system); CHKERRQ(ierr);

Example function to build block matrix $K = [AB; B^T 0]$

イロト イポト イヨト イヨト

Efficient solution with PCFieldSplit

Definition and useful options I

LDU factorization [Elman et al. 2008, J. Comput. Phys.] of block matrix:

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}, \quad S \equiv -B^T A^{-1}B.$$

/* KSP00=preonly (cholesky, CHOLMOD); KSP11:preonly (lsc); ksp lsc: cg (ml(+asm)). */ char options_pc_stokes[] = "-stokes ksp_rtol 5.e-9 -stokes ksp_diagonal_scale \ -stokes ksp type fgmres -stokes pc type fieldsplit -stokes pc fieldsplit type schur -stokes pc fieldsplit schur fact type upper -stokes pc fieldsplit detect saddle poin -stokes_fieldsplit_0_pc_type cholesky \ -stokes fieldsplit 0 pc factor mat solver package cholmod \ -stokes fieldsplit 0 ksp type preonly -stokes fieldsplit 1 pc type lsc \ -stokes_fieldsplit_1_lsc_pc_type ml \ -stokes fieldsplit 1 lsc mg coarse pc factor shift type NONZERO \ -stokes_fieldsplit_1_lsc_mg_levels_1_pc_type asm \ -stokes_fieldsplit_1_lsc_mg_levels_2_pc_type asm \ -stokes fieldsplit 1 lsc mg levels 3 pc type asm \ -stokes_fieldsplit_1_lsc_mg_levels_4_pc_type asm \ -stokes fieldsplit 1 lsc mg levels 5 pc type asm \ -stokes_fieldsplit_1_lsc_ksp_max_it 3 -stokes_fieldsplit_1_lsc_ksp_type cg -stokes_fieldsplit_1_lsc_ksp_constant_null_space NDUSTRIALES -stokes fieldsplit 1 ksp type preonly";

イロト イヨト イヨト イヨト

Efficient solution with PCFieldSplit

Definition and useful options II

/* ...KSP11:preonly (lsc), ksp lsc: preonly (lu,UMFPACK). */ char options pc stokes[] = "-stokes ksp monitor true residual \ -stokes ksp final residual \ -stokes ksp monitor -stokes ksp converged reason -stokes ksp rtol 5.e-9 \ -stokes ksp view -stokes ksp type gcr \ -stokes_ksp_initial_guess_nonzero false \ -stokes pc type fieldsplit -stokes pc fieldsplit schur precondition self \ -stokes pc fieldsplit type schur -stokes pc fieldsplit schur fact type upper \ -stokes pc fieldsplit detect saddle point \ -stokes_fieldsplit_0_pc_type cholesky \ -stokes fieldsplit 0 pc factor mat solver package cholmod \ -stokes fieldsplit 0 ksp type preonly -stokes fieldsplit 1 pc type lsc \ -stokes fieldsplit 1 lsc pc type lu \ -stokes fieldsplit 1 lsc ksp type preonly \ -stokes_fieldsplit_1_lsc_pc_factor_mat_solver_package umfpack \ -stokes_fieldsplit_1_lsc_ksp_constant null space -stokes fieldsplit 1 ksp type preonly";

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016 22 / 48

E DQC

Efficient solution with PCFieldSplit

Definition and useful options III

/* ... KSP11:preonly (lsc); ksp lsc: fgmres (asm). */ char options_pc_stokes[] = "-stokes_ksp_converged reason \ -stokes ksp rtol 5.e-9 -stokes ksp type gcr \ -stokes pc type fieldsplit -stokes pc fieldsplit schur precondition self \ -stokes pc fieldsplit type schur \ -stokes pc fieldsplit schur fact type upper λ -stokes pc fieldsplit detect saddle point -stokes fieldsplit 0 pc type cholesky -stokes fieldsplit 0 pc factor mat solver package cholmod \ -stokes fieldsplit 0 ksp type preonly \ -stokes fieldsplit 1 pc type lsc -stokes fieldsplit 1 lsc pc type asm \ -stokes fieldsplit 1 lsc ksp type fgmres \ -stokes fieldsplit 1 lsc ksp constant null space \ -stokes fieldsplit 1 ksp type preonly -stokes fieldsplit 1 ksp monitor";

▶ Makefile

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016

23 / 48

Efficient solution of linear systems with PETSc

Some Remarks

Improvement over Uzawa-PCG without PETSc

() Moderate density and viscosity ratios (10). Grid size 1/h = 160:

UMPENDL)

Improvement over Uzawa-PCG without PETSc

9 Moderate density and viscosity ratios (10). Grid size 1/h = 160:

• From 23 hours to 1.5 hours ($\approx 15 \times$).

