◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Deflating the Shifted Laplacian for the Helmholtz Equation

Domenico Lahaye and helping friends DIAM - TU Delft

PETSc Users Meeting Vienna, July 27th-30th, 2016

Introduction

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Helmholtz Equation

$$-\Delta {f u}(x,y)-k^2\,{f u}(x,y)={f g}(x,y)$$
 on Ω

Dirichlet and/or Sommerfeld on $\partial \Omega$

finite differences or elements

A u = f sparse complex symmetric

all standard solvers fail

€ 990

Complex Shifted Laplace Preconditioner

preconditioning by damping

 $M:-\Delta \mathbf{u}-(1+\beta_2 \mathbf{i})k^2 \mathbf{u}$

M-solve using multigrid

 $M^{-1}A$ favorable spectrum

standard in many applications

Erlangga e.a. 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complex Shifted Laplace Preconditioner

Number of outer Krylov iterations

	Wavenumber					
Grid	<i>k</i> = 10	k = 20	<i>k</i> = 30	<i>k</i> = 40	<i>k</i> = 50	<i>k</i> = 100
<i>n</i> = 32	10	17	28	44	70	13
<i>n</i> = 64	10	17	28	36	45	173
<i>n</i> = 96	10	17	27	35	43	36
<i>n</i> = 128	10	17	27	35	43	36
<i>n</i> = 160	10	17	27	35	43	25
<i>n</i> = 320	10	17	27	35	42	80

(ロ) (同) (三) (三) (三) (○) (○)

Complex Shifted Laplace Preconditioner

Good News

• SLP preconditioner renders spectrum favorable to Krylov

However ...

- eigenvalues rush to zero as k increases
- outer Krylov convergence limited by near-null space

Can deflation improve?

A D F A 同 F A E F A E F A Q A

Deflation using Multigrid Vectors

Deflation perspective

- replace preconditioned system $M^{-1} A = M^{-1} b$
- by deflated preconditioned system $P^T M^{-1} A = P^T M^{-1} b$
- deflation vectors Z and Galerkin coarse grid matrix $E = Z^T A Z$
- deflation operator P = I AQ where $Q = ZE^{-1}Z^{T}$
- *P*: projection (later modified to shift to 1)
- Z: columns of the coarse to fine grid interpolation good approx to near-null space for k h fixed

A D F A 同 F A E F A E F A Q A

Deflation using Multigrid Vectors

Multigrid perspective

• replace smoother $I - M^{-1} A$

(*M* complex shifted-Laplacian)

- by smoother + coarse grid solve $(I QA) (I M^{-1}A)$
 - $Q = Z E^{-1} Z^{T}$ coarse grid solve E^{-1} Galerkin coarse grid Helmholtz operator
- Fourier two-grid analysis for
 - 1D problem with Dirichlet bc
 - uniform coarsening
 - E and M inverted exactly

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Spectrum Deflated Preconditioned Operator

tighter clusters at low frequency

spread due to near-kernel of E

Spread due to near-kernel of *E*

k = 100

Deflation allows much larger shifts

	$\beta_2 = .5$	$\beta_2 = 1$	$\beta_2 = 10$
k	PREC/PREC+DEF	PREC/PREC+DEF	PREC/PREC+DEF
10	7/3	8/4	5
20	10/5	12/6	7
40	16/8	20/8	9
80	23/8	33/9	9
160	36/13	55/14	14
320	61/19	97/20	19
640	108/33	179/33	34

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Deflation using Multigrid Vectors

Multilevel Extension

- composite two-level preconditioner $P^T M^{-1} A = P^T M^{-1} b$
- deflation operator P = I AQ where $Q = ZE^{-1}Z^{T}$
- coarse grid Helmholtz operator $E = Z^T A Z$
- apply idea recursively to apply E
- multilevel Krylov method (Erlangga-Nabben 2009)

Convergence Outer Krylov Acceleration

Number of outer Krylov iterations with/without deflation

Grid	<i>k</i> = 10	k = 20	<i>k</i> = 30	<i>k</i> = 40	<i>k</i> = 50	<i>k</i> = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
<i>n</i> = 64	4/10	6/17	8/28	12/36	18/45	173/163
<i>n</i> = 96	3/10	5/17	7/27	9/35	12/43	36/97
<i>n</i> = 128	3/10	4/17	6/27	7/35	9/43	36/85
<i>n</i> = 160	3/10	4/17	5/27	6/35	8/43	25/82
<i>n</i> = 320	3/10	4/17	4/27	5/35	5/42	10/80

Less iterations and therefore speedup

(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).

(ロ) (同) (三) (三) (三) (○) (○)

Numerical Results

3D problem with wedge-like contrast in wavenumber using 20 grid points per wavelength

Wave number k	Solve Time		Iterations	
	PREC	DEF+PREC	PREC	DEF+PREC
5	0.09	0.24	9	11
10	1.07	1.94	15	12
20	16.70	18.89	32	16
30	73.82	78.04	43	21
40	1304.2	214.7	331	24
60	XX	989.5	XX	34

speedup in CPU of by a factor 6

(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Numerical Results

2D Marmousi Problem using 20 grid points per wavelength

Frequency f	Sol	ve Time	Iterations		
	PREC	DEF+PREC	PREC	DEF+PREC	
1	1.23	5.08	13	7	
10	40.01	21.83	106	8	
20	280.08	131.30	177	12	
40	20232.6	3997.7	340	21	

speedup in CPU of by a factor 5

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

- Rigorous Fourier spectral analysis
- less iterations than shifted-Laplacian
- faster than shifted-Laplacian solver for sufficiently large problems