Deflating the Shifted Laplacian for the Helmholtz Equation

Domenico Lahaye and helping friends DIAM - TU Delft

PETSc Users Meeting Vienna, July 27th-30th, 2016

Introduction

Helmholtz Equation

$$
-\Delta \mathbf{u}(x, y)-k^{2} \mathbf{u}(x, y)=\mathbf{g}(x, y) \text { on } \Omega
$$

Dirichlet and/or Sommerfeld on $\partial \Omega$
finite differences or elements
$A u=f$ sparse complex symmetric
all standard solvers fail

Complex Shifted Laplace Preconditioner

preconditioning by damping
$M:-\Delta \mathbf{u}-\left(1+\beta_{2} i\right) k^{2} \mathbf{u}$
M-solve using multigrid
$M^{-1} A$ favorable spectrum
standard in many applications
Erlangga e.a. 2006

Complex Shifted Laplace Preconditioner

Number of outer Krylov iterations

	Wavenumber						
Grid	$k=10$	$k=20$	$k=30$	$k=40$	$k=50$	$k=100$	
$n=32$	10	17	28	44	70	13	
$n=64$	10	17	28	36	45	173	
$n=96$	10	17	27	35	43	36	
$n=128$	10	17	27	35	43	36	
$n=160$	10	17	27	35	43	25	
$n=320$	10	17	27	35	42	80	

Complex Shifted Laplace Preconditioner

Good News

- SLP preconditioner renders spectrum favorable to Krylov

However ...

- eigenvalues rush to zero as k increases
- outer Krylov convergence limited by near-null space

Can deflation improve?

Deflation using Multigrid Vectors

Deflation perspective

- replace preconditioned system $M^{-1} A=M^{-1} b$
- by deflated preconditioned system $P^{\top} M^{-1} A=P^{\top} M^{-1} b$
- deflation vectors Z and Galerkin coarse grid matrix $E=Z^{\top} A Z$
- deflation operator $P=I-A Q$ where $Q=Z E^{-1} Z^{\top}$
- P: projection (later modified to shift to 1)
- Z: columns of the coarse to fine grid interpolation good approx to near-null space for $k h$ fixed

Deflation using Multigrid Vectors

Multigrid perspective

- replace smoother $I-M^{-1} A$
(M complex shifted-Laplacian)
- by smoother + coarse grid solve $(I-Q A)\left(I-M^{-1} A\right)$
$Q=Z E^{-1} Z^{\top}$ coarse grid solve
E^{-1} Galerkin coarse grid Helmholtz operator
- Fourier two-grid analysis for
- 1D problem with Dirichlet bc
- uniform coarsening
- E and M inverted exactly

Spectrum Deflated Preconditioned Operator

tighter clusters at low frequency
spread due to near-kernel of E

Spread due to near-kernel of E

$$
k=100
$$

Deflation allows much larger shifts

k	$\beta_{2}=.5$ PREC/PREC+DEF	$\beta_{2}=1$ PREC/PREC+DEF	$\beta_{2}=10$ PREC/PREC+DEF
10	$7 / 3$	$8 / 4$	5
20	$10 / 5$	$12 / 6$	7
40	$16 / 8$	$20 / 8$	9
80	$23 / 8$	$33 / 9$	9
160	$36 / 13$	$55 / 14$	14
320	$61 / 19$	$97 / 20$	19
640	$108 / 33$	$179 / 33$	34

Deflation using Multigrid Vectors

Multilevel Extension

- composite two-level preconditioner $P^{T} M^{-1} A=P^{T} M^{-1} b$
- deflation operator $P=I-A Q$ where $Q=Z E^{-1} Z^{\top}$
- coarse grid Helmholtz operator $E=Z^{T} A Z$
- apply idea recursively to apply E
- multilevel Krylov method (Erlangga-Nabben 2009)

Convergence Outer Krylov Acceleration

Number of outer Krylov iterations with/without deflation

Grid	$k=10$	$k=20$	$k=30$	$k=40$	$k=50$	$k=100$
$n=32$	$5 / 10$	$8 / 17$	$14 / 28$	$26 / 44$	$42 / 70$	$13 / 14$
$n=64$	$4 / 10$	$6 / 17$	$8 / 28$	$12 / 36$	$18 / 45$	$173 / 163$
$n=96$	$3 / 10$	$5 / 17$	$7 / 27$	$9 / 35$	$12 / 43$	$36 / 97$
$n=128$	$3 / 10$	$4 / 17$	$6 / 27$	$7 / 35$	$9 / 43$	$36 / 85$
$n=160$	$3 / 10$	$4 / 17$	$5 / 27$	$6 / 35$	$8 / 43$	$25 / 82$
$n=320$	$3 / 10$	$4 / 17$	$4 / 27$	$5 / 35$	$5 / 42$	$10 / 80$

Less iterations and therefore speedup
(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).

Numerical Results

3D problem with wedge-like contrast in wavenumber using 20 grid points per wavelength

Wave number k	Solve Time		Iterations	
	PREC	DEF+PREC	PREC	DEF+PREC
5	0.09	0.24	9	11
10	1.07	1.94	15	12
20	16.70	18.89	32	16
30	73.82	78.04	43	21
40	1304.2	214.7	331	24
60	$x x$	989.5	$x x$	34

speedup in CPU of by a factor 6
(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).

Numerical Results

2D Marmousi Problem
 using 20 grid points per wavelength

Frequency f	Solve Time		Iterations	
	PREC	DEF+PREC	PREC	DEF+PREC
1	1.23	5.08	13	7
10	40.01	21.83	106	8
20	280.08	131.30	177	12
40	20232.6	3997.7	340	21

speedup in CPU of by a factor 5

Conclusions

- Rigorous Fourier spectral analysis
- less iterations than shifted-Laplacian
- faster than shifted-Laplacian solver for sufficiently large problems

