petsc-hs: Haskell bindings for PETSc

PETSc User Meeting, June 28-30, 2016, Vienna

Abstract

]
TUDelft

L\

Marco Zocca
Tanget software and TU Delft

hﬁget

Scientific programming is the craft of representing a physical phenomenon, or an algorithm that interacts with it, in form that can be executed on a computer.
Correctness and performance arise as the primary concerns, however good scientific practice demands an experiment to be easily accessible to peer review. One
approach to solving this conundrum is to embed high-performance numerical codes into a high-level language that lets users abstract away the necessary

Overview of the language

In Haskell[1] every expression has a well-defined type that cannot change
during execution, and if the user program "type-checks”, the compiler infers
the least-constrained type that represents it. Crucially, functions are
syntactically distinct from actions: a function such as /- will always return the
same result when called with the same arguments, whereas the same cannot be
said of e.g. searching for a file in a directory or accessing a database. The
latter two are examples of actions which require a notion of "state’ that might
change independently of the program accessing them, and in Haskell these are
modeled via the Monad typeclass (which represents program concatenation). In
particular, the I0 monad represents interactions with the "outside world", e.g.
memory, filesystem, keyboard/screen, network sockets.

Low-level bindings

n petsc-hs, the C language PETSc calls are wrapped via the inline-c
nackage [3]. This provides bidirectional mapping of the elementary types (such
as Char, Int and Double), a Context datatype for representing custom types
(in the present case: Vec, Mat, KSP, SNES, etc.), and a quasiquoting syntax
that lets the user splice in arbitrary C language expressions or code blocks with
variable substitution:

vecCreate’ :: Comm -> I0 (Vec, CInt)
vecCreate’ cc = withPtr $ \p -> [C.explint{VecCreate($(int c), $(Vec *p))} |]
where ¢ = unComm cc

Memory management and exception handling

Acquiring and releasing a resource (e.g. memory or a file/database handle) is a
very common pattern. Omitting either leads to data being in an inconsistent
state and memory leakage, respectively. In the current version of petsc-hs,
resource handling is abstracted out using the bracket combinator from the
Control.Exception library, which lets us write with- statements like the

following :
withKsp :: Comm -> (KSP -> I0 a) -> I0 a
withKsp cc = bracket (chkl $ kspCreate’ cc) (chkO kspDestroy’)

The following specifies the setup sequence of the KSP object, while leaving the

subsequent action(s) f unspecified:
withKspSetup Comm -> KspType_ -> Mat -> Mat -> Bool -> (KSP -> I0 a) -> I0 a
withKspSetup cc kt amat pmat ignz f = withKsp cc $ \ksp -> do

kspSetUOperators ksp amat pmat

kspSetType ksp kt

kspSetInitialGuessNonzero ksp 1gnz

kspSetUp ksp

f ksp

The next block specializes the one above by requiring solution of the linear
system (kspSolve) before running its functional argument:

withKspSetupSolve
Comm ->
KspType_ ->
Mat -> -- linear operator
Mat -> -— preconditioner
Bool -> -— set 1nitial solution guess to nonzero vector
Vec -> -— r.h.s
Vec -> -- solution (WILL BE OVERWRITTEN)
(KSP -> I0 a) -> -- post-solve actions
I0 a

withKspSetupSolve cc kt amat pmat ignz rhsv solnv post =
withKspSetup cc kt amat pmat ignz $ \ksp -> do
kspSolve ksp rhsv solnv
post ksp

The next function is a special case of the previous one, that also manages

memory for a Vec that serves as solution of the linear system:
withKspSetupSolveAlloc
Comm -> KspType_ -> Mat -> Mat -> Vec -> (KSP -> Vec -> I0 a ) -> I0 a
withKspSetupSolveAlloc cc kt amat pmat rhsv post =
withVecDuplicate rhsv $§ \soln ->
withKspSetupSolve cc kt amat pmat True rhsv soln $ \ksp ->
post ksp soln

The chkO and chk1 helpers map PETSc return codes to Haskell exceptions,
and these can either be handled specifically or "thrown” and displayed to the
user; the surrounding bracket runs the "cleanup” action even if an exception
has occurred during the execution of its body. In the above examples we also
see how functional notation makes it straightforward to specify idiomatic use of
PETSc as higher-level combinators, which are easier to remember and to
convey to others.

zocca.marco@gmail.com

nook-keeping. petsc-hs is an ongoing effort to embed PETSc in the purely-functional, statically-typed language Haskell; the type system assists the user in ensuring
orogram correctness before its execution, and enables algebraic composition of functionality.

