- If you have a hard problem, no black-box solver will work well
- Everything in PETSc has a plugin architecture
 - Put in the "special sauce" for your problem
 - Your implementations are first-class
- PETSc exposes an algebra of composition at runtime
 - Build a good solver from existing components, at runtime
 - Multigrid, domain decomposition, factorization, relaxation, field-split
 - Choose matrix format that works best with your preconditioner
 - structural blocking, Neumann matrices, monolithic versus nested

Questions to ask when you see a matrix

- What do you want to do with it?
 - Multiply with a vector
 - Solve linear systems or eigen-problems
- e How is the conditioning/spectrum?
 - distinct/clustered eigen/singular values?
 - symmetric positive definite ($\sigma(A) \subset \mathbb{R}^+$)?
 - nonsymmetric definite $(\sigma(A) \subset \{z \in \mathbb{C} : \Re[z] > 0\})$?
 - indefinite?
- How dense is it?
 - block/banded diagonal?
 - sparse unstructured?
 - denser than we'd like?
- Is there a better way to compute Ax?
- Is there a different matrix with similar spectrum, but nicer properties?
- How can we precondition A?

Questions to ask when you see a matrix

- What do you want to do with it?
 - Multiply with a vector
 - Solve linear systems or eigen-problems
- e How is the conditioning/spectrum?
 - distinct/clustered eigen/singular values?
 - symmetric positive definite ($\sigma(A) \subset \mathbb{R}^+$)?
 - nonsymmetric definite $(\sigma(A) \subset \{z \in \mathbb{C} : \Re[z] > 0\})$?
 - indefinite?
- How dense is it?
 - block/banded diagonal?
 - sparse unstructured?
 - denser than we'd like?
- Is there a better way to compute Ax?
- Is there a different matrix with similar spectrum, but nicer properties?
- How can we precondition A?

Definition (Preconditioner)

A preconditioner \mathcal{P} is a method for constructing a matrix $P^{-1} = \mathcal{P}(A, A_p)$ using a matrix A and extra information A_p , such that the spectrum of $P^{-1}A$ (or AP^{-1}) is well-behaved.

- P^{-1} is dense, P is often not available and is not needed
- *A* is rarely used by \mathcal{P} , but $A_p = A$ is common
- A_p is often a sparse matrix, the "preconditioning matrix"
- Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU
- Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC
- Indefinite: Schur-complement, Domain Decomposition, Multigrid

Preconditioning

Idea: improve the conditioning of the Krylov operator

Left preconditioning

$$(P^{-1}A)x = P^{-1}b$$

 $\{P^{-1}b, (P^{-1}A)P^{-1}b, (P^{-1}A)^2P^{-1}b, \dots\}$

Right preconditioning

$$(AP^{-1})Px = b$$

 $\{b, (P^{-1}A)b, (P^{-1}A)^2b, \dots\}$

• The product $P^{-1}A$ or AP^{-1} is <u>not</u> formed.

Definition (Preconditioner)

A <u>preconditioner</u> \mathcal{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1} = \mathcal{P}(A, A_p)$ using a matrix A and extra information A_p , such that the spectrum of $P^{-1}A$ (or AP^{-1}) is

- Use a direct method (small problem size)
- Precondition with Schur Complement method
- Use multigrid approach

What about direct linear solvers?

- By all means, start with a direct solver
- Direct solvers are robust, but not scalable
- **2D**: $\mathcal{O}(n^{1.5})$ flops, $\mathcal{O}(n \log n)$ memory.
- **3D**: *O*(*n*²) flops, *O*(*n*^{4/3}) memory