UMPENDU

Improvement over Uzawa-PCG without PETSc

() Moderate density and viscosity ratios (10). Grid size 1/h = 160:

- From 23 hours to 1.5 hours ($\approx 15 \times$).
- **2** High density and viscosity ratios (10^3) . Grid size 1/h = 160:

UMPENDLJ

Improvement over Uzawa-PCG without PETSc

() Moderate density and viscosity ratios (10). Grid size 1/h = 160:

- From 23 hours to 1.5 hours ($\approx 15 \times$).
- **2** High density and viscosity ratios (10^3) . Grid size 1/h = 160:
 - From 8.3 days to 2.5 hours ($\approx 80 \times$).

UMPENDLI / ----

Improvement over Uzawa-PCG without PETSc

() Moderate density and viscosity ratios (10). Grid size 1/h = 160:

- From 23 hours to 1.5 hours ($\approx 15 \times$).
- **2** High density and viscosity ratios (10^3) . Grid size 1/h = 160:
 - From 8.3 days to 2.5 hours ($\approx 80 \times$).

3 Smaller grid size was unfeasible. • More data

Improvement over Uzawa-PCG without PETSc

Q Moderate density and viscosity ratios (10). Grid size 1/h = 160:

- From 23 hours to 1.5 hours ($\approx 15 \times$).
- **2** High density and viscosity ratios (10^3) . Grid size 1/h = 160:
 - From 8.3 days to 2.5 hours ($\approx 80 \times$).

3 Smaller grid size was unfeasible. • More data

PETSc also used in:

- Filtering: $(M + \varepsilon R)\hat{\phi} = M\phi$.
- Computation of $\kappa = \nabla \boldsymbol{u}$.
- Solution of saddle-point problem for CSRBFs: S is $l \times l, l = \{6, 10\}$ in $\{2D, 3D\}$.

$$\begin{pmatrix} A & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{c} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{0} \end{pmatrix} \Leftrightarrow \begin{cases} (-S) \, \boldsymbol{c} = (P^T A^{-1}) \, \boldsymbol{f}; \\ A \boldsymbol{\lambda} = \boldsymbol{f} - P \boldsymbol{c}. \end{cases}$$

24 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016

- 2 Multi-phase Newtonian/
- 3 Bringing PETSc into th
- 4 Numerical simulations
- 5 Conclusions and Future Work

Benchmark problem: rising bubble

Benchmark problem: rising bubble

Benchmark problem: rising bubble

Notes on multi-phase complex flows

- Demanding even in bi-dimensional problems.
- No analytical solutions possible.
- Numerical methods provide (slightly) different solutions at different regimes (⇒) Measurement of relevant magnitudes

25 / 48

Benchmark problem: rising bubble

Parameters

•
$$h_M = 1/50, Re = 35, Fr = 1.$$

- Left: $We = 10, \frac{\rho_2}{\rho_1} = 10^{-1}, \frac{\mu_2}{\mu_1} = 10^{-1}.$
- Right: $We = 125, \frac{\rho_2}{\rho_1} = 10^{-3}, \frac{\mu_2}{\mu_1} = 10^{-2}.$

VA ELECTION N

Non-Newtonian multi-phase flows

Buoyancy-driven bubbles

SLEIPNNIR method

• 'Semi-Lagrangian Ensemble Implementation of Particle level sets for Newtonian and non-Newtonian Interfacial Rheology'.¹⁰

 9
 Prieto 2015, J. Non-Newtonian Fluid Mech.

 10
 Prieto 2016b, Comput. Methods Appl. Mech. Engrg.

 (juanluis.prieto@upm.cs - UPM)
 Newt & non-Newt multi-phase flows

 PETSc Meeting 2016
 27 / 48

Benchmark problem - shapes of FENE rising bubble Cases: c = 1, De = 1 (blue); c = 3, De = 1 (green); c = 5, De = 3 (yellow); c = 9, De = 5 (red)

