
Early Experiences and Future Directions with the 2nd
Generation ("Knights Landing") Intel® Xeon Phi™ Processor
and PETSc
Richard Tran Mills

June 29, 2016

PETSc User Meeting, Vienna, Austria

2

Notice and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Xeon, Intel Xeon Phi™ are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

*Other brands and names may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Optimization Notice
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

3

4

Acknowledgements

This presentation includes contributions from several Intel colleagues:

• Ruchira Sasanka, Karthik Raman, Chris Cantalupo, Jeff Hammond, Avinash
Sodani

And is informed by helpful discussions with core PETSc developers:

• Barry Smith, Matt Knepley, Mark Adams, Jed Brown, Karl Rupp

5

Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?

• More data parallelism/fine-grained parallelism AVX512 (512 bit vectors w/
FMA) coming in both Intel® Xeon Phi™ and Xeon® processors.

• More NUMA domains/level of storage hierarchy (DRAM NUMA domains,
MCDRAM, NVRAM, IO subsystem)

6

Trend: More parallelism, deeper hierarchies
Intel® Xeon Phi™ processors amplify importance of fine-grained parallelism, but
this direction holds for machines based on “conventional” CPUs as well:

• More cores/threads in socket and across machines
(on per-node basis, core counts becoming roughly equivalent)

Knights	
 Landing:	
 Next	
 Intel®	
 Xeon	
 Phi™	
 Processor

First self-boot Intel® Xeon Phi™
processor that is binary compatible
with main line IA. Boots standard
OS.

Significant improvement in scalar
and vector performance

Integration of Memory on package:
innovative memory architecture for
high bandwidth and high capacity

Integration of Fabric on package

Potential future options subject to change without notice.
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

8

What Knights Landing is NOT

• Not an accelerator

• Bootable CPU. No PCIe offload bottleneck.

• Not a GPU

• No CUDA vs. regular CPU source code divergence

• Easy to run complete application on KNL

• Not Knight’s Corner (previous generation Intel® Xeon Phi™)

• Fully out-of-order execution

• Mesh-on-die replaces ring bus

• KNL is dual-issue and can saturate both VPUs from a single thread.

• Greatly improved memory bandwidth, serial execution speed

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2
Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB
IO: 36 lanes PCIe* Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)
Vector1: up to 2 TF/s Linpack/DGEMM; 4.6 TF/s SGEMM

STREAM Triad1: MCDRAM up to 490 GB/s; DDR4 90 GB/s

Scalar2: Up to ~3x over current Intel® Xeon Phi™
co-processor 7120 (“Knights Corner”)

TILE

9

2 VPU

Core

2 VPU

Core

1MB
L2

CHA

Package

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For
more complete information visit http://www.intel.com/performance. Configurations:
1. Intel Xeon Phi processor 7250 (16GB, 1.4 GHz, 68-cores) running LINPACK (score 2000 GFLOPS),

DGEMM (score 2070 GFLOPS), SGEMM (4605 GFLOPS), STREAM (DDR4 = 90 GB/s and MCDRAM =
490 GB/s), 96 GB DDR4-2133 memory, BIOS R00.RC085, Cluster Mode = Quad, MCDRAM Flat or Cache,
RHEL* 7.0, MPSP 1.2.2, Intel MKL 11.3.2, Intel MPI 5.1.2, DGEMM 20K x 20K, LINPACK 100K x 100K size

2. Intel estimates based on estimated 1-user SPECint*_rate_base2006 comparing configuration 1 to Intel Xeon
Phi co-processor 7120A hosted on 2x Intel Xeon processor E5-2697 v3.Omni-path not shown

EDC EDC PCIe	

Gen	
 3

EDC EDC

Tile

DDR	
 MC DDR	
 MC

EDC EDC misc EDC EDC

36	
 Tiles	

connected	
 by	

2D	
 Mesh	

Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
R
4
	

C
H
A
N
N
E
L
S

3

D
D
R
4
	

C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2	
 x16
1	
 x4

X4	

DMI

Intel ISA
E5-­‐2600
(SNB1)

