
petsc-hs: Haskell bindings for PETSc
Marco Zocca

Tanget software and TU Delft

PETSc User Meeting, June 28-30, 2016, Vienna Tanget

Abstract

Scientific programming is the craft of representing a physical phenomenon, or an algorithm that interacts with it, in form that can be executed on a computer.
Correctness and performance arise as the primary concerns, however good scientific practice demands an experiment to be easily accessible to peer review. One
approach to solving this conundrum is to embed high-performance numerical codes into a high-level language that lets users abstract away the necessary
book-keeping. petsc-hs is an ongoing effort to embed PETSc in the purely-functional, statically-typed language Haskell; the type system assists the user in ensuring
program correctness before its execution, and enables algebraic composition of functionality.

Overview of the language

In Haskell[1] every expression has a well-defined type that cannot change
during execution, and if the user program ”type-checks”, the compiler infers
the least-constrained type that represents it. Crucially, functions are
syntactically distinct from actions: a function such as

√
· will always return the

same result when called with the same arguments, whereas the same cannot be
said of e.g. searching for a file in a directory or accessing a database. The
latter two are examples of actions which require a notion of ”state” that might
change independently of the program accessing them, and in Haskell these are
modeled via the Monad typeclass (which represents program concatenation). In
particular, the IO monad represents interactions with the ”outside world”, e.g.
memory, filesystem, keyboard/screen, network sockets.

Low-level bindings

In petsc-hs, the C language PETSc calls are wrapped via the inline-c

package [3]. This provides bidirectional mapping of the elementary types (such
as Char, Int and Double), a Context datatype for representing custom types
(in the present case: Vec, Mat, KSP, SNES, etc.), and a quasiquoting syntax
that lets the user splice in arbitrary C language expressions or code blocks with
variable substitution:
vecCreate ’ :: Comm -> IO (Vec , CInt)

vecCreate ’ cc = withPtr $ \p -> [C.exp|int{VecCreate($(int c), $(Vec *p))} |]

where c = unComm cc

Memory management and exception handling

Acquiring and releasing a resource (e.g. memory or a file/database handle) is a
very common pattern. Omitting either leads to data being in an inconsistent
state and memory leakage, respectively. In the current version of petsc-hs,
resource handling is abstracted out using the bracket combinator from the
Control.Exception library, which lets us write with- statements like the
following :
withKsp :: Comm -> (KSP -> IO a) -> IO a

withKsp cc = bracket (chk1 $ kspCreate ’ cc) (chk0 kspDestroy ’)

The following specifies the setup sequence of the KSP object, while leaving the
subsequent action(s) f unspecified:
withKspSetup :: Comm -> KspType_ -> Mat -> Mat -> Bool -> (KSP -> IO a) -> IO a

withKspSetup cc kt amat pmat ignz f = withKsp cc $ \ksp -> do

kspSetOperators ksp amat pmat

kspSetType ksp kt

kspSetInitialGuessNonzero ksp ignz

kspSetUp ksp

f ksp

The next block specializes the one above by requiring solution of the linear
system (kspSolve) before running its functional argument:
withKspSetupSolve ::

Comm ->

KspType_ ->

Mat -> -- linear operator

Mat -> -- preconditioner

Bool -> -- set initial solution guess to nonzero vector

Vec -> -- r.h.s

Vec -> -- solution (WILL BE OVERWRITTEN)

(KSP -> IO a) -> -- post -solve actions

IO a

withKspSetupSolve cc kt amat pmat ignz rhsv solnv post =

withKspSetup cc kt amat pmat ignz $ \ksp -> do

kspSolve ksp rhsv solnv

post ksp

The next function is a special case of the previous one, that also manages
memory for a Vec that serves as solution of the linear system:
withKspSetupSolveAlloc ::

Comm -> KspType_ -> Mat -> Mat -> Vec -> (KSP -> Vec -> IO a) -> IO a

withKspSetupSolveAlloc cc kt amat pmat rhsv post =

withVecDuplicate rhsv $ \soln ->

withKspSetupSolve cc kt amat pmat True rhsv soln $ \ksp ->

post ksp soln

The chk0 and chk1 helpers map PETSc return codes to Haskell exceptions,
and these can either be handled specifically or ”thrown” and displayed to the
user; the surrounding bracket runs the ”cleanup” action even if an exception
has occurred during the execution of its body. In the above examples we also
see how functional notation makes it straightforward to specify idiomatic use of
PETSc as higher-level combinators, which are easier to remember and to
convey to others.