$$\frac{\rho_2}{\rho_1} = 10^{-1} = \frac{\mu_2}{\mu_1}.$$

$$\frac{\rho_2}{\rho_1} = 10^{-3}; \frac{\mu_2}{\mu_1} = 10^{-2}.$$

$$Re = 35, We = 10, Fr = 1.$$

$$Re = 35, We = 125, Fr = 1.$$

Benchmark problem - streamlines of FENE rising bubble Low density and viscosity ratios: $\frac{\rho_2}{\rho_1} = 10^{-1}$; $\frac{\mu_2}{\mu_1} = 10^{-1}$

$$c = 1, De = 1$$
 $c = 3, De = 1$ $c = 5, De = 3$ $c = 9, De = 5$

Benchmark problem - streamlines of FENE rising bubble High density and viscosity ratios: $\frac{\rho_2}{\rho_1} = 10^{-3}$; $\frac{\mu_2}{\mu_1} = 10^{-2}$

Benchmark problem - isocontours of τ_{n} Isocontours of shear-component au_{p12} and normal stress difference $au_{p11} - au_{p22}$

$$\tau_{p12}: \ c = 5, \ De = 3 \qquad \tau_{p12}: \ c = 9, \ De = 5 \qquad \tau_{p11} - \tau_{p22}: \qquad \tau_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad c = 9, \ De = 5 \qquad r_{p11} - \tau_{p22}: \\ c = 5, \ De = 3 \qquad r_{p11} - \tau_{p22}:$$

- 2 Multi-phase Newtonian/
- 3 Bringing PETSc into the
- 4 Numerical simulations
- 5 Conclusions and Future Work

Conclusions

• A multiscale semi-Lagrangian, particle level-set, micro-macro method for the simulation of Newtonian and non-Newtonian free surface flows has been developed.

Conclusions

- A multiscale semi-Lagrangian, particle level-set, micro-macro method for the simulation of Newtonian and non-Newtonian free surface flows has been developed.
- Multi-phase Newtonian and non-Newtonian flows can be investigated. Experimentally observed effects are reproduced.

Conclusions

- A multiscale semi-Lagrangian, particle level-set, micro-macro method for the simulation of Newtonian and non-Newtonian free surface flows has been developed.
- Multi-phase Newtonian and non-Newtonian flows can be investigated. Experimentally observed effects are reproduced.
- **PETSc** makes it possible: the code runs efficiently in a commodity PC.

Future work

- Addition of isotropic and anisotropic adaptivity. Mesh adapt
- Continuation LC investigations: Doi-Hess model, defects, biological sensors. Current LC bubble...
- **③** Extension to three-dimensional problems.
- **MPI** Parallelization of the code for distributed-memory machines...
- And/or implementation in many core (e.g. Intel[®] "Knights Landing") architectures?

Main features III:

Computation of trajectories and feet of characteristics

Time-adaptive integration

Applied to trajectories and feet of characteristic curves.

Basic scheme

• Adaptive version of the process:

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016

Main features III:

Computation of trajectories and feet of characteristics (ii)

Time-adaptive integration

Applied to trajectories and feet of characteristic curves.

Basic scheme

• Mid-point rule for Eq.6:

$$\boldsymbol{X}\left(\boldsymbol{x}, t_{n+1}; t_{l}\right) = \boldsymbol{x}_{i} - \varDelta t \boldsymbol{v}_{h}\left(\boldsymbol{X}\left(\boldsymbol{x}_{i}, t_{n+1}; t_{l} + \vartheta_{nl}\right), t_{l} + \vartheta_{nl}\right)$$

with $\vartheta_{nl} \equiv \frac{(n+1-l) \varDelta t}{2}.$

• Extrapolation formula for velocity:

$$\boldsymbol{v}_h\left(\cdot,t_l+\vartheta_{nl}\right) = \begin{cases} \frac{3}{2}\boldsymbol{v}_h(\cdot,t_n) - \frac{1}{2}\boldsymbol{v}_h(\cdot,t_{n-1}) \ , \ l=n,\\ \boldsymbol{v}_h(\cdot,t_n) \ , \ l=n-1. \end{cases}$$

36 / 48

Main features III:

Computation of trajectories and feet of characteristics (iii)

Basic scheme (cont.)