SSE*

AVX

E5-­‐2600v3
(HSW1)

SSE*

AVX

AVX2

AVX-­‐512CD

x87/MMX x87/MMX

7200
(KNL2)

SSE*

AVX

AVX2

x87/MMX

AVX-­‐512F

BMI

AVX-­‐512ER

AVX-­‐512PF

BMI

TSX

KNL implements all legacy instructions

AVX-512 Extensions
• 512-bit FP/Integer Vectors
• 32 regs, & 8 mask regs
• Gather/Scatter

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions

Common	
 ISA

1. Previous	
 Code	
 names	
 Intel®	
 Xeon®	
 processors
2. Intel®	
 Xeon	
 Phi™	
 processor

E5-­‐2600v4
(BDX1)

SSE*

AVX

AVX2

x87/MMX

BMI

TSX

Segment	
 Specific	
 ISA
10

KNL Mesh Interconnect
Mesh of Rings
§ Every row and column is a (half) ring
§ YX routing: Go in Y à Turn à Go in X
§ Messages arbitrate at injection and on turn

Cache Coherent Interconnect
MESIF protocol (F = Forward)

Core in F state can provide cached shared data
directly to requesting core without going to
main memory.
Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Cluster Mode: All-to-All
Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Most general mode. (Does not require
same memory capacity on both DDR
controllers.)

Lower performance than other modes.

Typical Read L2 miss
1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor
12

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Cluster Mode: Quadrant
Chip divided into four virtual Quadrants

Address hashed to a Directory in the
same quadrant as the Memory

Affinity between the Directory and
Memory

Lower latency and higher BW than all-
to-all. SW Transparent.

Used for all PETSc performance
numbers in this presentation.

13
1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1
2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Cluster Mode: Sub-NUMA Clustering (SNC)

Each Quadrant (Cluster) exposed as a
separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes.

SW needs to NUMA optimize to get
benefit.

14
1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1
2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM Modes
§ Cache mode

• No	
 source	
 changes	
 needed	
 to	
 use
• Misses	
 are	
 expensive	
 (higher	
 latency)

• Needs	
 MCDRAM	
 access	
 +	
 DDR	
 access

§ Flat mode
• MCDRAM	
 mapped	
 to	
 physical	
 address	
 space
• Exposed	
 as	
 a	
 NUMA	
 node	

• Use	
 numactl	
 -­‐-­‐hardware,	
 lscpu to	
 display	
 configuration
• Accessed	
 through	
 memkind	
 library	
 or	
 numactl

§ Hybrid
• Combination	
 of	
 the	
 above	
 two

• E.g.,	
 8	
 GB	
 in	
 cache	
 +	
 8	
 GB	
 in	
 Flat	
 Mode

KNL	
 Cores	

+	
 Uncore	

(L2)

MCDRAM
(as	

Cache)

DDR

KNL	
 Cores	

+	
 Uncore	

(L2)

MCDRAM
(as	
 Mem)

DDR

KNL	
 Cores	

+	
 Uncore	

(L2)

MCDRAM
(as	
 Cache)

DDR

MCDRAM
(as	
 Mem)

Physical	
 Addr Space

Physical	
 Addr Space

15

16

Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?