3rd Party Solvers in PETSc

Complete table of solvers

- Sequential LU
 - ILUDT (SPARSEKIT2, Yousef Saad, U of MN)
 - EUCLID & PILUT (Hypre, David Hysom, LLNL)
 - ESSL (IBM)
 - SuperLU (Jim Demmel and Sherry Li, LBNL)
 - Matlab
 - UMFPACK (Tim Davis, U. of Florida)
 - LUSOL (MINOS, Michael Saunders, Stanford)
- Parallel LU
 - MUMPS (Patrick Amestoy, IRIT)
 - SPOOLES (Cleve Ashcroft, Boeing)
 - SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
- Parallel Cholesky
 - DSCPACK (Padma Raghavan, Penn. State)
- SYTIIb parallel direct solver (Paul Fischer and Henry Tufo, ANL)

3rd Party Preconditioners in PETSc

Complete table of solvers

- Parallel ICC
 - BlockSolve95 (Mark Jones and Paul Plassman, ANL)
- Parallel ILU
 - BlockSolve95 (Mark Jones and Paul Plassman, ANL)
- Parallel Sparse Approximate Inverse
 - Parasails (Hypre, Edmund Chow, LLNL)
 - SPAI 3.0 (Marcus Grote and Barnard, NYU)
- Sequential Algebraic Multigrid
 - RAMG (John Ruge and Klaus Steuben, GMD)
 - SAMG (Klaus Steuben, GMD)
- Parallel Algebraic Multigrid
 - Prometheus (Mark Adams, PPPL)
 - BoomerAMG (Hypre, LLNL)
 - ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

イロト イヨト イヨト イヨト

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Outlook on Solver Composition

- Unintrusive composition of multigrid and block preconditioning
- We can build many preconditioners from the literature on the command line
- User code does not depend on matrix format, preconditioning method, nonlinear solution method, time integration method (implicit or IMEX), or size of coupled system (except for driver).

In development

- Distributive relaxation, Vanka smoothers
- Algebraic coarsening of "dual" variables
- Improving operator-dependent semi-geometric multigrid
- More automatic spectral analysis and smoother optimization
- Automated support for mixing analysis into levels

< 47 ▶

The Stokes System

-pc_type fieldsplit
-pc_fieldsplit_type

-fieldsplit_0_ksp_type preonly

June 15, 2015

10/30

- -pc_type fieldsplit
- -pc_fieldsplit_type additive
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

Cohouet and Chabard, <u>Some fast 3D finite element solvers for the generalized Stokes</u> problem, 1988.

-pc_type fieldsplit
-pc_fieldsplit_type
multiplicative

- -fieldsplit_0_pc_type hypre
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

 $\begin{array}{c}
\mathsf{PC}\\
\begin{pmatrix}
\hat{A} & B\\
0 & I
\end{array}
\end{array}$

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

Stokes example

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type diag

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, 2006.

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type lower

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

Stokes example

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type lsc
- -fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

Kay, Loghin and Wathen, <u>A Preconditioner for the Steady-State N-S Equations</u>, 2002. Elman, Howle, Shadid, Shuttleworth, and Tuminaro, <u>Block preconditioners based on</u> approximate commutators, 2006.

イロト イヨト イヨト イヨト

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -pc_fieldsplit_schur_factorization_type full

$\begin{pmatrix} I & 0 \\ B^{T}A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type

System on each Coarse Level

$R\begin{pmatrix}A & B\\B^T & 0\end{pmatrix}P$

< 回 > < 回 > < 回 >

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type additive

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix}$

```
-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
```

-mg_levels_pc_type fieldsplit

```
-mg_levels_pc_fieldsplit_type
multiplicative
```

```
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_ksp_type preonly
```

```
-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly
```

Smoother PC $\begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}$

< ロ > < 同 > < 回 > < 回 >

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ 0 & -\hat{S} \end{pmatrix}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-mg_levels_pc_fieldsplit_schur_factorization_type diag

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ B^T & \hat{S} \end{pmatrix}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-mg_levels_pc_fieldsplit_schur_factorization_type lower

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother ÂB 2 ŝ

-mg_levels_pc_fieldsplit_schur_factorization_type upper

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type lsc
-mg_levels_fieldsplit_1_ksp_type minres

Smoother $\begin{pmatrix} A & B \\ 0 & \hat{S}_{LSC} \end{pmatrix}$

-mg_levels_pc_fieldsplit_schur_factorization_type upper

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Shur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

