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Notice and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR 
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS 
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING 
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or 
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL 
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT 
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of 
any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for 
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with 
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Xeon, Intel Xeon Phi™ are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. 

*Other brands and names may be claimed as the property of others.

Copyright © 2015 Intel Corporation.  All rights reserved.



Optimization Notice
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804 
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Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?



• More data parallelism/fine-grained parallelism AVX512 (512 bit vectors w/ 
FMA) coming in both Intel® Xeon Phi™ and Xeon® processors.

• More NUMA domains/level of storage hierarchy (DRAM NUMA domains, 
MCDRAM, NVRAM, IO subsystem) 
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Trend: More parallelism, deeper hierarchies
Intel® Xeon Phi™ processors amplify importance of fine-grained parallelism, but 
this direction holds for machines based on “conventional” CPUs as well:

• More cores/threads in socket and across machines
(on per-node basis, core counts becoming roughly equivalent)



Knights	
  Landing:	
  Next	
  Intel®	
  Xeon	
  Phi™	
  Processor

First self-boot Intel® Xeon Phi™ 
processor that is binary compatible
with main line IA. Boots standard 
OS. 

Significant improvement in scalar 
and vector performance

Integration of Memory on package: 
innovative memory architecture for 
high bandwidth and high capacity 

Integration of Fabric on package

Potential future options subject to change without notice. 
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
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What Knights Landing is NOT

• Not an accelerator

• Bootable CPU.  No PCIe offload bottleneck.

• Not a GPU

• No CUDA vs. regular CPU source code divergence

• Easy to run complete application on KNL

• Not Knight’s Corner (previous generation Intel® Xeon Phi™)

• Fully out-of-order execution

• Mesh-on-die replaces ring bus

• KNL is dual-issue and can saturate both VPUs from a single thread.

• Greatly improved memory bandwidth, serial execution speed



Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2
Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400  up to 384GB 
IO: 36 lanes PCIe* Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)
Vector1: up to 2 TF/s Linpack/DGEMM; 4.6 TF/s SGEMM

STREAM Triad1: MCDRAM up to 490 GB/s; DDR4 90 GB/s

Scalar2: Up to ~3x over current Intel® Xeon Phi™ 
co-processor 7120 (“Knights Corner”)

TILE
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Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the 
results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. For 
more complete information visit http://www.intel.com/performance. Configurations:
1. Intel Xeon Phi processor 7250 (16GB, 1.4 GHz, 68-cores) running LINPACK (score 2000 GFLOPS), 

DGEMM (score 2070 GFLOPS), SGEMM (4605 GFLOPS), STREAM (DDR4 = 90 GB/s and MCDRAM = 
490 GB/s), 96 GB DDR4-2133 memory, BIOS R00.RC085, Cluster Mode = Quad, MCDRAM Flat or Cache, 
RHEL* 7.0, MPSP 1.2.2, Intel MKL 11.3.2, Intel MPI 5.1.2, DGEMM 20K x 20K, LINPACK 100K x 100K size

2. Intel estimates based on estimated 1-user SPECint*_rate_base2006 comparing configuration 1 to Intel Xeon 
Phi co-processor 7120A hosted on 2x Intel Xeon processor E5-2697 v3.Omni-path not shown

EDC EDC PCIe	
  
Gen	
  3

EDC EDC

Tile

DDR	
  MC DDR	
  MC

EDC EDC misc EDC EDC

36	
  Tiles	
  
connected	
  by	
  
2D	
  Mesh	
  

Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
R
4
	
  
C
H
A
N
N
E
L
S

3

D
D
R
4
	
  
C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2	
  x16
1	
  x4

X4	
  
DMI



Intel ISA
E5-­‐2600
(SNB1)

SSE*

AVX

E5-­‐2600v3
(HSW1)

SSE*

AVX

AVX2

AVX-­‐512CD

x87/MMX x87/MMX

7200
(KNL2)