17

KSP ex56 (linear elasticity), default solvers

��

��

���

���

���

���

��� ��� ��� ��� ��� ��� ���

�
��
���
��
��
���
�
��
��
��
��
�

���������������

���

���������������������
����������

KNL	
 over	
 2X	
 faster	

than	
 dual-­‐socket	

Intel®	
 Xeon®	

processor	
 E5-­‐2697	

v4	
 (“Broadwell-­‐
EP”)	
 at	
 largest	

problem	
 size.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272
threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3
GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2

18

KSP ex56 (linear elasticity), default solvers

��

��

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ���

�
��
���
��
��
���
�
��
��
��
��
�

���������������

���

��������
���������������������

����������

Much faster
KNL solve times
are (mostly)
due to very
high bandwidth
of MCDRAM

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272
threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3
GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2

19

KSP ex56 (linear elasticity), default solvers

��
��
���
���
���

�������������� ������� ���������
��
���
�
��
��
�

���������������

��
��
���
���
���

�������������� ������� ���������
��
���
�
��
��
�

��������������

��
��
���
���
���

�������������� ������� ���������
��
���
�
��
��
�

����������������

Software and workloads
used in performance
tests may have been
optimized for
performance only on Intel
microprocessors.
Performance tests, such
as SYSmark and
MobileMark, are
measured using systems,
components, software,
operations and functions.
Any change to any of
those factors may cause
the results to vary. You
should consult other
information and
performance tests to
assist you purchases,
including the
performance of that
product when combined
with other products. Any
difference in system
hardware or software
design or configuration
may affect actual
performance. For more
information go to
http://www.intel.com/perf
ormance Configurations:
Intel® Xeon Phi™
processor 7250 68 core,
272 threads, 1400 MHz
core freq. Turbo mode
ON, 1700 MHz uncore
freq., MCDRAM 16 GB
7.2 GT/s, BIOS 10R00,
DDR4 96GB 2400 MHz,
Red Hat 7.2, quad cluster
mode, MCDRAM flat
memory mode; Dual
Socket ® processor E5-
2697 v4 2.3 GHz (Turbo
OFF) , 18 Cores/Socket,
36 Cores, 72 Threads
(HT on), DDR4 128GB,
2400 MHz, Red Hat 7.2

20

KSP ex42 (Stokes flow), fieldsplit Schur

1.8X faster!

Software and workloads
used in performance
tests may have been
optimized for
performance only on Intel
microprocessors.
Performance tests, such
as SYSmark and
MobileMark, are
measured using systems,
components, software,
operations and functions.
Any change to any of
those factors may cause
the results to vary. You
should consult other
information and
performance tests to
assist you purchases,
including the
performance of that
product when combined
with other products. Any
difference in system
hardware or software
design or configuration
may affect actual
performance. For more
information go to
http://www.intel.com/perf
ormance Configurations:
Intel® Xeon Phi™
processor 7250 68 core,
272 threads, 1400 MHz
core freq. Turbo mode
ON, 1700 MHz uncore
freq., MCDRAM 16 GB
7.2 GT/s, BIOS 10R00,
DDR4 96GB 2400 MHz,
Red Hat 7.2, quad cluster
mode, MCDRAM flat
memory mode; Dual
Socket ® processor E5-
2697 v4 2.3 GHz (Turbo
OFF) , 18 Cores/Socket,
36 Cores, 72 Threads
(HT on), DDR4 128GB,
2400 MHz, Red Hat 7.2

KNL run command: mpirun -n 64 numactl --membind=1 ./ex42-intel2016_knl_fast -stokes_pc_type fieldsplit
-stokes_pc_fieldsplit_type schur -log_view -mx 60

21

KSP ex56, GMRES + GAMG

��

��

��

��

��

��

��

��

��

��

��� ��� ��� ��� ��� ��� ���

�
��
���
��
��
���
�
��
��
��
��
��
�

���������������

��

���������������
���������������

����������
����������
����������
����������

• “Solve” phase is
quite fast on KNL

• Unoptimized setup
is comparatively
slow on KNL

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
purchases, including the performance of that product when combined with other products. Any difference in system hardware or software design or configuration may affect actual performance. For more
information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272 threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2
GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3 GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads
(HT on), DDR4 128GB, 2400 MHz, Red Hat 6.5

22

PFLOTRAN Regional Doublet
• PFLOTRAN problem analyzed

in 2014 WRR paper (doi:
10.1002/2012WR013483)

• Variably saturated regional
groundwater flow

• First order FV in space,
backward Euler in time.