Property testing

The Hspec [4] package lets the user specify expected outcomes via a DSL that
provides documentation and expectation (e.g. shouldBe) combinators. The
following example shows the setup and solution of a small linear system (using
a KSP bracket from the previous section), and tests convergence of the norm

of the residual with respect to the exact solution:

t_1linSys_r3_1 = describe "t_linSys_r3_1" $§
it "solves a 3x3 linear system" §$
withPetscMatrix com m n MatAij ixd nz InsertValues $ \mat ->
withVecNew com vrhs $ \rhs -> do
let (_, _, _, mu) = fromPetscMatrix mat
withKspSetupSolveAlloc com KspGmres mu mu rhs $ \ksp soln ->
withVecNew com vsolnExact $ \solnE ->
withVecVecSubtract soln solnE $ \solnDiff -> do
nd <- vecNorm solnDiff VecNorm?2

nd < diffNormTol ‘shouldBe‘ True -- test criterion

where
(m, n) = (3, 3) -- matrix size
vrhs = V.fromList [3, 7, 18] --— r.h.s.
vsolnExact = V.fromList [1, 1, 1] -—- exact solution
ixd = 1istToCSR m n [1,2,0,0,3,4,5,6,7] -- matrix elements, by rows
diffNormTol = 1e-16 -- linear solve convergence tolerance
nz = VarNZPR (dnnz, onnz) where -- matrix sparsity pattern

dnnz = V.convert $ V.fromList [1,1,1]
onnz = V.convert $ V.fromList [1,1,2]

The above, when run, results in :

t_linSys_r3_1
solves a 3x3 linear system

Finished in 0.0186 seconds
1 example, O failures

he next example shows the use of the linear eigenproblem solver EPS from
SLEPc, and tests whether the computed eigenvalues are all purely real :

t_eigen_r3_1 = describe "t_eigen_r3_1" $
it "solves a 3x3 real linear eigenproblem: eigenvalues are real numbers" §$
withPetscMatrix com m n MatAij ixd nz InsertValues $ \mat -> do

let (_, _, _, mu) = fromPetscMatrix mat
withEpsCreateSetupSolve com mu Nothing EpsHep $ \eps _ _ _ -> do
ve <- epsGetEigenvalues eps
let (_, ei) = V.unzip ve
V.all (<= imzTol) ei ‘shouldBe‘ True
where

(m, n) = (3, 3)
imzTol = 1le-16
1xd = 1xd3x3

nz = nz3x3

——- same matrix and sparsity pattern as the previous example

Usage and deployment

In single-node user settings, petsc—hs can either be linked to the interactive
Haskell compiler GHCi and used as a command-line application, or compiled as
a native standalone binary. The multi-node version is currently being
developed, on top of a library for "cloud” cluster computing|5].

Outlook and future work

The project is Open Source under the GPL3 license, development is public on
GitHub [2] and has already attracted contributions from both the functional
programming and numerical computing communities. There are numerous
extensions under development, for example representing the SNES, TAO, TS
parts of the library for nonlinear optimization and time integration, augmenting
the PETSc objects with algebraic properties via typeclasses, and a
domain-specific language for finite element programs.

Acknowledgements

This work was initially funded by STW grant 11363, " Robust Design
Optimization for Integrated Photonic Systems” .

References

s haskell.org

s github.com/ocramz/petsc-hs

s hackage.haskell.org/package/inline-c
» hspec.github.1o0

s github.com/tanget-sw/compute-cluster-sandbox

https://github.com/tanget-sw, https://github.com/ocramz


haskell.org
github.com/ocramz/petsc-hs
hackage.haskell.org/package/inline-c
hspec.github.io
github.com/tanget-sw/compute-cluster-sandbox