SSE*

AVX

AVX2

x87/MMX

AVX-­‐512F

BMI

AVX-­‐512ER

AVX-­‐512PF

BMI

TSX

KNL implements all legacy instructions

AVX-512 Extensions
• 512-bit  FP/Integer Vectors
• 32 regs, & 8 mask regs
• Gather/Scatter

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions

Common	
  ISA

1. Previous	
  Code	
  names	
  Intel®	
  Xeon®	
  processors
2. Intel®	
  Xeon	
  Phi™	
  processor

E5-­‐2600v4
(BDX1)

SSE*

AVX

AVX2

x87/MMX

BMI

TSX

Segment	
  Specific	
  ISA
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KNL Mesh Interconnect
Mesh of Rings
§ Every row and column is a (half) ring
§ YX routing: Go in Y à Turn à Go in X
§ Messages arbitrate at injection and on turn

Cache Coherent Interconnect
MESIF protocol (F = Forward)

Core in F state can provide cached shared data 
directly to requesting core without going to 
main memory.
Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile
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Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM



Cluster Mode: All-to-All
Address uniformly hashed across all 
distributed directories

No affinity between Tile, Directory and 
Memory

Most general mode.  (Does not require 
same memory capacity on both DDR 
controllers.)

Lower performance than other modes. 

Typical Read L2 miss
1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor
12
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Cluster Mode: Quadrant
Chip divided into four virtual Quadrants

Address hashed to a Directory in the 
same quadrant as the Memory

Affinity between the Directory and 
Memory

Lower latency and higher BW than all-
to-all.  SW Transparent.

Used for all PETSc performance 
numbers in this presentation.
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1) L2 miss,  2) Directory access,  3) Memory access,  4) Data return
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Cluster Mode: Sub-NUMA Clustering (SNC)

Each Quadrant (Cluster) exposed as a 
separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and 
Memory

Local communication. Lowest latency 
of all modes. 

SW needs to NUMA optimize to get 
benefit. 
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1) L2 miss,  2) Directory access,  3) Memory access,  4) Data return
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MCDRAM Modes
§ Cache mode 

• No	
  source	
  changes	
  needed	
  to	
  use
• Misses	
  are	
  expensive	
  (higher	
   latency)

• Needs	
  MCDRAM	
  access	
  +	
  DDR	
  access

§ Flat mode
• MCDRAM	
  mapped	
  to	
  physical	
  address	
  space
• Exposed	
  as	
  a	
  NUMA	
  node	
  

• Use	
  numactl	
  -­‐-­‐hardware,	
  lscpu to	
  display	
  configuration
• Accessed	
  through	
  memkind	
   library	
  or	
  numactl

§ Hybrid
• Combination	
  of	
  the	
  above	
  two

• E.g.,	
  8	
  GB	
  in	
  cache	
  +	
  8	
  GB	
  in	
  Flat	
  Mode

KNL	
  Cores	
  
+	
  Uncore	
  
(L2)

MCDRAM
(as	
  
Cache)

DDR

KNL	
  Cores	
  
+	
  Uncore	
  
(L2)

MCDRAM
(as	
  Mem)

DDR

KNL	
  Cores	
  
+	
  Uncore	
  
(L2)

MCDRAM
(as	
  Cache)

DDR

MCDRAM
(as	
  Mem)

Physical	
  Addr Space

Physical	
  Addr Space
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Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?
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KSP ex56 (linear elasticity), default solvers
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KNL	
  over	
  2X	
  faster	
  
than	
  dual-­‐socket	
  
Intel®	
  Xeon®	
  
processor	
  E5-­‐2697	
  
v4	
  (“Broadwell-­‐
EP”)	
  at	
  largest	
  
problem	
  size.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with 
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272 
threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3 
GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2
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KSP ex56 (linear elasticity), default solvers
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Much faster 
KNL solve times 
are (mostly) 
due to very 
high bandwidth 
of MCDRAM