• Used inexact Newton with
GMRES(30), block Jacobi,
ILU(0) on blocks

• Used 200 x 200 x 100 grid
(4 million total degrees of
freedom)

10
0

m

23

PFLOTRAN Regional Doublet • BDW vs KNL total times
comparable

• Orthogonalizations much
faster on KNL

• But MatMult and MatSolve
faster on BDW!

• Small work per row (~ 7
nonzeros; compare to ~80 in
KSP ex56) probably unable
to mask latency of gathering
x vector; reordering may
help.

• Jacobian formation faster on
BDW; vectorizaton work on
KNL probably needed

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you purchases, including the performance of that product when combined
with other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68
core, 272 threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor
E5-2697 v4 2.3 GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2

24

Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?

MCDRAM as Cache MCDRAM as Flat Mode
Upside

§ No software modifications required to get
bandwidth benefit (over DDR)

Downside

§ Less addressable memory

§ All memory is transferred as:
§ DDR -> MCDRAM -> L2

§ Misses need MCDRAM + DRAM access

§ Unpredictable performance due to conflict
misses when physical memory becomes
fragmented.

Upside

§ Maximum BW

§ Lower latency
§ i.e., no MCDRAM cache misses

§ Maximum addressable memory

§ Isolation of MCDRAM for high-performance
application use only

Downside

§ Software modifications (or interposer library)
required
§ to use DDR and MCDRAM in the same app

§ Which data structures should go where?

§ MCDRAM is a finite resource and tracking it adds
complexity

25

KNL Cores
+ Uncore
(L2)

MCDRAM
(as Cache)

DDR

KNL Cores
+ Uncore
(L2) DDR

MCDRAM
(as Mem)

MCDRAM Cache Hit Rate

MCDRAM performs well as cache for many workloads

Enables good out-of-box performance without memory tuning

Software and workloads
used in performance
tests may have been
optimized for
performance only on Intel
microprocessors.
Performance tests, such
as SYSmark and
MobileMark, are
measured using systems,
components, software,
operations and functions.
Any change to any of
those factors may cause
the results to vary. You
should consult other
information and
performance tests to
assist you purchases,
including the
performance of that
product when combined
with other products. Any
difference in system
hardware or software
design or configuration
may affect actual
performance. For more
information go to
http://www.intel.com/perf
ormance Configurations:
Intel SPECrate* and
Trinity* tests running 1P
Xeon Phi 7250 (KNL
68C), Quad-Cache,
default P*ratios (P0=1.6,
P1=1.4, PN=1.0), ICC-
16.0 internal compiler
release, AVX-512,
09.D03 BIOS

26

*Other names and brands may be claimed as the property of others

Performance for Flat vs. Cache Mode

Flat vs. Cache performance depends on workloads. Up to +60% performance, but in
some cases lower performance (HW does better job managing MCDRAM)

27

Source: Antonio Valles

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel SPECrate* and Trinity* tests running 1P
Xeon Phi 7250 (KNL 68C), Quad-Cache, default P*ratios (P0=1.6, P1=1.4, PN=1.0), ICC-16.0 internal compiler release, AVX-512, 09.D03 BIOS

*Other names and brands may be claimed as the property of others

• If footprint fits, can place entire application in MCDRAM using numactl(8).

• Can use AutoHBW interposer library to do automatic size threshold-based
placement in MCDRAM.

• Can do explicit placement:

• Fortran: !DEC$ ATTRIBUTES, FASTMEM :: A

• C: fv = (float *)hbw_malloc(sizeof(float) * 100),
or use underlying memkind (https://github.com/memkind) library:
a = (float *)memkind_malloc(MEMKIND_HBW_PREFERRED, size);

28

Using user-addressable high-bandwidth memory
In flat mode, MCDRAM is exposed as a separate NUMA node:
(libnuma, mmap() work just as for any NUMA node.)

