
Scalability definitions

Strong scalability
Fixed problem size
execution time T inversely
proportional to number of
processors p

Weak scalability
Fixed problem size per
processor
execution time constant as
problem size increases

June 15, 2015 1 / 21

Scalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.

(Gropp 1999)

We really want efficient software
Need a performance model

memory bandwidth and latency
algorithmically critical operations (e.g. dot products, scatters)
floating point unit

Scalability shows marginal benefit of adding more cores, nothing
more
Constants hidden in the choice of algorithm
Constants hidden in implementation

June 15, 2015 2 / 21

Limits of “scalability”?

Transient simulation does not weak scale.
Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
d-dimensional problem, increase resolution by 2×.
Data increases by 2d , but we need 2× more time steps (hyperbolic).
With perfect scaling, we use 2d+1 more cores.
Local data changes by 2d/2d+1 = 1

2
More applications feeling this

Asymptotics are relentless
New analysis requires more solves in sequence

From forward simulation to optimization with uncertainty . . .
New physics and higher fidelity observation requires more
calibration/validation

Other applications are safe for now
Steady-state solves with scalable methods
Transient with a small number of time steps
Maximize resolution/problem size – memory-constrained

June 15, 2015 3 / 21

Evaluating methods

Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
A method is:

scalable (also “optimal”) if its performance is independent of
resolution and parallelism
robust if its performance is (nearly) independent of model
parameters
efficient if it solves the problem in a small multiple of the cost to
evaluate the residual1

Linear problems typically arise from linearizing a nonlinear
problem. This step is not necessary, but it is convenient for
reusing software and for debugging.

1We’ll settle for “as fast as the best known method”.
June 15, 2015 4 / 21

Evaluating methods

Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
A method is:

scalable (also “optimal”) if its performance is independent of
resolution and parallelism
robust if its performance is (nearly) independent of model
parameters
efficient if it solves the problem in a small multiple of the cost to
evaluate the residual1

Linear problems typically arise from linearizing a nonlinear
problem. This step is not necessary, but it is convenient for
reusing software and for debugging.

1We’ll settle for “as fast as the best known method”.
June 15, 2015 4 / 21

Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
computation
memory usage
communication
bandwidth
achievable concurrency

This allows us to
verify the implementation
predict scaling behavior

June 15, 2015 5 / 21

Complexity Analysis

The key performance indicator, which we will call the balance factor β,
is the ratio of flops executed to bytes transfered.

We will designate the unit flop
byte as the Keyes

Using the peak flop rate rpeak, we can get the required bandwidth
Breq for an algorithm

Breq =
rpeak

β
(1)

Using the peak bandwidth Bpeak, we can get the maximum flop
rate rmax for an algorithm

rmax = βBpeak (2)

June 15, 2015 6 / 21

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

June 15, 2015 7 / 21

http://www.cs.virginia.edu/stream/

Sparse Mat-Vec performance model

Compressed Sparse Row format (AIJ)
For m × n matrix with N nonzeros

ai row starts, length m + 1
aj column indices, length N, range [0,n − 1)

aa nonzero entries, length N, scalar values

y ← y + Ax
f o r (i =0; i <m; i ++)

f o r (j = a i [i] ; j < a i [i + 1] ; j ++)
y [i] += aa [j] * x [a j [j]] ;

One add and one multiply per inner loop
Scalar aa[j] and integer aj[j] only used once
Must load aj[j] to read from x, may not reuse cache well

June 15, 2015 8 / 21

Analysis of Sparse Matvec (SpMV)

Assumptions
No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (3)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (4)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

June 15, 2015 9 / 21

http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf
http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf

Performance Caveats

The peak flop rate rpeak on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-bit registers.
SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

c1 = c1 + a1 ∗ b1 (5)
c2 = c2 + a2 ∗ b2 (6)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.
Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.