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with 
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272 
threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3 
GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2
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KSP ex56 (linear elasticity), default solvers
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Software and workloads 
used in performance 
tests may have been 
optimized for 
performance only on Intel 
microprocessors.  
Performance tests, such 
as SYSmark and 
MobileMark, are 
measured using systems, 
components, software, 
operations and functions.  
Any change to any of 
those factors may cause 
the results to vary.  You 
should consult other 
information and 
performance tests to 
assist you purchases, 
including the 
performance of that 
product when combined 
with other products. Any 
difference in system 
hardware or software 
design or configuration 
may affect actual 
performance. For more 
information go to 
http://www.intel.com/perf
ormance Configurations: 
Intel® Xeon Phi™ 
processor 7250 68 core, 
272 threads, 1400 MHz 
core freq. Turbo mode 
ON, 1700 MHz uncore
freq., MCDRAM 16 GB 
7.2 GT/s, BIOS 10R00, 
DDR4 96GB 2400 MHz, 
Red Hat 7.2, quad cluster 
mode, MCDRAM flat 
memory mode; Dual 
Socket ® processor E5-
2697 v4 2.3 GHz (Turbo 
OFF) , 18 Cores/Socket, 
36 Cores, 72 Threads 
(HT on), DDR4 128GB, 
2400 MHz, Red Hat 7.2
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KSP ex42 (Stokes flow), fieldsplit Schur

1.8X faster!

Software and workloads 
used in performance 
tests may have been 
optimized for 
performance only on Intel 
microprocessors.  
Performance tests, such 
as SYSmark and 
MobileMark, are 
measured using systems, 
components, software, 
operations and functions.  
Any change to any of 
those factors may cause 
the results to vary.  You 
should consult other 
information and 
performance tests to 
assist you purchases, 
including the 
performance of that 
product when combined 
with other products. Any 
difference in system 
hardware or software 
design or configuration 
may affect actual 
performance. For more 
information go to 
http://www.intel.com/perf
ormance Configurations: 
Intel® Xeon Phi™ 
processor 7250 68 core, 
272 threads, 1400 MHz 
core freq. Turbo mode 
ON, 1700 MHz uncore
freq., MCDRAM 16 GB 
7.2 GT/s, BIOS 10R00, 
DDR4 96GB 2400 MHz, 
Red Hat 7.2, quad cluster 
mode, MCDRAM flat 
memory mode; Dual 
Socket ® processor E5-
2697 v4 2.3 GHz (Turbo 
OFF) , 18 Cores/Socket, 
36 Cores, 72 Threads 
(HT on), DDR4 128GB, 
2400 MHz, Red Hat 7.2

KNL run command: mpirun -n 64 numactl --membind=1 ./ex42-intel2016_knl_fast -stokes_pc_type fieldsplit
-stokes_pc_fieldsplit_type schur -log_view -mx 60
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KSP ex56, GMRES + GAMG
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• “Solve” phase is 
quite fast on KNL

• Unoptimized setup 
is comparatively 
slow on KNL

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using 
systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you 
purchases, including the performance of that product when combined with other products. Any difference in system hardware or software design or configuration may affect actual performance. For more 
information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 core, 272 threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 
GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor E5-2697 v4 2.3 GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads 
(HT on), DDR4 128GB, 2400 MHz, Red Hat 6.5
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PFLOTRAN Regional Doublet
• PFLOTRAN problem analyzed 

in 2014 WRR paper (doi: 
10.1002/2012WR013483)

• Variably saturated regional 
groundwater flow

• First order FV in space, 
backward Euler in time.

• Used inexact Newton with 
GMRES(30), block Jacobi, 
ILU(0) on blocks

• Used 200 x 200 x 100 grid 
(4 million total degrees of 
freedom)

10
0 

m
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PFLOTRAN Regional Doublet • BDW vs KNL total times 
comparable

• Orthogonalizations much 
faster on KNL

• But MatMult and MatSolve
faster on BDW!

