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INTRODUCTION

CONCLUSIONS
- LaMEM is a parallel 3D marker-and-cell based deformation code suitable to model lithospheric processes.
- In typical geodynamic cases, FDSTAG is relative powerful (and cheap) alternative to finite-element calculations.
- The code can perform production runs on massively parallel machines. 
- Conservative marker-in-cell interpolation was added & improves marker distributions.
- Coupled multigrid outperforms decoupled multigrid for nonlinear setups.
- Elasticity helps convergence for setups with brittle plastic rheology, even though more work on this topic is 
 required to (either different stabilizing rheology or better convergent nonlinear algorithms).

LaMEM (Lithosphere and Mantle Evolution Model) is a 3D, open-source, thermo-mechanical numerical code to 
simulate crustal and lithospheric deformation.  The code is written on top of PETSc and is based on a marker-
and-cell approach combined with a staggered finite difference (FDSTAG) discretization in space, which is a stable 
 and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spur-
ious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques) and has
 the same accuracy as FE methods for typical geodynamic applications. Here we discuss some issues related to
 the accuracy of the method, convergence of non-linear solvers and  show a few recent modelling applications.

ACCURACY & MEMORY COSTS: FEM vs. FDSTAG
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Some claim that higher-order finite element codes are more accurate than staggered finite difference discretizations. As the results show, this is only true if 
the jumps in viscosity are exactly alligned with the boundaries of the finite element. In typical evolving geodynamic setups (e.g., subduction), jumps do occur 
within an element either due to the marker distribution or due to non-linearities (e.g., plastic localization). Under these conditions, all methods are first order 
accurate [Deubelbeiss & Kaus, 2008; Thielmann et al. 2014]. Yet, low order finite elements (Q1P0) are unstable (wrong pressure), whereas the staggered 
finite difference is a stable discretization. The stabilized Q1Q1 element is compressible which is a problem in setups with a free surface. The Q2P1 element 
is stable but expensive (in 3D) as it requires up to 12 times more memory for the same number of nodes, which makes every matrix-vector product an order 
or magnitude slower. The staggered finite difference method is thus a cheap and stable low-order discretization method for typical geodynamic problems. A 
potential disadvantage is that the jacobian is more complicated to implement and increases the stencil width of the discretization. Yet, our results show it is 
typically not necessary to assemble the jacobian but that, instead, a matrix-free implementation is sufficient in many cases. Benchmarks show that a free sur-
face can be succesfully represented by a sticky air layer [Crameri et al., GJI 2012], particularly if the ‘air’ is implemented by a stress-free internal boundary 
condition [Duretz et al.,GJI  2016].
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The marker-and-cell approach involves frequent interpolations of ve-
locities from nodal points to markers. This introduces interpolation 
errors as the velocity at markers is no longer guaranteed to be 
divergence-free which becomes noticable with time, as areas devoid 
of particles start appearing (which require particle injection/removal). A 
number of workarounds have been proposed recently, yet it is unclear 
which of those works best for a geodynamics application in particular 
combined with FDSTAG. We have adapted them for FDSTAG formu-
lations and found the MINMOD method, combined with a 4th order 
Runga Kutta time integration scheme to be superior [Püsök et al., 
submitted].  

The full, discretized, Jacobian increases the stencilwidth for FDSTAG. That is why we implement the action of the 
matrix-vector product in a matrix-free manner.

Number of non-zeros in 
K matrix for different 
elements/methods: 

METHOD nonzeros  relative
FDSTAG    167196     1
Q1P0                  879505     5.3
Q2P-1              2047967   12.2    

ONGOING WORK

One can do Galerkin multigrid only for the velocity block, or for both velocity and pressure. Which one is best? For 
simple, linear viscous falling sphere setups there is little difference. For realistic viscoplastic setups, coupled wins.

(COUPLED)
Galerkin MG applied to full matrix

(UNCOUPLED)
Galerkin MG applied to K block only GALERKIN COARSENING

Coupled: 3 GMG levels with FGMRES (rtol 1e-6), Jacobi(20,20) as smoothener; direct coarse grid, 4 cores
Block: FGMRES (rtol 1e-6) for full system with 1 V-cycle for the K-block, 3 GMG levels with Jacobi(20,20) as smoother and direct coarse grid

Coupled: 3 GMG levels with FGMRES (rtol 1e-6), Jacobi(20,20) as smoothener; direct coarse grid, 4 cores
Block: FGMRES (rtol 1e-6) for full system with 1 V-cycle for the K-block, 3 GMG levels with Jacobi(20,20) as smoother and direct coarse grid

using a Jacobi coarse-grid solver

3585x2049x2049 gridpoints
15 billion gridpoints

Galerkin multigrid method scales well; the main issue is the scalability of the coarse grid solver which currently limits production runs to ~8191 cores (things slow down after that)
Isoviscous FB test with coupled MG, & SOR with 20 smoothening steps and relaxation factor 0.5 is used at every level with GAMG (algebraic MG) at the coarse level

We are currently focussing on a few topics
(1) Better integrating the solvers with the PETSc 
 framework, by using a DMSHELL for the FDSTAG
(2) Coupling of the vep Stokes code with two-phase 
 melt migration.
(3) Adding an explicit poro-visco-elasto-plastic solver
 to simulate hydrofracking
(4) Inflow/outflow boundary conditions.

Viscoelastoplastic compressional setup with friction angle 30, Cohesion 50 MPa, viscosity 1e24 Pas, G=5e10 Pa, sticky air, weak inclusion (using direct inner solver). A typical feature is that non-
convergence occurs during a few timesteps (when the pattern forms or changes), but that it does converge during subsequent timesteps. There is little difference between FD and the analytical 
matrix-free jacobian. Convergence is worse if the setup is more viscoplastic (higher G), and if the resolution increases.  
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