• Fixed point iterative algorithm for:

$$\boldsymbol{\varepsilon}(\boldsymbol{x}_i, t_{n+1}; t_l) = \Delta t \boldsymbol{v}_h \left(\boldsymbol{x}_i - \frac{1}{2} \boldsymbol{\varepsilon}(\boldsymbol{x}_i, t_{n+1}; t_l), t_l + \vartheta_{nl} \right)$$

with $\boldsymbol{\varepsilon}(\boldsymbol{x}_i, t_{n+1}; t_l) \equiv \boldsymbol{x}_i - \boldsymbol{X}(\boldsymbol{x}_i, t_{n+1}; t_l).$

Eikonal redistancing

Reinitialization algorithm and convergence rates

Algorithm 1: Reinitialization scheme by time-dependent eikonal equation.

Data: Scalar fields u, v; level set function ϕ_0 ; interface Γ ; subdomains D_1 ($\boldsymbol{x} \in D, \phi_0$ (\boldsymbol{x}) > 0) and $D_2(\boldsymbol{x} \in D, \phi_0(\boldsymbol{x}) < 0);$ time step size $\Delta \tau$; number of time steps $N_{\tau};$ points $\left\{ \boldsymbol{x}_{\Sigma_T} \right\}$ inside band Σ_T^{sw} of semi-width $sw = T_{end} = N_{\tau} \Delta \tau$ around Γ . **Result**: Signed distance function $d(\boldsymbol{x}), \forall \boldsymbol{x} \in \{\boldsymbol{x}_{\Sigma_{\mathcal{D}}}\}$. 1 assign $u^{0}(\boldsymbol{x}) = \phi_{0}, v^{0}(\boldsymbol{x}) = -\phi_{0}.$ 2 for time step $n = 1 : N_{\tau}$ do **build** normals $\boldsymbol{n}_{u}^{n}, \boldsymbol{n}_{v}^{n}$ of u^{n}, v^{n} , for $\boldsymbol{x} \in \Sigma_{F}^{sw}$, by the second-order method. з **compute** feet of characteristic curves $\boldsymbol{X}_{\boldsymbol{n}_u}^n, \boldsymbol{X}_{\boldsymbol{n}_u}^n$ of $\frac{D_{\boldsymbol{n}_u}^n}{D_t}, \frac{D_{\boldsymbol{n}_v}^n}{D_t}$ 4 set u^{n*} , v^{n*} as the quadratically interpolated solution of u^n , v^n at $X^n_{n_u}$, $X^n_{n_v}$. 5 update $u^{n+1} = u^{n*}, v^{n+1} = v^{n*}$. 6 $\textbf{identify and store mesh points } \hat{\boldsymbol{x}}_{u,i}^{n}, \, \hat{\boldsymbol{x}}_{v,i}^{n} \text{ with change of sign in } \Big[u^{n}(\boldsymbol{x}), u^{n+1}(\boldsymbol{x}) \Big], \, \Big[v^{n}(\boldsymbol{x}), v^{n+1}(\boldsymbol{x}) \Big],$ 7 respectively. s end 9 for mesh points with change of sign $\hat{\boldsymbol{x}}_{u,i}^n$, $\hat{\boldsymbol{x}}_{v,i}^n$ do **build** Akima spline for set of values $\{n\Delta\tau, u^n(\boldsymbol{x})\}, \{n\Delta\tau, v^n(\boldsymbol{x})\}$. 10 **compute** $\boldsymbol{x}_{u}^{r}, \boldsymbol{x}_{v}^{r}$ roots of Akima splines by iterative method, and 11 set $d(\hat{\boldsymbol{x}}_{n}^{n}) = \boldsymbol{x}_{n}^{r}, \ d(\hat{\boldsymbol{x}}_{n}^{n}) = -\boldsymbol{x}_{n}^{r}.$ 12 13 end

Eikonal redistancing

Reinitialization algorithm and convergence rates

Eikonal redistancing

Reinitialization algorithm and convergence rates

Table: Convergence rates p when using Algorithm 1 for the reinitialization of a level set function $\phi_0(x, y) = \exp((x + y)(x^2 + y^2 - \frac{1}{4})$ and different mesh refinement, interpolant and approximation type.

1/h	$p_l^{ m linear}$	$p_q^{ m linear}$	$p_l^{ m cubic}$:	$p_q^{ ext{cubic}}$	p_l^{Akima}	p_q^{Akima}
$100 \\ 200 \\ 400 \\ 800$	$1.00 \\ 1.05 \\ 1.00 \\ 1.01$	$1.82 \\ 1.86 \\ 1.92 \\ 1.99$	$1.01 \\ 1.04 \\ 1.00 \\ 1.01$	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	$1.01 \\ 1.04 \\ 1.00 \\ 1.01$	$1.78 \\ 1.95 \\ 1.97 \\ 1.97$

Table: Convergence rates p when using Algorithm 1 for the reinitialization of a level set function $\phi_0(x, y) = [\sin(4\pi x)\sin(4\pi y) + 2] \left[\exp\left(x^2 + y^2 - \frac{1}{4}\right) - 1\right]$ in a band Σ_{Γ}^{sw} of semi-width sw = 0.301636.

