
PETSc 20

TAO

Toolkit for Advanced Optimization

Jason Sarich, Todd Munson, Stefan Wild
Argonne National Laboratory

June 15, 2015

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

min f(x) (objective function)

subject to xl ≤ x ≤ xu (optional box constraints)

Nonlinear optimization algorithms are iterative processes. In many cases,
each iteration involve calculating a search direction, then function
values and gradients along that direction are calculated until certain
conditions are met.

• Conjugate Gradient

• Newton’s Method

• Quasi-Newton Methods

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Conjugate Gradient Algorithms

These algorithms are an extension of the conjugate gradient methods for
solving linear systems. The search direction is computed with

dk+1 = −gk + βkdk (gk = ∇f(xk))

then a line search is conducted to find αk+1 that satisfies sufficient
decrease and curvature conditions.

xk+1 = xk + αk+1dk+1

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Ribière

βPR+
k = max

{
βPR
k , 0

}
, PR-plus

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Newton’s Method

• Step 0 Choose initial vector x0
• Step 1 Compute gradient ∇f(xk) and Hessian ∇2f(xk)

• Step 2 Calculate the direction dk+1 by solving the system:

∇2f(xk)dk+1 = −∇f(xk)

• Step 3 Apply line search algorithm to obtain “acceptable” new
vector:

• Step 2-3 Trust Region Alternative Calculate dk+1 by solving the
system:

min
d

gTk dk+1 + 1
2d

T
k+1∇2f(xk)dk+1

s.t. ‖dk+1‖2 ≤ ∆k

• Return to Step 1

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Some notes about Newton’s Method

• Newton’s method converges quadratically when close to the solution
(good!)

• Hessian must be derived, computed, and stored (bad?)

• Linear solve must be performed on Hessian (bad!)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Some notes about Newton’s Method

• Newton’s method converges quadratically when close to the solution
(good!)

• Hessian must be derived, computed, and stored (bad?)

• Linear solve must be performed on Hessian (bad!)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Some notes about Newton’s Method

• Newton’s method converges quadratically when close to the solution
(good!)

• Hessian must be derived, computed, and stored (bad?)

• Linear solve must be performed on Hessian (bad!)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Quasi-Newton Methods
Use approximate Hessian Bk ≈ ∇2f(xk). Choose a formula for Bk so

that:

• Bk relies on first derivative information only

• Bk can be easily stored

• Bkdk+1 = −∇f(xk) can be easily solved

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Limited Memory Variable Metric (LMVM)

Quasi-Newton method using L-BFGS update and Moré-Thuente line
search.

sk = xk − xk−1
yk = gk − gk−1
Bk+1 = Bk +

yky
T
k

yTk sk
− Bksks

T
k Bk

sTk Bksk

Using this update and a diagonal initial B0, the sytem

B−1k+1x = −g

can be solved directly using only AXPYs and Dot products.

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Box-constrained algorithms

min f(x) (objective function)

subject to xl ≤ x ≤ xu (optional box constraints)

• GPCG – Gradient Projection Conjugate Gradient (quadratic
problems only)

• TRON – Newton trust region algorithm on free variables

• BLMVM – Bounded Quasi-Newton algorithm

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Complementarity

Mixed complementarity problems, or box-constrained variational
inequalities.

Fi(x
∗) ≥ 0 if x∗i = `i

Fi(x
∗) = 0 if `i < x∗i < ui

Fi(x
∗) ≤ 0 if x∗i = ui.

• Semismooth Solvers (SSILS, SSFLS)

• Active Set Solvers (ASILS, ASFLS)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

PDE-constrained systems

TAO solves PDE-constrained optimization problems of the form

min
u,v

f(u, v)

subject to g(u, v) = 0,

where the state variable u is the solution to the discretized partial
differential equation defined by g and parametrized by the design variable
v, and f is an objective function.

• Linearly-Constrained Augmented Lagrangian Method (LCL)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

PDE-constrained systems

TAO solves PDE-constrained optimization problems of the form

min
u,v

f(u, v)

subject to g(u, v) = 0,

where the state variable u is the solution to the discretized partial
differential equation defined by g and parametrized by the design variable
v, and f is an objective function.

• Linearly-Constrained Augmented Lagrangian Method (LCL)

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Algorithms

Derivate Free Algorithms

There are some applications for which it is not feasible to find the
derivative of the objective function. There are some algorithms available
that can solve these applications, but they can be very slow to converge.

• Model-based methods

• Use finite differences

• Nelder-Mead Simplex

• Automatic Differentiation

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Nelder-Mead

Nelder-Mead algorithms forms an n+ 1-dimensional simplex and moves
one vertex at a time

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

POUNDERS - Model-based Derivate-free optimization

n = 2, |Y k| = 4

using an interpolating quadratic,

qk(xk + yi) = f(xk + yi), ∀yi ∈ Yk.