29

Supporting multiple kinds of memory in PETSc
• Immediate concern is supporting user-addressable DRAM and MCDRAM. But

additional types of memory (e.g., 3D Xpoint™ NVRAM) will add further
complications.

• Simple option: Use size thresholds for automatic greedy allocation of high-
bandwidth memory.

• AutoHBW interposer (part of memkind library) does this, but we may want ability to
restrict such placement decisions to inside PETSc.

• Largest data structures tend to be most bandwidth-intensive; small ones can fit in
cache

30

Supporting multiple kinds of memory in PETSc
• More complicated: Add PetscAdvMalloc() that accepts an advisory context,

provide way to tag objects (Vec, Mat) to be used w/ associated malloc()s.

• Problem: Making the right placement decisions based on a priori reasoning may be
impossible

• Do placement/migration based on measured importance.

• Barry suggests counting VecGetArray[Read]()s.

• Perhaps also use ancillary data from hardware counters (e.g., memory bandwidth
measurements via uncore counters)?

• I propose adding some hardware counter support in the PETSc logging framework

• In many cases, decisions need to account for what is going on external to PETSc as
well. Optimal approach may need OS and/or middleware support.

• Linux provides move_pages(2), but this is not asynchronous

KNL and successors will be deployed in large systems
NERSC Cori ALCF Aurora

Intel	
 and	
 the	
 Intel	
 logo	
 are	
 trademarks	
 or	
 registered	
 trademarks	
 of	
 Intel	
 Corporation	
 or	
 its	
 subsidiaries	
 in	
 the	
 United	
 States	
 and	
 other	
 countries.	
 *	
 Other	
 names	
 and	
 brands	

may	
 be	
 claimed	
 as	
 the	
 property	
 of	
 others.	
 Products,	
 dates,	
 and	
 figures	
 may	
 be	
 preliminary	
 and	
 are	
 subject	
 to	
 change	
 without	
 any	
 notice.	
 Copyright	
 ©	
 2015,	
 Intel	

Corporation.

• ∼ 1400 dual socket nodes w/ Intel®
Xeon® v3 (“Haswell”) Processors, 16
cores per socket

• Over 9,300 single socket nodes w/ 2nd
gen Intel Xeon Phi Processors (“Knights
Landing”—KNL), w/ up to 16GB on-
package, high-bandwidth memory

• Cray Aries dragonfly topology
interconnect

• Over 50,000 nodes with 3rd gen Intel®
Xeon Phi™ Processors

• Over 8 PB aggregate on-package high-
bandwith memory and persistent
memory

• 2nd gen Intel® Omni-Path Architecture
with silicon photonics

• Intel® Lustre* filesystem, > 1 TB/s
throughput

31

32

Exposing Concurrency on Many Levels
On prior leadership-class machines, near-exclusive focus on flat MPI optimizations was often
sufficient.

Machines like Cori and Aurora require attention to many levels of concurrency:

1. Within single threads (vectorization)
§ Strategies similar to those on AVX2 CPUs apply.

2. Across shared memory on a node (usually OpenMP threads)
§ Codes often use OpenMP, but PETSc has returned to MPI only.

3. And across nodes on the interconnect (usually MPI)
§ MPI-3 introduces several new features that can help.
§ At scale, may ultimately need to re-think algorithms to reduce global communications.

(E.g., McInnes et al. 2014, Hierarchical Krylov and Nested Krylov Methods for
Extreme-Scale Computing, http://www.mcs.anl.gov/papers/P2097-0612.pdf)

Important: Must consider #2 with #3! MPI communications a big source of serialization.

33

Leveraging MPI-3 features for manycore MPPs

• MPI-3 introduces several features well-suited to manycore MPPs.
Two especially useful features (supported in Intel MPI 5.x):

• Shared memory windows

• Neighborhood collectives

• Can be used in conjunction with OpenMP, or used to develop “MPI+MPI”
hybrid shared/distributed memory MPI-only applications.