• Small work per row (~ 7 
nonzeros; compare to ~80 in 
KSP ex56) probably unable 
to mask latency of gathering 
x vector; reordering may 
help.

• Jacobian formation faster on 
BDW; vectorizaton work on 
KNL probably needed

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you purchases, including the performance of that product when combined 
with other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel® Xeon Phi™ processor 7250 68 
core, 272 threads, 1400 MHz core freq. Turbo mode ON, 1700 MHz uncore freq., MCDRAM 16 GB 7.2 GT/s, BIOS 10R00, DDR4 96GB 2400 MHz, Red Hat 7.2, quad cluster mode, MCDRAM flat memory mode; Dual Socket ® processor 
E5-2697 v4 2.3 GHz (Turbo OFF) , 18 Cores/Socket, 36 Cores, 72 Threads (HT on), DDR4 128GB, 2400 MHz, Red Hat 7.2
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Outline
• Overview of “Knights Landing” (KNL) architecture

• Early experiences with PETSc on KNL

• True “out-of-box” numbers: No KNL-specific tuning yet.

• Discussion of possible changes to PETSc for better manycore support

• How to support multiple kinds of user-addressable memory?

• Performance counters to assist good decision making?

• Using new MPI-3?

• More Intel® MKL support?



MCDRAM as Cache MCDRAM as Flat Mode
Upside

§ No software modifications required to get 
bandwidth benefit (over DDR)

Downside

§ Less addressable memory

§ All memory is transferred as:
§ DDR -> MCDRAM -> L2

§ Misses need MCDRAM + DRAM access

§ Unpredictable performance due to conflict 
misses when physical memory becomes  
fragmented.

Upside

§ Maximum BW

§ Lower latency
§ i.e., no MCDRAM cache misses

§ Maximum addressable memory

§ Isolation of MCDRAM for high-performance 
application use only

Downside

§ Software modifications (or interposer library) 
required 
§ to use DDR and MCDRAM in the same app

§ Which data structures should go where?

§ MCDRAM is a finite resource and tracking it adds 
complexity

25

KNL Cores 
+ Uncore 
(L2)

MCDRAM
(as Cache)

DDR

KNL Cores 
+ Uncore 
(L2) DDR

MCDRAM
(as Mem)



MCDRAM Cache Hit Rate

MCDRAM performs well as cache for many workloads 

Enables good out-of-box performance without memory tuning

Software and workloads 
used in performance 
tests may have been 
optimized for 
performance only on Intel 
microprocessors.  
Performance tests, such 
as SYSmark and 
MobileMark, are 
measured using systems, 
components, software, 
operations and functions.  
Any change to any of 
those factors may cause 
the results to vary.  You 
should consult other 
information and 
performance tests to 
assist you purchases, 
including the 
performance of that 
product when combined 
with other products. Any 
difference in system 
hardware or software 
design or configuration 
may affect actual 
performance. For more 
information go to 
http://www.intel.com/perf
ormance Configurations: 
Intel SPECrate* and 
Trinity* tests running 1P 
Xeon Phi 7250 (KNL 
68C), Quad-Cache, 
default P*ratios (P0=1.6, 
P1=1.4, PN=1.0), ICC-
16.0 internal compiler 
release, AVX-512, 
09.D03 BIOS 
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*Other names and brands may be claimed as the property of others



Performance for Flat vs. Cache Mode

Flat vs. Cache performance depends on workloads. Up to +60% performance, but in 
some cases lower performance (HW does better job managing MCDRAM)

27

Source: Antonio Valles

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you purchases, including the performance of that product when combined with 
other products. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance Configurations: Intel SPECrate* and Trinity* tests running 1P 
Xeon Phi 7250 (KNL 68C), Quad-Cache, default P*ratios (P0=1.6, P1=1.4, PN=1.0), ICC-16.0 internal compiler release, AVX-512, 09.D03 BIOS 

*Other names and brands may be claimed as the property of others



• If footprint fits, can place entire application in MCDRAM using numactl(8).

