To thread or not to thread?
Why PETSc favors MPI-only

Plenary Discussion

PETSc User Meeting 2016

Based on:
MS35 - To Thread or Not To Thread
April 13,2016
SIAM PP, Paris

2

The Big Picture

The Big Picture L&

* The next large NERSC production system “Cori” will be Intel

Xeon Phi KNL (Knights Landing) architecture:
— >60 cores per node, 4 hardware threads per core
— Total of >240 threads per node

* Your application is very likely to run on KNL with simple
port, but high performance is harder to achieve.

* Many applications will not fit into the memory of a KNL
node using pure MPI across all HW cores and threads
because of the memory overhead for each MPI task.

* Hybrid MPI/OpenMP is the recommended programming
model, to achieve scaling capability and code portability.

* Current NERSC systems (Babbage, Edison, and Hopper) can
help prepare your codes.

U.5. DEPARTMENT OF Office of
a ENERGY science o

YEARS

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

3

The Big Picture

NWChem FMC, Add OpenMP to HotSpots (OpenMP #1)

100

® Pure MPI ® OMP=1 “ OMP=2 ® OMP=3 ™ OMP=4 ‘
NN >
P &S ES * &S

Running Times (s)

e

° 5 2
& g &

* Total number of MPI ranks=60; OMP=N means N threads per MPI rank.

« Original code uses a shared global task counter to deal with dynamic load balancing
with MPI ranks

* Loop parallelize top 10 routines in TEXAS package (75% of total CPU time) with
OpenMP Has load-imbalance.

* OMP=1 has overhead over pure MPI.
¢ OMP=2 has overall best performance in many routines.

e e
©ENERGY I

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

4

The Big Picture

summary (1) m YEARS

* OpenMP is a fun and powerful language for shared
memory programming.

* Hybrid MPI/OpenMP is recommended for many
next generation architectures (Intel Xeon Phi for
example), including NERSC-8 system, Cori.

* You should explore to add OpenMP now if your
application is flat MPI only.

R .
©ENERGY I

“OpenMP Basics and MPI/OpenMP Scaling”, Yun He, NERSC, 2015

The Big Picture
.

“OpenMP is fun” is not a sufficient justification
for changing our programming model!

SR F‘UMﬁJJ HL

Threads and Library Interfaces
.

Attempt 1

Library spawns threads

void library_func(double *x, int N) {
#pragma omp parallel for
for (int i=0; i<N; ++i) x[i] = something_complicated();

}

Problems

Call from multi-threaded environment?

void user_func (double xxy, int N) {

#pragma omp parallel for

for (int j=0; j<M; ++3j) library_func(yI[jl, N);
}

Incompatible OpenMP runtimes (e.g. GCC vs. ICC)

Threads and Library Interfaces

Attempt 2

Use pthreads/TBB/etc. instead of OpenMP to spawn threads
Fixes incompatible OpenMP implementations (probably)

Problems

Still a problem with multi-threaded user environments

void user_func (double xxy, int N) {

#pragma omp parallel for

for (int 3j=0; j<M; ++3j) library_func(yI[j]l, N);
}

Threads and Library Interfaces
.

Attempt 3

Hand back thread management to user

void library_func(ThreadInfo ti, double xx, int N) {
int start = compute_start_index(ti, N);
int stop = compute_stop_index(ti, N);
for (int i=start; i<stop; ++1i)
x[1] = something_complicated();

Implications

Users can use their favorite threading model
API requires one extra parameter
Extra boilerplate code required in user code 5

Threads and Library Interfaces
.

Reflection

Extra thread communication parameter

’void library_func(ThreadInfo ti, double *x, int N) {...} ‘

Rename thread management parameter

’void library_func(Thread_Comm c, double *x, int N) {...} ‘

Compare:

’void library_func (MPI_Comm comm, double *x, int N) {...} ‘

Conclusion

Prefer flat MPI over MPI+OpenMP for a composable software stack 4

A L J
AN S (VA

MPI automatically brings better data locality