イロン イ理 とくさ とくさ とうしょう

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Shur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres -mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5 Shur complement action: Use only the lower diagonal part of A00 -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_0_pc_sor_forward

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Shur complement action: Use only the lower diagonal part of A00

```
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Relative effect of the blocks

$$J = egin{pmatrix} J_{uu} & J_{up} & J_{uE} \ J_{pu} & 0 & 0 \ J_{Eu} & J_{Ep} & J_{EE} \end{pmatrix}$$
 .

- *J_{uu}* Viscous/momentum terms, nearly symmetric, variable coefficients, anisotropy from Newton.
- *J_{up}* Weak pressure gradient, viscosity dependence on pressure (small), gravitational contribution (pressure-induced density variation). Large, nearly balanced by gravitational forcing.
- J_{uE} Viscous dependence on energy, very nonlinear, not very large.
- J_{pu} Divergence (mass conservation), nearly equal to J_{up}^{T} .
- *J_{Eu}* Sensitivity of energy on momentum, mostly advective transport. Large in boundary layers with large thermal/moisture gradients.
- J_{Ep} Thermal/moisture diffusion due to pressure-melting, $\boldsymbol{u} \cdot \nabla$.
- JEE Advection-diffusion for energy, very nonlinear at small regularization. Advection-dominated except in boundary layers

How much nesting?

$$P_1 = egin{pmatrix} J_{uu} & J_{up} & J_{uE} \ 0 & B_{pp} & 0 \ 0 & 0 & J_{EE} \end{pmatrix}$$

- *B_{pp}* is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.
- Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- Works well for non-dimensional problems on the cube, not for realistic parameters.

$${m P} = egin{bmatrix} J_{uu} & J_{up} \ J_{pu} & 0 \ (J_{Eu} & J_{Ep}) & J_{EE} \end{bmatrix}$$

- Inexact inner solve using upper-triangular with B_{pp} for Schur.
- Another level of nesting.
- GCR tolerant of inexact inner solves.

June 15, 2015

14/30

- Outer converges in 1 or 2 iterations.
- Low-order preconditioning full-accuracy unassembled high order operator.

Why do we need multilevel solvers?

- Elliptic problems are globally coupled
- Without a coarse level, number of iterations proportional to inverse mesh size
- High-volume local communication is an inefficient way to communicate long-range information, bad for parallel models
- Most important with 3D flow features and/or slippery beds
- Nested/split multilevel methods
 - Decompose problem into simpler sub-problems, use multilevel methods on each
 - Good reuse of existing software
 - More synchronization due to nesting, more suitable after linearization
- Monolithic/coupled multilevel methods
 - Better convergence and lower synchronization, but harder to get right
 - Internal nonlinearities resolved locally
 - More discretization-specific, less software reuse

Multigrid is <u>optimal</u> in that is does $\mathcal{O}(N)$ work for $||r|| < \epsilon$

- Brandt, Briggs, Chan & Smith
- Constant work per level
 - Sufficiently strong solver
 - Need a constant factor decrease in the residual
- Constant factor decrease in dof
 - Log number of levels

Multilevel Solvers are a Way of Life

ingredients that discretizations can provide

- identify "fields"
- topological coarsening, possibly for fields
- near-null space information
- "natural" subdomains
- subdomain integration, face integration
- element or subdomain assembly/matrix-free smoothing
- solver composition
 - most splitting methods accessible from command line
 - energy optimization for tentative coarse basis functions
 - algebraic form of distributive relaxation
 - generic assembly for large systems and components
 - working on flexibile "library-assisted" nonlinear multigrid
 - adding support for interactive eigenanalysis