1/h	$p_l^{\rm linear}$	p_q^{linear}	$p_l^{\rm cubic}$	$p_q^{\rm cubic}$	$p_l^{\rm Akima}$	p_q^{Akima}	
$100 \\ 200 \\ 400 \\ 800$	$0.56 \\ 0.79 \\ 0.87 \\ 0.91$	$1.78 \\ 1.43 \\ 1.64 \\ 1.89$	$0.54 \\ 0.79 \\ 0.87 \\ 0.91$	$1.29 \\ 1.03 \\ 1.02 \\ 1.00$	$0.54 \\ 0.79 \\ 0.87 \\ 0.91$	$1.69 \\ 1.44 \\ 1.70 \\ 1.89$	
						▶ ★ 콜 ▶ ★ 콜 ▶	E Dac

38 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016

Surface tension implementation

Laplace-Beltrami operator

Properties and notation

- Identity function: id; Laplace-Beltrami operator (or surface Laplacian): $\underline{\Delta}$; surface gradient: $\underline{\nabla}$; tangential projection tensor: $P = I n_h \otimes n_h$.
- Equalities: $\int_{\Gamma} \kappa \boldsymbol{n} \cdot \varphi \, d\Gamma = \int_{\Gamma} \underline{\boldsymbol{\Delta}} \boldsymbol{i} \boldsymbol{d}_{\Gamma} \cdot \varphi \, d\Gamma = -\int_{\Gamma} \underline{\boldsymbol{\nabla}} \boldsymbol{i} \boldsymbol{d}_{\Gamma} \cdot \underline{\boldsymbol{\nabla}} \varphi \, d\Gamma = -\int_{\Gamma} \boldsymbol{P} \cdot \boldsymbol{\nabla} \varphi \, d\Gamma.$
- Explicit scheme:

$$\boldsymbol{f}_{\sigma h}^{*n} = -\frac{Re}{We} \sum_{i=0}^{N_{\Gamma_{h/2}}} \int_{\Gamma_{h/2}^{i}} \left(\boldsymbol{I} - \boldsymbol{\tilde{h}}_{i}^{n} \otimes \boldsymbol{\tilde{h}}_{i}^{n}\right) : \boldsymbol{\nabla} \varphi_{h} \, d\Gamma_{h/2}^{i}.$$

• Semi-implicit scheme:

$$\boldsymbol{f}_{\sigma h}^{*n} = -\frac{Re}{We} \sum_{i=0}^{N_{\Gamma_{h/2}}} \int_{\Gamma_{h/2}^{i}} \left[\left(\boldsymbol{I} - \boldsymbol{\tilde{n}}_{i}^{n} \otimes \boldsymbol{\tilde{n}}_{i}^{n} \right) + \Delta t \boldsymbol{\nabla} \boldsymbol{u}^{n+1} \cdot \left(\boldsymbol{I} - \boldsymbol{\tilde{n}}_{i}^{n} \otimes \boldsymbol{\tilde{n}}_{i}^{n} \right) \right] : \boldsymbol{\nabla} \varphi_{h} \, d\Gamma_{h/2}^{i}.$$

INDUSTRIALES

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016 39 / 48

Solution of linear systems with PETSc

Some additional data

```
"Large" simulation on Xeon E5-2670 v3 (12 core, 30M Cache, 2.30 GHz), 128 GB RAM.
1/h = 640, \rho_1/\rho_2 = 10^3.
                            (stokes fieldsplit 0
 Mat Object:
                                                                    1 MPI processes
   type: seqaij
   rows=6561282, cols=6561282
   total: nonzeros=1,50794e+08, allocated nonzeros=1,50794e+08
 Mat Object:
               1 MPI processes
   type: nest
   rows=7382403, cols=7382403
     Matrix object:
       type=nest, rows=2, cols=2
       MatNest structure:
       (0,0) : type=seqaij, rows=6561282, cols=6561282
       (0,1) : type=segaij, rows=6561282, cols=821121
       (1.0) : type=segaij. rows=821121. cols=6561282
       (1.1) : type=segsbaii, rows=821121, cols=821121
```