• Can use AutoHBW interposer library to do automatic size threshold-based 
placement in MCDRAM.

• Can do explicit placement:

• Fortran: !DEC$ ATTRIBUTES, FASTMEM :: A

• C: fv = (float *)hbw_malloc(sizeof(float) * 100), 
or use underlying memkind (https://github.com/memkind) library:
a = (float *)memkind_malloc(MEMKIND_HBW_PREFERRED, size); 
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Using user-addressable high-bandwidth memory
In flat mode, MCDRAM is exposed as a separate NUMA node:
(libnuma, mmap() work just as for any NUMA node.)
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Supporting multiple kinds of memory in PETSc
• Immediate concern is supporting user-addressable DRAM and MCDRAM. But 

additional types of memory (e.g., 3D Xpoint™ NVRAM) will add further 
complications.

• Simple option: Use size thresholds for automatic greedy allocation of high-
bandwidth memory.

• AutoHBW interposer (part of memkind library) does this, but we may want ability to 
restrict such placement decisions to inside PETSc.

• Largest data structures tend to be most bandwidth-intensive; small ones can fit in 
cache
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Supporting multiple kinds of memory in PETSc
• More complicated: Add PetscAdvMalloc() that accepts an advisory context, 

provide way to tag objects (Vec, Mat) to be used w/ associated malloc()s.

• Problem: Making the right placement decisions based on a priori reasoning may be 
impossible

• Do placement/migration based on measured importance. 

• Barry suggests counting VecGetArray[Read]()s.

• Perhaps also use ancillary data from hardware counters (e.g., memory bandwidth 
measurements via uncore counters)?

• I propose adding some hardware counter support in the PETSc logging framework

• In many cases, decisions need to account for what is going on external to PETSc as 
well.  Optimal approach may need OS and/or middleware support.

• Linux provides move_pages(2), but this is not asynchronous



KNL and successors will be deployed in large systems
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• ∼ 1400 dual socket nodes w/ Intel® 
Xeon® v3 (“Haswell”) Processors, 16 
cores per socket

• Over 9,300 single socket nodes w/ 2nd 
gen Intel Xeon Phi Processors (“Knights 
Landing”—KNL), w/ up to 16GB on-
package, high-bandwidth memory

• Cray Aries dragonfly topology 
interconnect 

• Over 50,000 nodes with 3rd gen Intel® 
Xeon Phi™ Processors

• Over 8 PB aggregate on-package high-
bandwith memory and persistent 
memory

• 2nd gen Intel® Omni-Path Architecture 
with silicon photonics

• Intel® Lustre* filesystem, > 1 TB/s 
throughput
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Exposing Concurrency on Many Levels
On prior leadership-class machines, near-exclusive focus on flat MPI optimizations was often 
sufficient.

Machines like Cori and Aurora require attention to many levels of concurrency: 

1. Within single threads (vectorization)
§ Strategies similar to those on AVX2 CPUs apply.

2. Across shared memory on a node (usually OpenMP threads)
§ Codes often use OpenMP, but PETSc has returned to MPI only.

3. And across nodes on the interconnect (usually MPI)
§ MPI-3 introduces several new features that can help.
§ At scale, may ultimately need to re-think algorithms to reduce global communications.

(E.g., McInnes et al. 2014, Hierarchical Krylov and Nested Krylov Methods for 
Extreme-Scale Computing, http://www.mcs.anl.gov/papers/P2097-0612.pdf)

Important: Must consider #2 with #3!  MPI communications a big source of serialization.
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Leveraging MPI-3 features for manycore MPPs

• MPI-3 introduces several features well-suited to manycore MPPs.
Two especially useful features (supported in Intel MPI 5.x):

• Shared memory windows

• Neighborhood collectives

• Can be used in conjunction with OpenMP, or used to develop “MPI+MPI” 
hybrid shared/distributed memory MPI-only applications.