Property testing

The Hspec [4] package lets the user specify expected outcomes via a DSL that
provides documentation and expectation (e.g. shouldBe) combinators. The
following example shows the setup and solution of a small linear system (using
a KSP bracket from the previous section), and tests convergence of the norm
of the residual with respect to the exact solution:
t_linSys_r3_1 = describe "t_linSys_r3_1" $

it "solves a 3x3 linear system" $

withPetscMatrix com m n MatAij ixd nz InsertValues $ \mat ->

withVecNew com vrhs $ \rhs -> do

let (_, _, _, mu) = fromPetscMatrix mat

withKspSetupSolveAlloc com KspGmres mu mu rhs $ \ksp soln ->

withVecNew com vsolnExact $ \solnE ->

withVecVecSubtract soln solnE $ \solnDiff -> do

nd <- vecNorm solnDiff VecNorm2

nd < diffNormTol ‘shouldBe ‘ True -- test criterion

where

(m, n) = (3, 3) -- matrix size

vrhs = V.fromList [3, 7, 18] -- r.h.s.

vsolnExact = V.fromList [1, 1, 1] -- exact solution

ixd = listToCSR m n [1,2,0,0,3,4,5,6,7] -- matrix elements , by rows

diffNormTol = 1e-16 -- linear solve convergence tolerance

nz = VarNZPR (dnnz , onnz) where -- matrix sparsity pattern

dnnz = V.convert $ V.fromList [1,1,1]

onnz = V.convert $ V.fromList [1,1,2]

The above, when run, results in :
t_linSys_r3_1

solves a 3x3 linear system

Finished in 0.0186 seconds

1 example , 0 failures

The next example shows the use of the linear eigenproblem solver EPS from
SLEPc, and tests whether the computed eigenvalues are all purely real :
t_eigen_r3_1 = describe "t_eigen_r3_1" $

it "solves a 3x3 real linear eigenproblem: eigenvalues are real numbers" $

withPetscMatrix com m n MatAij ixd nz InsertValues $ \mat -> do

let (_, _, _, mu) = fromPetscMatrix mat

withEpsCreateSetupSolve com mu Nothing EpsHep $ \eps _ _ _ -> do

ve <- epsGetEigenvalues eps

let (_, ei) = V.unzip ve

V.all (<= imzTol) ei ‘shouldBe ‘ True

where

(m, n) = (3, 3)

imzTol = 1e-16

ixd = ixd3x3 -- same matrix and sparsity pattern as the previous example

nz = nz3x3

Usage and deployment

In single-node user settings, petsc-hs can either be linked to the interactive
Haskell compiler GHCi and used as a command-line application, or compiled as
a native standalone binary. The multi-node version is currently being
developed, on top of a library for ”cloud” cluster computing[5].

Outlook and future work

The project is Open Source under the GPL3 license, development is public on
GitHub [2] and has already attracted contributions from both the functional
programming and numerical computing communities. There are numerous
extensions under development, for example representing the SNES, TAO, TS
parts of the library for nonlinear optimization and time integration, augmenting
the PETSc objects with algebraic properties via typeclasses, and a
domain-specific language for finite element programs.

Acknowledgements

This work was initially funded by STW grant 11363, ”Robust Design
Optimization for Integrated Photonic Systems”.

References

haskell.org

github.com/ocramz/petsc-hs

hackage.haskell.org/package/inline-c

hspec.github.io

github.com/tanget-sw/compute-cluster-sandbox

zocca.marco@gmail.com – https://github.com/tanget-sw, https://github.com/ocramz

haskell.org
github.com/ocramz/petsc-hs
hackage.haskell.org/package/inline-c
hspec.github.io
github.com/tanget-sw/compute-cluster-sandbox

