

SLEPc: Scalable Library for Eigenvalue Problem Computations

Tutorial – version 3.6

Jose E. Roman

D. Sistemes Informàtics i Computació Universitat Politècnica de València, Spain

Celebrating 20 years of PETSc, Argonne - June, 2015

Outline

- Overview
- 2 Basic Usage
 - Eigenvalue Solvers
 - Spectral Transformation
- 3 Advanced Features

Eigenproblems

Large-scale eigenvalue problems are among the most demanding calculations in scientific computing

Example application areas:

- Dynamic structural analysis (e.g., civil engineering)
- Stability analysis (e.g., control engineering)
- Eigenfunction determination (e.g., electromagnetics)
- ▶ Bifurcation analysis (e.g., fluid dynamics)
- ▶ Information retrieval (e.g., latent semantic indexing)

Use Case: Neutron Difusion Equation in Nuclear Eng.

Neutron power in nuclear reactor cores

- ► Commercial reactors such as PWR
- Both steady state and transient
- Goal: assure safety

Lambda Modes Equation

$$\mathcal{L}\phi = \frac{1}{\lambda}\mathcal{M}\phi$$

Current trends

- Complex geometries, unstructured meshes, FVM
- Coupled neutronic-thermalhydraulic calculations

Use Case: Gyrokinetic Equations in Plasma Physics

Plasma turbulence in a tokamak determines its energy confinement

- GENE code
- Initial value solver

Knowledge of the spectrum of the linearized equation

$$Ax = \lambda x$$

- Complex, non-Hermitian, implicit A
- Sizes ranging from a few millions to a billion
- Estimate optimal timestep (largest eigenvalue);
 track sub-dominant instabilities (rightmost evals)

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on parallel computers

- Linear eigenproblems (standard or generalized, real or complex, Hermitian or non-Hermitian)
- Also support for SVD, PEP, NEP and more

$$Ax = \lambda x$$
 $Ax = \lambda Bx$ $Av_i = \sigma_i u_i$ $T(\lambda)x = 0$

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas

http://slepc.upv.es

Current version: 3.6 (released June 2015)

PETSc SLEPc

PEISC								SLEPC									
Nonlinear Systems			Time Steppers					ı	Polynomial Eigensolver No			Non	onlinear Eigensolver				
Line Search	Tru: Regi	. 10	Other	Euler		kward uler	Pseudo Time Step	Other		TOAR	Q- Arnolo	Line li izati		SLP	RII	N- Arnoldi	Interp.
Krylov Subspace Methods									SVD Solver M. Functio				ction				
GMRES (CG C	GS Bi-	-CGSta	Stab TFQMR Ricl			n Chebych	Other		anczos			705	Thick F Lanczo		Krylov	
Preconditioners									Linear Eigensolver								
Additive Schwarz		Block Jacobi		Jacobi ILI		ICC	LU	Other		Krylov-Schur		GD	JD	LOE	BPCG	CISS	Other
Matrices								Spectral Transformation									
Compressed Block Sparse Row CSR			Symmetric Block CSR		Dens	se CUSP	Other		Shift Shift-and-invert		Cayl	ley	y Preconditioner				
V	Vectors			Index Sets					BV		DS	;	ı	RG		FN	
Standa	rd	CUSP	>	Indic	es	Block	Stride	Other									

Problem Classes

The user must choose the most appropriate solver for each problem class

Problem class	Model equation	Module
Linear eigenproblem	$Ax = \lambda x, Ax = \lambda Bx$	EPS
Quadratic eigenproblem	$(K + \lambda C + \lambda^2 M)x = 0$	†
Polynomial eigenproblem	$(A_0 + \lambda A_1 + \dots + \lambda^d A_d)x = 0$	PEP
Nonlinear eigenproblem	$T(\lambda)x = 0$	NEP
Singular value decomp.	$Av = \sigma u$	SVD
Matrix function	y = f(A)v	MFN

[†] QEP removed in version 3.5

This tutorial focuses on the linear eigenvalue problem (EPS)

EPS: Eigenvalue Problem Solver

Compute a few eigenpairs (x, λ) of

Standard Eigenproblem

$$Ax = \lambda x$$

Generalized Eigenproblem

$$Ax = \lambda Bx$$

where A,B can be real or complex, symmetric (Hermitian) or not

User can specify:

- Number of eigenpairs (nev), subspace dimension (ncv)
- Selected part of spectrum
- ► Tolerance, maximum number of iterations
- Advanced: extraction type, initial guess, constraints, balancing

Basic EPS Usage

```
EPS
                      /* eigensolver context
                                               */
           eps;
           A, B; /* matrices of Ax=kBx
                                               */
Mat.
Vec
           xr, xi; /* eigenvector, x
PetscScalar kr, ki; /* eigenvalue, k
EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);
EPSSolve(eps);
EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
 EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);
}
EPSDestroy(eps);
```


