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Helmholtz Equation

−∆u(x , y) − k2 u(x , y) = g(x , y) on Ω

Dirichlet and/or Sommerfeld on ∂Ω

finite differences or elements

A u = f sparse complex symmetric

all standard solvers fail
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Complex Shifted Laplace Preconditioner

preconditioning by damping

M : −∆u − (1 + β2 i)k2 u

M-solve using multigrid

M−1A favorable spectrum

standard in many applications
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Complex Shifted Laplace Preconditioner

Number of outer Krylov iterations

Wavenumber
Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 10 17 28 44 70 13
n = 64 10 17 28 36 45 173
n = 96 10 17 27 35 43 36

n = 128 10 17 27 35 43 36
n = 160 10 17 27 35 43 25
n = 320 10 17 27 35 42 80
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Complex Shifted Laplace Preconditioner

Good News

SLP preconditioner renders spectrum favorable to Krylov

However ...

eigenvalues rush to zero as k increases

outer Krylov convergence limited by near-null space

Can deflation improve?
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Deflation using Multigrid Vectors

Deflation perspective

replace preconditioned system M−1 A = M−1 b

by deflated preconditioned system PT M−1 A = PT M−1 b

deflation vectors Z and Galerkin coarse grid matrix E = Z T A Z

deflation operator P = I − A Q where Q = Z E−1 Z T

P: projection (later modified to shift to 1)

Z : columns of the coarse to fine grid interpolation

good approx to near-null space for k h fixed
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Deflation using Multigrid Vectors

Multigrid perspective
replace smoother I − M−1 A

(M complex shifted-Laplacian)

by smoother + coarse grid solve (I − Q A)
(
I − M−1 A

)
Q = Z E−1 Z T coarse grid solve
E−1 Galerkin coarse grid Helmholtz operator

Fourier two-grid analysis for

1D problem with Dirichlet bc

uniform coarsening

E and M inverted exactly
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Spectrum Deflated Preconditioned Operator

k = 100
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tighter clusters at low frequency

spread due to near-kernel of E
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Spread due to near-kernel of E

k = 100
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Deflation allows much larger shifts

β2 = .5 β2 = 1 β2 = 10
k PREC/PREC+DEF PREC/PREC+DEF PREC/PREC+DEF

10 7/3 8/4 5
20 10/5 12/6 7
40 16/8 20/8 9
80 23/8 33/9 9

160 36/13 55/14 14
320 61/19 97/20 19
640 108/33 179/33 34
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Deflation using Multigrid Vectors

Multilevel Extension
composite two-level preconditioner PT M−1 A = PT M−1 b

deflation operator P = I − A Q where Q = Z E−1 Z T

coarse grid Helmholtz operator E = Z T A Z

apply idea recursively to apply E

multilevel Krylov method (Erlangga-Nabben 2009)
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Convergence Outer Krylov Acceleration

Number of outer Krylov iterations with/without deflation

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100
n = 32 5/10 8/17 14/28 26/44 42/70 13/14
n = 64 4/10 6/17 8/28 12/36 18/45 173/163
n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85
n = 160 3/10 4/17 5/27 6/35 8/43 25/82
n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Less iterations and therefore speedup

(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).
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Numerical Results

3D problem with wedge-like contrast in wavenumber
using 20 grid points per wavelength

Wave number k Solve Time Iterations
PREC DEF+PREC PREC DEF+PREC

5 0.09 0.24 9 11
10 1.07 1.94 15 12
20 16.70 18.89 32 16
30 73.82 78.04 43 21
40 1304.2 214.7 331 24
60 xx 989.5 xx 34

speedup in CPU of by a factor 6

(Sheikh, D.L., Ramos, Nabben and Vuik, accepted for JCP).
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Numerical Results

2D Marmousi Problem
using 20 grid points per wavelength

Frequency f Solve Time Iterations
PREC DEF+PREC PREC DEF+PREC

1 1.23 5.08 13 7
10 40.01 21.83 106 8
20 280.08 131.30 177 12
40 20232.6 3997.7 340 21

speedup in CPU of by a factor 5
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Conclusions

Rigorous Fourier spectral analysis

less iterations than shifted-Laplacian

faster than shifted-Laplacian solver for sufficiently large problems
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