Kap	DG (KOO KIII)	T. (1.1.1.)	M (CD)	m; ()(1)(1)	
KSP	PC (K00,K11)	Iters (1st time step)	Memory (GB)	Time (s) (1st ti	me step)
gcr (30 rest) (C fgmres (200 rest) (C gcr (15 rest) (C gcr (15 rest) (C	CHOLMOD,UMFPACK) CHOLMOD,UMFPACK) CHOLMOD,UMFPACK) cg(hypre), gcr(hypre)	50 50 53 59	59.1 59.6 57.5 53		233.5 252.5 238.6 1797.5
					INDUSTRIAL ETSII UPM
			• • • • • • • • • • • • • • • • • • •	· · · 문 · · · 문 · ·	ि≣ • १ ९(
(juanluis.prieto@up	m.es - UPM) Newt & 1	non-Newt multi-phase	flows PETS	Sc Meeting 2016	40 / 48
Algorithm for CSRBF implementation Computation of τ_n

Algorithm 2: Solution procedure for the reconstruction of τ_p by CSRBFs.

Data: Number of right-hand sides N_f; system matrices A, P of problem (24); matrix of right-hand sides \$\tilde{f} \equiv (f_1|...|f_{N_f})\$.
Result: Solution matrices \$\tilde{\lambda} \equiv (\lambda_1|...|\lambda_{N_f})\$ and \$\tilde{c} \equiv (c_1|...|c_{N_f})\$.
solve A\$\tilde{X} = \$\tilde{f}\$, using CHOLMOD;
compute \$\tilde{Y} = P^T \$\tilde{X}\$, using cblas_dgemm;
solve A\$\tilde{X} = \$\tilde{f}\$, using CHOLMOD;
compute \$Y = P^T \$\tilde{X}\$, using cblas_dgemm;
solve \$Y \vec{c} = \$\tilde{Y}\$, using cblas_dgemm;
solve \$Y \vec{c} = \$\tilde{f}\$, using cblas_dgemm;
solve \$A \tilde{\beta} = \$\tilde{f}\$, using cblas_dgemm;

$$\begin{pmatrix} A & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{c} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{0} \end{pmatrix}, \text{ with } \begin{cases} A \equiv \{a_{ij}\} = \hat{\phi}_{\chi} \left(\|\boldsymbol{x}_i - \boldsymbol{x}_j\| \right), 1 \le i, j, \le N_{ens}; \\ P \equiv \{p_{ij}\} = \hat{p}_j \left(\boldsymbol{x}_i \right), 1 \le i \le N_{ens}; 1 \le j \le l; \\ \boldsymbol{\lambda} \equiv \{\lambda_i\}, \boldsymbol{f} \equiv \{f_i\}, 1 \le i \le N_{ens}; \boldsymbol{c} \equiv \{c_i\}, 1 \le \boldsymbol{\beta}_{ij} \}$$

PETSc Additional material I

Configuration

Example conf. for nauglamir current petsc optimized static OpenBLAS in PETSc 3.6.3. ./configure -with-blas-lib=[libopenblas.so,libpthread.so] -with-lapack-lib=libopenblas.so -with-cc=/usr/local/bin/gcc \hookrightarrow -with-cox-dialect=C++11 -with-fc=/usr/local/bin/gfortran COPTFLAGS=7-03 \hookrightarrow -march=native -mtune=native' CXXOPTFLAGS='-03 -march=native -mtune=native' \hookrightarrow FOPTFLAGS= '-03 -march=native -mtune=native' \hookrightarrow -with-suitesparse -with-suitesparse-dir=/usr/local -download-elemental -download-superlu -download-superlu-mt -download-metis -download-ptscotch \hookrightarrow -download-blacs -download-parmetis=1 -download-ml -download-fiat \hookrightarrow -download-triangle -download-generator -download-scientificpython \hookrightarrow -download-mpich -known-mpi-shared-libraries -with-shared-libraries=0 \hookrightarrow -download-scalapack -download-mumps -with-openmp -with-pthreadclasses \hookrightarrow -download-superlu dist -download-hypre -download-pastix -with-debugging=0 \hookrightarrow