Graph Topologies and Neighborhood Collectives

MPI-3 introduces distributed graph topologies
to allow expression (in a scalable way) of any
communication pattern to the runtime.

Neighborhood collectives perform communications specified on graph
topologies. Knowing pattern in advance enables several optimizations, e.g.,

• Persistent allocation of network resources
• Intelligent scheduling (accounting for factors like transport over shared

memory vs. off-node network)
While simplifying code by expressing communications with a single call.

(Boundary element exchange as N Isend-
Irecv + Waitall is perhaps the most common
messaging pattern)

34

35

Leveraging MPI-3 in PETSc
• Use neighborhood collectives.

• Add neighborhood collectives implementation for PetscSF.

• Add VecScatter implementation on top of PetscSF.

• Support MPI_Win_allocate_shared() in a DM.

• Extend concept of a “local” vector from PETSC_COMM_SELF to a shared-memory
communicator from MPI_Comm_split_type()?

• Or, rather, abstract to several levels of “local”: Private to a rank, shared within a
NUMA domain, shared within a node, …

• If user desires to avoid duplicating halos inside shared memory regions, can we do
so while preserving nice indexing of ghost points?

• Support direct load-store for “local” portions VecScatter

• Barry has prototyped this in barry/utilize-hwloc.

36

Leveraging MPI-3 in PETSc

������

������

������

������

������

������

������

������

�����

������

������

�� ��� ��� ��� ��� ��� ��� ���

��
��
���
��
��
��
��
���
��
��
��
��
��
��
�

�������������������

���

������������
����������

In branch barry/utilize-hwloc: $PETSC_DIR/src/ksp/ksp/examples/tests/benchmarkscatters/ex1.c
Software and workloads used in
performance tests may have been
optimized for performance only on
Intel microprocessors.
Performance tests, such as
SYSmark and MobileMark, are
measured using systems,
components, software, operations
and functions. Any change to any
of those factors may cause the
results to vary. You should
consult other information and
performance tests to assist you
purchases, including the
performance of that product when
combined with other products. Any
difference in system hardware or
software design or configuration
may affect actual performance.
For more information go to
http://www.intel.com/performance
Configurations: Intel® Xeon Phi™
processor 7250 68 core, 272
threads, 1400 MHz core freq.
Turbo mode ON, 1700 MHz
uncore freq., MCDRAM 16 GB 7.2
GT/s, BIOS 10R00, DDR4 96GB
2400 MHz, Red Hat 7.2, quad
cluster mode, MCDRAM flat
memory mode; Dual Socket ®
processor E5-2697 v4 2.3 GHz
(Turbo OFF) , 18 Cores/Socket,
36 Cores, 72 Threads (HT on),
DDR4 128GB, 2400 MHz, Red
Hat 7.2

37

Low-level optimizations for KNL
• Good use of vectorization is critical for getting best performance on KNL.

• No PETSc developer is going to want the PETSc source code full of AVX512
intrinsics or even a lot of #pragmas.

• Don’t have manpower for such low-level optimizations anyway.

• Proposal: Add new AIJ matrix subclass (“MATAIJMKL”)

• Use Intel® MKL implementations inside MatMult(), MatSolve(), MatMatMult(),
MatPtAP(), etc.

• Support new sparse inspector-executor routines in Intel® MKL.

38

Summary and Future Directions

• KNL provides “accelerator”-like manycore parallelism and energy efficiency
without the “accelerator”.

• True “out-of-box” good performance with many PETSc applications.

• High-bandwidth on-package memory (MCDRAM) provides big boost to
PETSc applications using assembled matrices.

• Performance should improve as we explore KNL-targeted optimizations in
PETSc.

• Recruiting “fellow travelers”: Collaborators welcome!

