
To thread or not to thread?

Why PETSc favors MPI-only

Plenary Discussion

PETSc User Meeting 2016

Based on:
MS35 - To Thread or Not To Thread

April 13, 2016
SIAM PP, Paris

2

The Big PictureThe Big Picture

���������������

� The next large NERSC produc)on system “Cori” will be Intel
Xeon	 Phi	 KNL	 (Knights	 Landing)	 architecture:	
� >60 cores per node, 4 hardware threads per core
� Total of >240 threads per node

� Your applica)on is very likely to run on KNL with simple
port,	 but	 high	 performance is	 harder to	 achieve.

� Many applica)ons will not fit into the memory of a KNL
node using pure MPI across all HW cores and threads
because of the memory overhead for each MPI task.

� Hybrid MPI/OpenMP is the recommended programming
model,	 to	 achieve	 scaling	 capability	 and	 code	 portability.	 	

� Current NERSC systems (Babbage, Edison, and Hopper) can
help	 prepare your codes.

-‐	 85	 -‐	

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

3

The Big PictureThe Big Picture

����������� ����������������������������������

-‐	 119	 -‐	

1"

10"

100"

er
int
sp

sss
sm
"

de
stb
ul

ob
as
ai

tra
c1
2

xw
pq
"

as
se
m

pr
e4
n"

wt
2w
t1

am
sh
f

To
tal

Ru
nn

in
g
Ti
m
es

(s
)

Pure MPI" OMP=1 OMP=2 OMP=3 OMP=4

� Total number of MPI ranks=60; OMP=N means N threads per MPI rank.
� Original code uses a shared global task	 counter to deal with dynamic load balancing

with MPI ranks
� Loop parallelize top 10 rou)nes in TEXAS package (75%	 of total CPU)me) with

OpenMP. Has load-‐imbalance.
� OMP=1 has overhead over pure MPI.
� OMP=2 has overall best performance in many rou)nes.

��
�
��
���
��
��
��
��

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

4

The Big PictureThe Big Picture

�����������

� OpenMP is a fun and powerful language for shared
memory	 programming.	 	

� Hybrid MPI/OpenMP is recommended for many
next	 genera)on	 architectures	 (Intel	 Xeon	 Phi	 for
example), including NERSC-‐8 system, Cori.

� You should explore to add OpenMP now if your
applica)on is flat MPI only.

-‐	 123	 -‐	

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

5

The Big PictureThe Big Picture

“OpenMP is fun” is not a sufficient justification
for changing our programming model!

6

Threads and Library InterfacesThreads and Library Interfaces

Attempt 1

Library spawns threads

void library_func(double *x, int N) {
#pragma omp parallel for
for (int i=0; i<N; ++i) x[i] = something_complicated();

}

Problems

Call from multi-threaded environment?

void user_func(double **y, int N) {
#pragma omp parallel for
for (int j=0; j<M; ++j) library_func(y[j], N);

}

Incompatible OpenMP runtimes (e.g. GCC vs. ICC)

7

Threads and Library InterfacesThreads and Library Interfaces

Attempt 2

Use pthreads/TBB/etc. instead of OpenMP to spawn threads

Fixes incompatible OpenMP implementations (probably)

Problems

Still a problem with multi-threaded user environments

void user_func(double **y, int N) {
#pragma omp parallel for
for (int j=0; j<M; ++j) library_func(y[j], N);

}

8

Threads and Library InterfacesThreads and Library Interfaces

Attempt 3

Hand back thread management to user

void library_func(ThreadInfo ti, double *x, int N) {
int start = compute_start_index(ti, N);
int stop = compute_stop_index(ti, N);
for (int i=start; i<stop; ++i)
x[i] = something_complicated();

}

Implications

Users can use their favorite threading model

API requires one extra parameter

Extra boilerplate code required in user code

9

Threads and Library InterfacesThreads and Library Interfaces

Reflection

Extra thread communication parameter

void library_func(ThreadInfo ti, double *x, int N) {...}

Rename thread management parameter

void library_func(Thread_Comm c, double *x, int N) {...}

Compare:

void library_func(MPI_Comm comm, double *x, int N) {...}

Conclusion

Prefer flat MPI over MPI+OpenMP for a composable software stack

MPI automatically brings better data locality