42 / 48

PETSc Additional material II Makefile

Makefile for nauglamir_current_petsc_optimized_static_OpenBLAS in PETSc 3.6.3.

```
COMPILER = gcc -fopenmp -Wall -03 -std=gnu99 -march=native

\hookrightarrow -I/opt/PETSc_library/petsc/nauglamir_current_petsc_optimized_static_OpenBLAS/include

\hookrightarrow -I/opt/PETSc_library/petsc/include
```

```
LTBS
            = -static -L/opt/PETSc library/petsc/nauglamir current petsc optimized static OpenBLAS/lib -lpetsc
        -lgomp -lX11 -lxcb -lXau -lXdmcp -lpthread -lcmumps -ldmumps -lmpi -lmpifort -lsmumps -lzmumps
  \hookrightarrow
        -lmumps common -lmpifort -lpord -lscalapack -lHYPRE -lstdc++ -lsuperlu dist 4.1 -lsuperlu 4.3 -lpastix
  \hookrightarrow
        -lml -lstdc++ -lumfpack -lEl -lmpi -lpmrrr -lopenblas -lpthread -lcholmod -lcamd -lccolamd -lccolamd
  \hookrightarrow
        -lamd -lklu -lbtf -lsuitesparseconfig -lumfpack -lamd -ltriangle -lptesmumps -lscotch -lptscotch
  \hookrightarrow
       -lptscotcherr -lparmetis -lmetis -lquadmath -lz -ldl -lmpi -ldl -lgsl -lgslcblas -lopenblas
  \hookrightarrow
        -lpthread\
  \hookrightarrow
-lm -lgfortran -lquadmath -lrt -lpthread -lstdc++
EXECUTABLE = mm test
OB.JECT
            = micro macro doi ls.o aritmeticas.o calculo_matrices.o calculo_matrices2.o caracteristicas.o
  \hookrightarrow
        crear.o doi hess fun.o funciones.o fun micro macro.o fun micro macro2.o fun micro macro3.o
       fun level set.o fun level_set2.o fun_level_set3.o fun_stokes.o manipular_malla.o rand_knuth.o
  \hookrightarrow
        rand knuth int.o resolver sistemas.o fun petsc.o fun petsc2.o fun petsc3.o kdtree.o
  \hookrightarrow
$(EXECUTABLE): $(OBJECT)
        $(COMPILER) -0 $(EXECUTABLE) $(OBJECT) $(LIBS)
       %.c
        $(COMPILER) -0 $*.0 -c $*.c
                                                                                                               IDUSTRIALES
                                                                                            A 3 1 A 3 4
```

PETSc -Additional material III

Eclipse

Eclipse configuration for nauglamir_current_petsc_optimized_static_OpenBLAS in PETSc 3.6.3.

• 🗟 🙆 •	% - ₿ × ⊳	0.843.9		€ • 6 • 10 •	0 - 9 - 9 - 9	? - 🗉 🕯	1 🌙 😒 🕴 😌 🔻 😵	• \$> • \$> •	Quick	Access	🕄 C/C++ 🖏	. Debug
Yrgject Biplarer 32 Arca Litera Doub Branes Dincludes Debug Preintes P	stempfiles	(a) mirror means 3094 3095 3096 3097 3098 3099 3100 3101 3102 3102 3102 3102 3102 3102	<pre>def Hi (inc) (inc)</pre>	2 Comparison of the part of	Adoptions Adoption Configuration Configuration	do_matrice Properti Retive] Build Steps LLI ge XL XA Xa Xd ge XL Xa Xa Xd ge XL Xa Xa Xd ge XL Xa Xa Xd Hall Steps LLI LLI LLI LLI LLI LLI LLI LLI LLI LL	Develop, Unit Develop	Britis, delandi Dol 1935, delandi Gilmay Parsen	auditoryfunt	rearbeader.h	"is c + c configuration D D D D C C	
											INDUS ETSII U	f F TRLA /PM

Imposed flows Benchmark problems: slotted cylinder

Zalesak's slotted cylinder

- Benchmark problem for diffusive effects (corners, slot).
- Imposed velocity field: $\boldsymbol{v} \equiv (u, v) = (0.5 y, x 0.5).$
- Mesh with NE = 5248 elements $(h_M \approx 10^{-2})$.

