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We are currently focussing on a few topics t
(1) Better integrating the solvers with the PETSc o
framework, by using a DMSHELL for the FDSTAG ?
(2) Coupling of the vep Stokes code with two-phase
melt migration.

(3) Adding an explicit poro-visco-elasto-plastic solver

Some claim that higher-order finite element codes are more accurate than staggered finite difference discretizations. As the results show, this is only true if
the jumps in viscosity are exactly alligned with the boundaries of the finite element. In typical evolving geodynamic setups (e.g., subduction), jumps do occur
within an element either due to the marker distribution or due to non-linearities (e.g., plastic localization). Under these conditions, all methods are first order
accurate [Deubelbeiss & Kaus, 2008; Thielmann et al. 2014]. Yet, low order finite elements (Q1P0) are unstable (wrong pressure), whereas the staggered
finite difference is a stable discretization. The stabilized Q1Q1 element is compressible which is a problem in setups with a free surface. The Q2P1 element
is stable but expensive (in 3D) as it requires up to 12 times more memory for the same number of nodes, which makes every matrix-vector product an order to simulate hydrofracking
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typically not necessary to assemble the jacobian but that, instead, a matrix-free implementation is sufficient in many cases. Benchmarks show that a free sur- = I
face can be succesfully represented by a sticky air layer [Crameri et al., GJI 2012], particularly if the ‘air’ is implemented by a stress-free internal boundary ™~ I

condition [Duretz et al.,GJI 2016]. RN
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locities from nodal points to markers. This introduces interpolation
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of particles start appearing (which require particle injection/removal). A - sl e o L [ A - In typical geodynamic cases, FDSTAG is relative powerful (and cheap) alternative to finite-element calculations.
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Runga Kutta time integration scheme to be superior [Plsok et al., - Elasticity helps convergence for setups with brittle plastic rheology, even though more work on this topic is
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submitted] el [ e b required to (either different stabilizing rheology or better convergent nonlinear algorithms).
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Download LaMEM at https://bitbucket.org/bkaus/lamem