Smoothing (typically Gauss-Seidel)

$$x^{new} = S(x^{old}, b) \tag{1}$$

Coarse-grid Correction

$$J_c \delta x_c = R(b - Jx^{old})$$
(2)
$$x^{new} = x^{old} + R^T \delta x_c$$
(3)

Multigrid

Hierarchy: Interpolation and restriction operators

 $\mathcal{I}^{\uparrow}: X_{\text{coarse}} o X_{\text{fine}} \qquad \mathcal{I}^{\downarrow}: X_{\text{fine}} o X_{\text{coarse}}$

- Geometric: define problem on multiple levels, use grid to compute hierarchy
- Algebraic: define problem only on finest level, use matrix structure to build hierarchy

Galerkin approximation

Assemble this matrix: $A_{\text{coarse}} = \mathcal{I}^{\downarrow} A_{\text{fine}} \mathcal{I}^{\uparrow}$

Application of multigrid preconditioner (V-cycle)

- Apply pre-smoother on fine level (any preconditioner)
- Restrict residual to coarse level with \mathcal{I}^{\downarrow}
- Solve on coarse level $A_{\text{coarse}}x = r$
- Interpolate result back to fine level with I[↑]
- Apply post-smoother on fine level (any preconditioner)

Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by defining a hierarchy of scale. A multigrid method is constructed from:

a series of discretizations

- coarser approximations of the original problem
- constructed algebraically or geometrically
- Intergrid transfer operators
 - residual restriction I_h^H (fine to coarse)
 - state restriction \hat{l}_{h}^{H} (fine to coarse)
 - partial state interpolation I_{H}^{h} (coarse to fine, 'prolongation')
 - state reconstruction \mathbb{I}_{H}^{h} (coarse to fine)
- Smoothers (S)
 - correct the high frequency error components
 - Richardson, Jacobi, Gauss-Seidel, etc.
 - Gauss-Seidel-Newton or optimization methods

Rediscretized Multigrid using DM

- DM manages problem data beyond purely algebraic objects
 - structured, redundant, and (less mature) unstructured implementations in PETSc
 - third-party implementations
- DMCoarsen (dmfine, coarse_comm, &coarsedm) to create "geometric" coarse level
 - Also DMRefine () for grid sequencing and convenience
 - DMCoarsenHookAdd() for external clients to move resolution-dependent data for rediscretization and FAS
- DMCreateInterpolation(dmcoarse, dmfine, &Interp, &Rscale)
 - Usually uses geometric information, can be operator-dependent
 - Can be improved subsequently, e.g. using energy-minimization from AMG
- Resolution-dependent solver-specific callbacks use attribute caching on DM.
 - Managed by solvers, not visible to users unless they need exotic things (e.g. custom homogenization, reduced models)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multigrid

• Multigrid methods uses coarse correction for large-scale error

Algorithm MG(A, b) for the solution of $A\vec{x} = b$:

$$\vec{x} = S^m(\vec{x}, b)$$
pre-smooth $b^H = I_h^H(\vec{r} - A\vec{x})$ restrict residual $\hat{x}^H = MG(I_h^H A I_H^h, b^H)$ recurse $\vec{x} = \vec{x} + I_H^h \hat{x}^H$ prolong correction $\vec{x} = \vec{x} + S^n(\vec{x}, b)$ post-smooth

June 15, 2015

22/30

Full Multigrid(FMG)

June 15, 2015

23/30

- start wich coarse grid
- \vec{x} is prolonged using \mathbb{I}_{H}^{h} on first visit to each finer level
- truncation error within one cycle
- about five work units for many problems
- highly efficient solution method

Some Multigrid Options

- -snes_grid_sequence: [0]
 Solve nonlinear problems on coarse grids to get initial guess
- -pc_mg_galerkin: [FALSE] Use Galerkin process to compute coarser operators
- -pc_mg_type: [FULL] (choose one of) MULTIPLICATIVE ADDITIVE FULL KASKADE
- -mg_coarse_{ksp,pc}_*
 control the coarse-level solver
- -mg_levels_{ksp,pc}_*
 control the smoothers on levels
- -mg_levels_3_{ksp,pc}_* control the smoother on specific level
- These also work with ML's algebraic multigrid.

Coupled Multigrids

 Geometric multigrid with isotropic coarsening, ASM(1)/Cholesky and ASM(0)/ICC(0) on levels

