Scalability definitions

Strong scalability
@ Fixed problem size

@ execution time T inversely
proportional to number of
processors p

Weak scalability
@ Fixed problem size per
processor

@ execution time constant as
problem size increases

Slope
log T| g %eerennn DROL,
OO&%
U
log p
Slope . poor
Ll — N p

June 15, 2015 1/21

Scalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.
(Gropp 1999)

@ We really want efficient software
@ Need a performance model

e memory bandwidth and latency
e algorithmically critical operations (e.g. dot products, scatters)
o floating point unit

@ Scalability shows marginal benefit of adding more cores, nothing
more

@ Constants hidden in the choice of algorithm
@ Constants hidden in implementation

June 15, 2015 2/21

Limits of “scalability”?

@ Transient simulation does not weak scale.
e Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
e d-dimensional problem, increase resolution by 2x.
e Data increases by 29, but we need 2x more time steps (hyperbolic).
e With perfect scaling, we use 29+ more cores.

e Local data changes by 29/29+1 = 1

@ More applications feeling this
o Asymptotics are relentless
o New analysis requires more solves in sequence
@ From forward simulation to optimization with uncertainty ...
@ New physics and higher fidelity observation requires more
calibration/validation
@ Other applications are safe for now
o Steady-state solves with scalable methods
o Transient with a small number of time steps
o Maximize resolution/problem size — memory-constrained

June 15, 2015 3/21

Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

"We'll settle for “as fast as the best known method”.

June 15, 2015 4/21

Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

@ Linear problems typically arise from linearizing a nonlinear
problem. This step is not necessary, but it is convenient for
reusing software and for debugging.

"We'll settle for “as fast as the best known method”.

June 15, 2015 4/21

Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
@ computation
@ memory usage
@ communication
@ bandwidth
@ achievable concurrency
This allows us to
@ verify the implementation
@ predict scaling behavior

June 15, 2015 5/21

Complexity Analysis

The key performance indicator, which we will call the balance factor f,
is the ratio of flops executed to bytes transfered.

flop
byte

@ Using the peak flop rate r,.., we can get the required bandwidth
Bieq for an algorithm

@ We will designate the unit as the Keyes

h peak
B

@ Using the peak bandwidth B,c.x, we can get the maximum flop
rate rax for an algorithm

Breq = (1)

Imax = BBpeak (2)

June 15, 2015 6/21

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

June 15, 2015 7/21

http://www.cs.virginia.edu/stream/

Sparse Mat-Vec performance model

Compressed Sparse Row format (AlJ)
For m x n matrix with N nonzeros
ai row starts, length m + 1
aj column indices, length N, range [0,n— 1)

aa nonzero entries, length N, scalar values

for (i=0; i<m; i++)
y < y+ Ax for (j=ail[i]; j<ai[i+1]; j++4)
y[i] +=aa[j] = x[aj[j]];

@ One add and one multiply per inner loop
@ Scalar aa[j] and integer aj[j] only used once
@ Must load a7 [7] to read from x, may not reuse cache well

June 15, 2015 8/21

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (3)
or achieveable performance given a bandwith BW
Vnz
BV 2)ymtenzo/ Milop/s “)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

June 15, 2015 9/21

http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf
http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf

Performance Caveats

@ The peak flop rate r,..x on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-bit registers.

@ SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

Ci =C1+ a1 x by (5)
CQZCQ—I—aQ*bg (6)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.

@ Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.

June 15, 2015 10/21

Profiling basics

@ Get the math right

Choose an algorithm that gives robust iteration counts and really
converges

@ Look at where the time is spent

Run with -1og_summary and look at events

VecNorm, VecDot measures latency

MatMult measures neighbor exchange and memory bandwidth
PCSetUp factorization, aggregation, matrix-matrix products, . ..
PCApply V-cycles, triangular solves, ...

KSPSolve linear solve

SNESFunctionEval residual evaluation (user code)
SNESJacobianEval matrix assembly (user code)

June 15, 2015 11/21

Communication Costs

@ Reductions: usually part of Krylov method, latency limited

VecDot

VecMDot

VecNorm
MatAssemblyBegin

Change algorithm (e.g. IBCGS)

@ Point-to-point (nearest neighbor), latency or bandwidth

VecScatter

MatMult

PCApply

MatAssembly

SNESFunctionEval

SNESJacobianEval

Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once

Better partition

June 15, 2015 12/21

Performance Debugging

@ PETSc has integrated profiling
@ Option —1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage

June 15, 2015 13/21

Profiling

@ Use -1og_summary for a performance profile
e Event timing

Event flops
e Memory usage
o MPI messages

@ Call petscLogStagePush () and PetscLogStagePop ()
e User can add new stages

@ Call petscLogEventBegin () and PetscLogEventEnd ()
e User can add new events

@ Call petscLogFlops () toinclude your flops

June 15, 2015 14/21

Reading -1og_summary

(] Max Max/Min Avg Total

Time (sec): 1.548e+02 1.00122 1.547e+02

Objects: 1.028e+03 1.00000 1.028e+03

Flops: 1.519e+10 1.01953 1.505e+10 1.204e+11
Flops/sec: 9.814e+07 1.01829 9.727e+07 7.782e+08
MPI Messages: 8.854e+03 1.00556 8.819e+03 7.055e+04
MPI Message Lengths: 1.936e+08 1.00950 2.185e+04 1.541e+09
MPI Reductions: 2.799e+03 1.00000

Also a summary per stage
Memory usage per stage (based on when it was allocated)
Time, messages, reductions, balance, flops per event per stage

Always send -1og_summary when asking
performance questions on mailing list

June 15, 2015 15/21

Reading -1og_summary

Event Count Time (sec) Flops —-—— Global —--—-
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct ST $F %M $L %R

o |

—--— Event Stage 1: Full solve

VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 O O 0 O
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 O 0 50 26 O
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 2
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 O 0 3 0 O
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 O O 3 0 O
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 O 0 1
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O 0 O O
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 O
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1le+06 5.4e+04 3.1le+02 1 0 2 24 2
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 O 0 1
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 9
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+408 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 1
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 1
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e406 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 2
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 O O 0 0 O
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 6
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 1
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 4

June 15, 2015 16/21

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type

June 15, 2015 17/21

Adding A Logging Event
C

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin (USER_EVENT,0,0,0,0);

/% Code to Monitor =/

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT, 0,0,0,0);

June 15, 2015 18/21

Adding A Logging Event

Python

with PETSc.logEvent (' Reconstruction’) as recEvent:

All operations are timed in recEvent

reconstruct (sol)
Flops are logged to recEvent
PETSc.Log.logFlops (user_event_flops)

June 15, 2015 19/21

Adding A Logging Stage
C

int stageNum;

PetscLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

/* Code to Monitor =/

PetscLogStagePop () ;

June 15, 2015 20/ 21