Problem Definition

EPSSetOperators(EPS eps,Mat A,Mat B)

Pass one or two matrices that define the problem $Ax = \lambda Bx$

- ► For a standard problem, set B=NULL
- Any PETSc matrix type, including shell matrices

EPSSetProblemType(EPS eps,EPSProblemType type)

To indicate the problem type (hint for the solver)

```
EPS_HEP standard Hermitian problem, A=A^*, all \lambda_i real
```

EPS_NHEP standard non-Hermitian problem

EPS_GHEP generalized Hermitian problem, A, B symmetric (Hermitian), B positive (semi-)definite, all λ_i real

EPS_GNHEP generalized non-Hermitian problem

Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

$$\lambda_0, \lambda_1, \dots, \lambda_{nev-1} \in \mathbb{C}$$

 $x_0, x_1, \dots, x_{nev-1} \in \mathbb{C}^n$

nev = number of eigenvalues / eigenvectors (eigenpairs)

Which eigenvalues must be computed?

- 1. Those with largest (smallest) magnitude
- 2. Those with largest (smallest) real (imaginary) part
- 3. Those closest to a given target value au of the complex plane
- 4. All eigenvalues in an interval or region of the complex plane
- 5. According to a user-defined criterion

Available Eigensolvers

User code is independent of the selected solver

- 1. Single vector iteration: power iteration, inverse iteration, RQI
- 2. Subspace iteration with Rayleigh-Ritz projection and locking
- 3. Explicitly restarted Arnoldi and Lanczos
- 4. Krylov-Schur, including thick-restart Lanczos
- 5. Generalized Davidson, Jacobi-Davidson
- 6. Conjugate gradient methods: LOBPCG, RQCG
- 7. CISS, a contour-integral solver
- 8. External packages, and LAPACK for testing
- ... but some solvers are specific for a particular case:
 - ▶ LOBPCG computes smallest λ_i of symmetric problems
 - ightharpoonup CISS allows computation of all λ_i within a region

Processing Command-Line Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line

\$./ex1 -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS_HEP)

Other options have an associated function call

\$./ex1 -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps,PetscViewer viewer)

Prints information about the object (equivalent to -eps_view)

Sample Output of -eps_view (edited)

```
EPS Object: 1 MPI processes
 type: krylovschur
    Krylov-Schur: 50% of basis vectors kept after restart
    Krylov-Schur: using the locking variant
 problem type: symmetric eigenvalue problem
 extraction type: Rayleigh-Ritz
  selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-08
BV Object: 1 MPI processes
 type: svec
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.7071)
DS Object: 1 MPI processes
 type: hep
 solving the problem with: Implicit QR method (_steqr)
ST Object: 1 MPI processes
 type: shift
 shift: 0
```


EPS: Run-Time Examples

- \$./ex5 -eps_type krylovschur -eps_nev 6 -eps_ncv 24
- \$./ex5 -eps_type arnoldi -eps_tol 1e-11 -eps_max_it 2000
- \$./ex1 -eps_type subspace -eps_hermitian -log_summary
- \$./ex1 -eps_type lobpcg -eps_smallest_real
- \$./ex5 -eps_type gd -eps_gd_blocksize 2
- \$./ex9 -eps_type arpack -eps_largest_real

Viewing the Solution

Eigenvalues and eigenvectors can be viewed with PetscViewers

- Text output, e.g. M-file
 -eps_view_values :myeig.m:ascii_matlab
- ▶ Plotting eigenvalues -eps_view_values draw
- ► Eigenvectors, e.g. to binary file -eps_view_vectors binary:evec.bin

\$./ex1	-eps_error_relative	::ascii_info_detail
	k	Ax-kx / kx
	3.999326	1.26221e-09
	3.997304	3.82982e-10
	3.993936	2.76971e-09
	3.989224	4.94104e-10
	3 983171	6 193076-10