```
-mg_levels_pc_type bjacobi -mg_levels_sub_pc_type icc
-mg_levels_1_pc_type asm -mg_levels_1_sub_pc_type
cholesky
```

... with Galerkin coarse operators

-pc_mg_galerkin

... with ML's aggregates

-pc_type ml -mg_levels_pc_type asm

- Geometric multigrid with aggressive semi-coarsening, ASM(1)/Cholesky and ASM(0)/ICC(0) on levels -da_refine_hierarchy_x 1,1,8,8 -da_refine_hierarchy_y 2,2,1,1 -da_refine_hierarachy_z 2,2,1,1
- Simulate 1024 cores, interactively, on my laptop -mg_levels_pc_asm_blocks 1024

Everything is better as a smoother (sometimes)

Block preconditioners work alright, but...

- nested iteration requires more dot products
- more iterations: coarse levels don't "see" each other
- finer grained kernels: lower arithmetic intensity, even more limited by memory bandwidth

Coupled multigrid

- need compatible coarsening
 - can do algebraically (Adams 2004) but would need to assemble
- stability issues for lowest order $Q_1 P_0^{\text{disc}}$
 - Rannacher-Turek looks great, but no discrete Korn's inequality
- coupled "Vanka" smoothers difficult to implement with high performance, especially for FEM
- block preconditioners as smoothers reuse software better
- one level by reducing order for the coarse space, more levels need non-nested geometric MG or go all-algebraic and pay for matrix assembly and setup

Multigrid convergence properties

- Textbook: $P^{-1}A$ is spectrally equivalent to identity
 - Constant number of iterations to converge up to discretization error
- Most theory applies to SPD systems
 - variable coefficients (e.g. discontinuous): low energy interpolants
 - mesh- and/or physics-induced anisotropy: semi-coarsening/line smoothers
 - complex geometry: difficult to have meaningful coarse levels
- Deeper algorithmic difficulties
 - nonsymmetric (e.g. advection, shallow water, Euler)
 - indefinite (e.g. incompressible flow, Helmholtz)
- Performance considerations
 - Aggressive coarsening is critical in parallel
 - Most theory uses SOR smoothers, ILU often more robust
 - Coarsest level usually solved semi-redundantly with direct solver

Multilevel Schwarz is essentially the same with different language

assume strong smoothers, emphasize aggressive coarsening

Algebraic Multigrid Tuning

Smoothed Aggregation (GAMG, ML)

- Graph/strength of connection MatSetBlockSize()
- Threshold (-pc_gamg_threshold)
- Aggregate (MIS, HEM)
- Tentative prolongation MatSetNearNullSpace()
- Eigenvalue estimate
- Chebyshev smoothing bounds
- BoomerAMG (Hypre)
 - Strong threshold (-pc_hypre_boomeramg_strong_threshold)
 - Aggressive coarsening options

Coupled approach to multiphysics

- Smooth all components together
 - Block SOR is the most popular
 - Block ILU sometimes more robust (e.g. transport/anisotropy)
 - Vanka field-split smoothers or for saddle-point problems
 - Distributive relaxation
- Scaling between fields is critical
- Indefiniteness
 - Make smoothers and interpolants respect inf-sup condition
 - Difficult to handle anisotropy
 - Exotic interpolants for Helmholtz
- Transport
 - Define smoother in terms of first-order upwind discretization (*h*-ellipticity)
 - Evaluate residuals using high-order discretization
 - Use Schur field-split: "parabolize" at top level or for smoother on levels
- Multigrid inside field-split or field-split inside multigrid
- Open research area, hard to write modular software and a set with the set of the set

Programming with Options

ex55: Allen-Cahn problem in 2D

- constant mobility
- triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65 -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition user -mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly -mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd -mg_levels_fieldsplit_0_ksp_type preonly -mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5 -mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin -snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11 -mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5