→ Function values are all you have

• Other models possible

• Only provide local approximation

• Coarse models ↔ smooth noise

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

POUNDERS - Nonlinear Least Squares

f(x) = 1
2

p∑
i=1

(Si(x)− di)
2

• Obtain a vector of output S1(x), . . . , Sp(x) with each simulation

• Approximate:

∇f(x) =
∑

i∇Si(x)(Si(x)− di)

→
∑

i∇mi(x)(Si(x)− di)

∇2f(x) =
∑

i∇Si(x)∇Si(x)
T +

∑
i(Si(x)− di)∇2Si(x)

→
∑

i∇mi(x)∇mi(x)
T +

∑
i(Si(x)− di)∇2mi(x)

• Model f via Gauss-Newton or similar

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

POUNDERS for hfbtho

50 150 250
0

5

10

15

20

Day 1 Day 2 Day 3

Number of 12min. Evaluations

L
e
a
s
t
f
V

a
lu

e

nelder−mead

pounders

◦ 72 cores on Jazz

◦ 12 wall-clock minutes per
f(x)

• POUNDERS: acceptable
x in 3.2 hours

• Nelder-Mead: no
acceptable x in 60 hours

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

Finite Differences

It is possible (though highly unrecommended) to use finite differences to
approximate the gradient (and/or Hessian). It is recommended to test

the accuracy of hand-coded gradients and Hessians using finite
differences. This can be with command line options using the special
TAO solver “test”:

-tao type test -tao test hessian

Jason Sarich Toolkit for Advanced Optimization

PETSc 20

TAO Solvers

Solvers available in TAO
handles constraints requires gradient requires Hessian

Quasi-Newton (lmvm) no yes no
Newton Line Search (nls) no yes yes
Newton Trust Region (ntr) no yes yes

Newton Trust with Line Search (ntl) no yes yes
Conjugate Gradient (cg) no yes no

Nelder-Mead (nm) no no no
Quasi-Newton (blmvm) bounds yes no

Newton Trust Region (tron) bounds yes yes
Conjugate Gradient (gpcg)
(Quadratic objective only) bounds yes no
Model-based derivative free

nonlinear least-squares (pounders) yes no no
Semismooth – Feasibility-enforced

(SSFLS) complementarity yes yes
Semismooth – Feasibility not enforced

(SSILS) complementarity yes yes
Active-Set Semismooth – Feasibility-enforced

(ASFLS) complementarity yes yes
Active-Set Semismooth – Feasibility not enforced

(ASILS) complementarity yes yes
Linearly Constrained Lagrangian pde
Interior Point Method (ipm) general yes yes

Jason Sarich Toolkit for Advanced Optimization

TAO Applications

What do you need to do for the User Routines?

You need to write C, C++, or Fortran functions that:

• Set the initial variable vector (optional)

• Compute the objective function value at a given vector

• Compute the gradient at a given vector

• Compute the Hessian matrix at a given vector (for Newton methods)

• Set the variable bounds (for bounded optimization)

Jason Sarich Toolkit for Advanced Optimization

TAO Applications
Write routines for computing the ojective function, gradient, and (if
available) Hessian. An opaque data structure maybe used to store
application-specific parameters or data.

typedef struct {

PetscReal epsilon; /* application parameter */

} Ctx;

The evaluation routines should then look like:

PetscErrorCode MyFunction(TaoSolver tao, Vec x,

PetscReal *fcnval, void *Ctx){

}

PetscErrorCode MyGradient(TaoSolver tao, Vec x, Vec g,

void *Ctx){

}

PetscErrorCode MyHessian(TaoSolver tao, Vec x, Mat *H,

Mat *Hpre, MatStructure *flag, void *Ctx){

}
Jason Sarich Toolkit for Advanced Optimization

TAO Applications

Tao tao; /* TAO Optimization solver */

UserContext user; /* user-defined structure */

Vec x; /* solution vector */

Mat H; /* Hessian Matrix */

PetscInitialize(&argc,&argv,0,0);

... Set up vectors, matrices, application data ...

TaoCreate(PETSC_COMM_WORLD,&tao);

TaoSetType(tao,"tao_lmvm");

TaoSetInitialVector(tao,x);

TaoSetObjectiveRoutine(tao,MyFunction,(void *)&user);

TaoSetGradientRoutine(tao,MyGradient,(void *)&user);

TaoSetHessianRoutine(tao,H,H,MyHessian,(void *)&user);

TaoSetFromOptions(tao);

TaoSolve(tao);

Jason Sarich Toolkit for Advanced Optimization

TAO Examples

TAO has some example applications (in C and Fortran) included in the
source distribution for you to test the TAO installation, learn about TAO
features, and reference for creating your own applications

unconstrained bound least-squares pde

eptorsion1.c jbearing2.c chwirut1.c elliptic.c
eptorsion2.c plate2.c chwirut2.c hyperbolic.c
eptorsion2f.F plate2f.F chwirut1f.F parabolic.c
minsurf1.c chwirut2f.F
minsurf2.c
rosenbrock1.c
rosenbrock1f.F

Jason Sarich Toolkit for Advanced Optimization

TAO Examples

Pressure in a Journal Bearing

min

{∫
D

{
1
2wq(x)‖∇v(x)‖2 − wl(x)v(x)

}
dx : v ≥ 0

}

wq(ξ1, ξ2) = (1 + ε cos ξ1)
3

wl(ξ1, ξ2) = ε sin ξ1
D = (0, 2π)× (0, 2b)

Number of active constraints depends on the choice of ε in (0, 1).
Nearly degenerate problem. Solution v /∈ C2.

Jason Sarich Toolkit for Advanced Optimization

TAO

Minimal Surface with Obstacles

min

{∫
D

√
1 + ‖∇v(x)‖2 dx : v ≥ vL

}

Number of active constraints depends on the height of the obstacle. The
solution v /∈ C1. Almost all multipliers are zero.

Jason Sarich Toolkit for Advanced Optimization

Toolkit for Advanced Optimization

As of PETSc 3.5 (June 30, 2014), TAO is included as part of the PETSc
distribution http://www.mcs.anl.gov/petsc

The documention online includes installation instructions, a user’s
manual and a man page for every TAO subroutine. Please contact us
with any questions or comments you have.

• petsc-maint@mcs.anl.gov

Jason Sarich Toolkit for Advanced Optimization

http://www.mcs.anl.gov/petsc
petsc-maint@mcs.anl.gov

	PETSc 20
	Example Programs