Can also compute and display residual errors

Monitoring Convergence

Graphical monitors

-eps_monitor_lg

-eps_monitor_lg_all

Textual monitors

-eps_monitor

-eps_monitor_all

-eps_monitor_conv


```
1 EPS nconv=0 first unconverged value (error) -0.0695109+2.109891 (2.38956768e-01)
2 EPS nconv=0 first unconverged value (error) -0.0231046+2.149021 (1.09212525e-01)
3 EPS nconv=0 first unconverged value (error) -0.00633399+2.141781 (2.67086904e-02)
4 EPS nconv=0 first unconverged value (error) 9.89074e-05+2.139241 (6.62097793e-03)
5 EPS nconv=0 first unconverged value (error) -0.000149404+2.139761 (1.53444214e-02)
6 EPS nconv=0 first unconverged value (error) 0.000183676+2.139391 (2.85521004e-03)
7 EPS nconv=0 first unconverged value (error) 0.000192534+2.139381 (9.97563492e-04)
9 EPS nconv=0 first unconverged value (error) 0.000192537+2.139381 (2.82539906e-05)
10 EPS nconv=0 first unconverged value (error) 0.000192559+2.139381 (2.82539906e-05)
11 EPS nconv=0 first unconverged value (error) 0.000192559+2.139381 (2.82639906e-05)
12 EPS nconv=0 first unconverged value (error) 0.000192559+2.139381 (2.82639906e-05)
```


Spectral Transformation

Shift-and-invert is used to compute interior eigenvalues

$$Ax = \lambda Bx \qquad \Longrightarrow \qquad (A - \sigma B)^{-1}Bx = \theta x$$

- ▶ Trivial mapping of eigenvalues: $\theta = (\lambda \sigma)^{-1}$
- Eigenvectors are not modified
- ightharpoonup Very fast convergence close to σ

Things to consider:

- ▶ Implicit inverse $(A \sigma B)^{-1}$ via linear solves
- Direct linear solver for robustness
- Less effective for eigenvalues far away from σ
- ► Cheaper alternative: preconditioned eigensolvers (J-D)

Illustration of Shift-and-Invert

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

- ▶ The user need not create the ST object, EPSGetST to get it
- \triangleright Internally, the eigensolver works with the operator T
- ▶ At the end, eigenvalues are transformed back automatically

ST	Standard problem	Generalized problem
shift	$A - \sigma I$	$B^{-1}A - \sigma I$
sinvert	$(A - \sigma I)^{-1}$	$(A - \sigma B)^{-1}B$
cayley	$(A - \sigma I)^{-1}(A + \tau I)$	$(A - \sigma B)^{-1}(A + \tau B)$
precond	$K^{-1} \approx (A - \sigma I)^{-1}$	$K^{-1} \approx (A - \sigma B)^{-1}$

A KSP object is handled internally for the linear solves

ST: Command-Line Examples

```
$ ./ex1 -st_type sinvert -eps_target 2.1
    -st_ksp_type preonly -st_pc_type lu
    -st_pc_factor_mat_solver_package mumps
```

```
$ ./ex1 -st_type sinvert -eps_target 2.1
    -st_ksp_type bcgs -st_ksp_rtol 1e-9
    -st_pc_type sor -st_pc_sor_omega 1.3
```

- \$./ex5 -eps_type gd -eps_target 0.8 -eps_harmonic
 -st_pc_type asm -st_sub_pc_factor_levels 2
- \$./ex5 -eps_type jd -st_ksp_type gmres
 -st_pc_type jacobi -st_ksp_max_it 10

Options for Subspace Generation

Initial Subspace

- Provide an initial trial subspace with EPSSetInitialSpace,
 e.g. from a previous computation
- Krylov solvers only support a single vector

Deflation Subspace

- Provide a deflation space with EPSAttachDeflationSpace
- The eigensolver operates in the restriction to the orthogonal complement
- Useful for constrained eigenproblems or problems with a known nullspace

Extraction / Balancing

Harmonic extraction

In some cases, convergence of the eigensolver may be very slow

- \rightarrow try to extract better approximations from the available subspace
 - Compute harmonic Ritz values instead of Ritz values
 - ► To compute interior eigenvalues (alternative to the spectral transformation)
 - Particularly useful in preconditioned eigensolvers (JD, GD)
 - \$./ex5 -m 45 -eps_harmonic -eps_target 0.8 -eps_ncv 60

Balancing

- ▶ Possible bad accuracy if $||A||_2$ large (non-Hermitian problems)
- \blacktriangleright Balancing implicitly performs a diagonal similarity DAD^{-1}

Computation of Many Eigenpairs

By default, a subspace of dimension $2 \cdot nev$ is used... For large nev, this is not appropriate

► Excessive storage and inefficient computation

Strategy: compute eigenvalues in chunks - restrict the dimension of the projected problem

\$ ex1 -eps_nev 5000 -eps_mpd 600

SLEPc Highlights

- Growing number of eigensolvers
- Seamlessly integrated spectral transformation
- Easy programming with PETSc's object-oriented style
- Data-structure neutral implementation
- Run-time flexibility, giving full control over the solution process
- Portability to a wide range of parallel platforms
- ▶ Usable from code written in C, C++ and Fortran
- Extensive documentation

More Information

Homepage:

http://slepc.upv.es

Hands-on Exercises:

http://slepc.upv.es/handson

Contact email:

slepc-maint@upv.es