Imposed flows Benchmark problems: single vortex

Single vortex flow

- Benchmark for stretching and formation of thin filaments.
- Particles do improve resolution, using a finer mesh.
- $v = (-\sin^2(\pi x)\sin(2\pi y), \sin^2(\pi y)\sin(2\pi x)).$

Adaptive Mesh Refinement

First steps

- ✓ Promising preliminary results (in collaboration: [Carpio and Prieto 2014, Comput. Methods Appl. Mech. Engrg. Carpio, Prieto, and Vera 2016, J. Comput. Phys.]).
 - Structures must be created and destroyed at each time step (sparsity changes).
- Ideas for optimization? (storage, time).
- Ideas for parallel (an)isotropic mesh generator? (Bottleneck with serial BAMG / MMG3D; Gmsh?).
- Alternatives to CHOLMOD? (STRUMPACK?). (MUMPS, HYPRE, ML: slower).

Zalesak (anisotropic adaptation): mesh and shape after 50 loops

Surface tension-free rising bubble (isotropic adaptation)

Benchmark problem

LC bubble in Newtonian fluid: effects of protein on idofs

External agent (e.g. proteins) distorts configurations

- Protein interaction: changes $\boldsymbol{u} \Rightarrow \boldsymbol{\tau}_{LC} \Rightarrow \Gamma \ (c = 50, Pe = 3).$
- Left: director for Re = 10, We = 35. Right: birefringence for Re = 35, We = 125.

- Allievi, A. and R. Bermejo (1997). "A Generalized Particle Search-Locate Algorithm for Arbitrary Grids". In: J. Comput. Phys. 132, pp. 157–166.
- (2000). "Finite element modified method of characteristics for the Navier-Stokes equations". In: Int. J. Numer. Meth. Fluids 32, pp. 439–464.
- Ausas, R. F., F. S. Sousa, and G. C. Buscaglia (2010). "An improved finite element space for discontinuous pressures". In: Comput. Methods. Appl. Mech. Engrg. 199, pp. 1019–1031.
- Balay, Satish et al. (2015). PETSc Web page. http://www.mcs.anl.gov/petsc.
- Bermejo, R. and J. L. Prieto (2013). "A Semi-Lagrangian Particle Level Set Finite Element Method for Interface Problems". In: SIAM J. Sci. Comput. 35.4, A1815–A1846.
- Carpio, J. and J. L. Prieto (2014). "An anisotropic, fully adaptive algorithm for the solution of convection dominated equations with semi-Lagrangian schemes". In: Comput. Methods Appl. Mech. Engrg. 273, pp. 77–99.
- Carpio, J., J. L. Prieto, and M. Vera (2016). "A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems". In: J. Comput. Phys. 306, pp. 19–42.
- Cheng, L. T. and Y. H. Tsai (2008). "Redistancing by flow of time dependent eikonal equation". In: J. Comput. Phys. 227, pp. 4002–4017.
- Dean, E. J. and R. Glowinski (1993). "On some finite element methods for the numerical simulation of incompressible viscous flow". In: *Incompressible Computational Fluid Dynamics*. Ed. by M. D. Gunzburger and R. A. Nicolaides. New York: Cambridge University Press, pp. 109–150.

- Elman, H. et al. (2008). "A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations". In: J. Comput. Phys. 227, pp. 1790–1808.
- Enright, D. et al. (2002). "A Hybrid Particle Level Set Method for Improved Interface Capturing". In: J. Comput. Phys. 183.1, pp. 83–116.
- Gunzburger, Max D. (1989). Finite Element Methods for Viscous Incompressible Flows. Academic Press. isbn: 978-0-12-307350-1.
- Öttinger, H. C. (1996). Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms. Berlin: Springer.
- Prieto, J. L. (2015). "Stochastic particle level set simulations of buoyancy-driven droplets in non-Newtonian fluids". In: J. Non-Newtonian Fluid Mech. 226, pp. 16–31.
- (2016a). "An RBF-reconstructed, polymer stress tensor for stochastic, particle-based simulations of non-Newtonian, multiphase flows". In: J. Non-Newtonian Fluid Mech. 227, pp. 90–99.
- (2016b). "SLEIPNNIR: A multiscale, particle level set method for Newtonian and non-Newtonian interface flows". In: Comput. Methods Appl. Mech. Engrg. 307, pp. 164–192.
- Prieto, J. L., R. Bermejo, and M. Laso (2010). "A semi-Lagrangian micro-macro method for viscoelastic flow calculations". In: J. Non-Newtonian Fluid Mech. 165, pp. 120–135.

48 / 48

(juanluis.prieto@upm.es - UPM) Newt & non-Newt multi-phase flows PETSc Meeting 2016