June 15, 2015 10 / 21

Profiling basics

Get the math right
Choose an algorithm that gives robust iteration counts and really
converges

Look at where the time is spent
Run with -log_summary and look at events
VecNorm,VecDot measures latency
MatMult measures neighbor exchange and memory bandwidth
PCSetUp factorization, aggregation, matrix-matrix products, . . .
PCApply V-cycles, triangular solves, . . .
KSPSolve linear solve
SNESFunctionEval residual evaluation (user code)
SNESJacobianEval matrix assembly (user code)

June 15, 2015 11 / 21

Communication Costs

Reductions: usually part of Krylov method, latency limited
VecDot
VecMDot
VecNorm
MatAssemblyBegin
Change algorithm (e.g. IBCGS)

Point-to-point (nearest neighbor), latency or bandwidth
VecScatter
MatMult
PCApply
MatAssembly
SNESFunctionEval
SNESJacobianEval
Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once
Better partition

June 15, 2015 12 / 21

Performance Debugging

PETSc has integrated profiling
Option -log_summary prints a report on PetscFinalize()

PETSc allows user-defined events
Events report time, calls, flops, communication, etc.
Memory usage is tracked by object

Profiling is separated into stages
Event statistics are aggregated by stage

June 15, 2015 13 / 21

Profiling

Use -log_summary for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()
User can add new stages

Call PetscLogEventBegin() and PetscLogEventEnd()
User can add new events

Call PetscLogFlops() to include your flops

June 15, 2015 14 / 21

Reading -log_summary

Max Max/Min Avg Total
Time (sec): 1.548e+02 1.00122 1.547e+02
Objects: 1.028e+03 1.00000 1.028e+03
Flops: 1.519e+10 1.01953 1.505e+10 1.204e+11
Flops/sec: 9.814e+07 1.01829 9.727e+07 7.782e+08
MPI Messages: 8.854e+03 1.00556 8.819e+03 7.055e+04
MPI Message Lengths: 1.936e+08 1.00950 2.185e+04 1.541e+09
MPI Reductions: 2.799e+03 1.00000

Also a summary per stage
Memory usage per stage (based on when it was allocated)
Time, messages, reductions, balance, flops per event per stage
Always send -log_summary when asking
performance questions on mailing list

June 15, 2015 15 / 21

Reading -log_summary

Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s

--
--- Event Stage 1: Full solve
VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 0 0 0 0 0 0 0 0 1 73954
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14 1 1 0 0 27 128346
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31 1 1 0 0 61 112366
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 414021
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 0 0 50 26 0 0 0 96 53 0 0
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 22 44 78 49 0 220314
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 0 0 1 6 0 0 192658
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 0 0 3 0 0 1 1 7 0 0 100638
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 0 0 18 41 0 0 0 256792
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 0 4 9 0 0 0 241671
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1e+02 1 0 2 24 2 2 0 3 47 5 0
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 0 0 1 1 0 0 0 1 0
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 99100 99100 97 113626
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+08 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 10 1 4 4 3 13592
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 10 0 3 3 0 0
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e+06 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 26 0 7 48 5 429
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14 1 2 0 0 27 212399
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 0 0 0 0 0 0 0 0 0 0 0
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 62 99 88 48 88 178078
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 12 9 0 0 1 79715
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1 4 9 0 0 1 237761
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 49 88 81 39 79 200691

June 15, 2015 16 / 21

Adding A Logging Class

static int CLASS_ID;

PetscLogClassRegister(&CLASS_ID, "name");

Class ID identifies a class uniquely
Must initialize before creating any objects of this type

June 15, 2015 17 / 21

Adding A Logging Event
C

static int USER_EVENT;

PetscLogEventRegister(&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin(USER_EVENT,0,0,0,0);

/* Code to Monitor */

PetscLogFlops(user_event_flops);
PetscLogEventEnd(USER_EVENT,0,0,0,0);

June 15, 2015 18 / 21

Adding A Logging Event
Python

with PETSc.logEvent(’Reconstruction’) as recEvent:
All operations are timed in recEvent
reconstruct(sol)
Flops are logged to recEvent
PETSc.Log.logFlops(user_event_flops)

June 15, 2015 19 / 21

Adding A Logging Stage
C

int stageNum;

PetscLogStageRegister(&stageNum, "name");
PetscLogStagePush(stageNum);

/* Code to Monitor */

PetscLogStagePop();

June 15, 2015 20 / 21