Graph Topologies and Neighborhood Collectives

MPI-3 introduces distributed graph topologies 
to allow expression (in a scalable way) of any 
communication pattern to the runtime.

Neighborhood collectives perform communications specified on graph 
topologies.  Knowing pattern in advance enables several optimizations, e.g.,

• Persistent allocation of network resources
• Intelligent scheduling (accounting for factors like transport over shared 

memory vs. off-node network)
While simplifying code by expressing communications with a single call.

(Boundary element exchange as N Isend-
Irecv + Waitall is perhaps the most common 
messaging pattern)

34



35

Leveraging MPI-3 in PETSc
• Use neighborhood collectives.

• Add neighborhood collectives implementation for PetscSF.

• Add VecScatter implementation on top of PetscSF. 

• Support MPI_Win_allocate_shared() in a DM.

• Extend concept of a “local” vector from PETSC_COMM_SELF to a shared-memory 
communicator from MPI_Comm_split_type()?

• Or, rather, abstract to several levels of “local”:   Private to a rank, shared within a 
NUMA domain, shared within a node, … 

• If user desires to avoid duplicating halos inside shared memory regions, can we do 
so while preserving nice indexing of ghost points?

• Support direct load-store for “local” portions VecScatter

• Barry has prototyped this in barry/utilize-hwloc.
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Leveraging MPI-3 in PETSc
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In branch barry/utilize-hwloc: $PETSC_DIR/src/ksp/ksp/examples/tests/benchmarkscatters/ex1.c
Software and workloads used in 
performance tests may have been 
optimized for performance only on 
Intel microprocessors.  
Performance tests, such as 
SYSmark and MobileMark, are 
measured using systems, 
components, software, operations 
and functions.  Any change to any 
of those factors may cause the 
results to vary.  You should 
consult other information and 
performance tests to assist you 
purchases, including the 
performance of that product when 
combined with other products. Any 
difference in system hardware or 
software design or configuration 
may affect actual performance. 
For more information go to 
http://www.intel.com/performance
Configurations: Intel® Xeon Phi™ 
processor 7250 68 core, 272 
threads, 1400 MHz core freq. 
Turbo mode ON, 1700 MHz 
uncore freq., MCDRAM 16 GB 7.2 
GT/s, BIOS 10R00, DDR4 96GB 
2400 MHz, Red Hat 7.2, quad 
cluster mode, MCDRAM flat 
memory mode; Dual Socket ® 
processor E5-2697 v4 2.3 GHz 
(Turbo OFF) , 18 Cores/Socket, 
36 Cores, 72 Threads (HT on), 
DDR4 128GB, 2400 MHz, Red 
Hat 7.2
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Low-level optimizations for KNL
• Good use of vectorization is critical for getting best performance on KNL.

• No PETSc developer is going to want the PETSc source code full of AVX512 
intrinsics or even a lot of #pragmas.

• Don’t have manpower for such low-level optimizations anyway.

• Proposal: Add new AIJ matrix subclass (“MATAIJMKL”)

• Use Intel® MKL implementations inside MatMult(), MatSolve(), MatMatMult(), 
MatPtAP(), etc.

• Support new sparse inspector-executor routines in Intel® MKL.
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Summary and Future Directions

• KNL provides “accelerator”-like manycore parallelism and energy efficiency 
without the “accelerator”.

• True “out-of-box” good performance with many PETSc applications.

• High-bandwidth on-package memory (MCDRAM) provides big boost to 
PETSc applications using assembled matrices.

• Performance should improve as we explore KNL-targeted optimizations in 
PETSc.

• Recruiting “fellow travelers”: Collaborators welcome!




