PETSc Structure

June 15, 2015 1/47

The PETSc Programming Model

@ Goals
o Portable, runs everywhere
e High performance
@ Scalable parallelism
@ Approach
o Distributed memory (“shared-nothing”)
o No special compiler
@ Access to data on remote machines through MPI
o Hide within objects the details of the communication
e User orchestrates communication at a higher abstract level

June 15, 2015 2/47

Library Design

Numerical libraries should interact at a higher level than MPI

@ MPI coordinates data movement and synchronization for data
parallel applications
@ Numerical libraries should coordinate access to a given data
structure
e MPI can handle data parallelism and something else (runtime
engine) handle task parallelism (van de Geijn, Strout, Demmel)
e Algorithm should be data structure neutral, but its main operation is
still to structure access

June 15, 2015 3/47

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
@ Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, VecC %*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process

June 15, 2015 4/47

Initialization

@ Call petscInitialize ()

o Setup static data and services
@ Setup MPI if it is not already
o Can set PETSC_COMM_WORLD to use your communicator
(can always use subcommunicators for each object)
@ Call petscFinalize ()
o Calculates logging summary
e Can check for leaks/unused options
e Shutdown and release resources

@ Can only initialize PETSc once

June 15, 2015 5/47

Vector Algebra

A PETSc Vec

@ Supports all vector space operations
@ VecDot (), VecNorm(), VecScale /()

@ Has a direct interface to the values
@ VecGetArray (), VecGetArrayF90 ()

@ Has unusual operations
@ VecSqgrtAbs (), VecStrideGather ()

@ Communicates automatically during assembly
@ Has customizable communication (VecScatter)

June 15, 2015 6/47

Object-Oriented Design

@ Design based on operations you perform,
e rather than the data in the object

@ Example: A vector is
e not a 1d array of numbers

@ an object allowing addition and scalar multiplication
@ The efficient use of the computer is an added difficulty
e which often leads to code generation

June 15, 2015 7147

Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing field solutions, right-hand
sides, etc.

@ Each process locally owns a subvector of contiguous global data
How do | create vectors?

@ VecCreate (MPI_Comm, Vec x)

@ VecSetSizes (Vec, int n, int N)

@ VecSetType (Vec, VecType typeName)
@ VecSetFromOptions (Vec)
o Can set the type at runtime

June 15, 2015 8/47

Vector Algebra

A PETSc Vec

@ Has a direct interface to the values

@ Supports all vector space operations
@ VecDot (), VecNorm (), VecScale ()

@ Has unusual operations, e.g. VecsSqgrt (), VecWhichBetween ()
@ Communicates automatically during assembly
@ Has customizable communication (scatters)

June 15, 2015 8/47

Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

o Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase

June 15, 2015 9/47

Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ VecSetValues (Vec v, int n, int rows][],
PetscScalar values|[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
@ Two phase assembly allows overlap of communication and
computation
@ VecAssemblyBegin (Vec V)
@ VecAssemblyEnd (Vec v)

June 15, 2015 10/47

One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i =0, val = 0.0; i < N; i++, wval += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);

}

/+ These routines ensure that the data is distributed
to the other processes x/

VecAssemblyBegin (x) ;

VecAssemblyEnd (x) ;

June 15, 2015 11/47

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low, &high);
for(i = low,val = lowx10.0; i < high; i++,val += 10.0)
{
VecSetValues(x, 1, &i, &val, INSERT_VALUES);
}
/+ These routines ensure that the data is distributed
to the other processes */
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

June 15, 2015 12/47

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring

processes

® Local Node
@ Ghost Node

June 15, 2015 13/47

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray (Vec, double x[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray (Vec, double *x[])
@ Allows PETSc to handle data structure conversions
@ Commonly, these routines are inexpensive and do not involve a
copy

June 15, 2015 14/47

VecGetArray in C

Vec v;

PetscScalar *array;
PetscInt n, i;
PetscErrorCode ierr;

VecGetArray (v, &array);
VecGetLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
for(i = 0; i < n; i++) {
array[i] += (PetscScalar) rank;
}

VecRestoreArray (v, &array);

June 15, 2015 15/47

VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;

PetscScalar array (1)
PetscOffset offset

PetscInt n, 1

PetscErrorCode ierr

call VecGetArray (v, array, offset, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n

array (itoffset) = array(itoffset) + rank
end do
call VecRestoreArray (v, array, offset, ierr)

June 15, 2015 15/47

VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;

PetscScalar pointer :: array(:)
PetscInt n, 1

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n
array (i) = array (i) + rank
end do
call VecRestoreArrayF90 (v, array, ierr)

June 15, 2015 15/47

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=x+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y + ax* x
VecScale(Vec x, PetscScalar a) X=axx
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) Wi = X; * Y
VecMax(Vec x, PetsclInt *idx, PetscScalar *r) r = max;
VecShift(Vec x, PetscScalar r) Xi=Xj+r
VecAbs(Vec x) X = |xj|
VecNorm(Vec x, NormType type, PetscReal *r) r=||x||

June 15, 2015 16 /47

What is a DM?

Interface for linear algebra to talk to grids
Defines (topological part of) a finite-dimensional function space
o Get an element from this space: DMCreateGlobalVector ()

Provides parallel layout
Refinement and coarsening
@ DMRefine (), DMCoarsen ()
Ghost value coherence
@ DMGlobalToLocalBegin ()
Matrix preallocation:
@ DMCreateMatrix () (formerly DMGetMatrix())

June 15, 2015 17 /47

Topology Abstractions

@ DMDA

o Abstracts Cartesian grids in 1, 2, or 3 dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ DMPLEX

o Abstracts general topology in any dimension
@ Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations

@ DMCOMPOSITE
e Composition of two or more DMs

@ DMNetwork - for discrete networks like power grids and circuits
@ DMMoab - interface to the MOAB unstructured mesh library

June 15, 2015 18/47

DM Vectors

@ The DM object contains only layout (topology) information
o All field data is contained in PETSc Vecs
@ Global vectors are parallel
e Each process stores a unique local portion
@ DMCreateGlobalVector (DM da, Vec =*gvec)
@ Local vectors are sequential (and usually temporary)
e Each process stores its local portion plus ghost values
@ DMCreateLocalVector (DM da, Vec +*lvec)

@ includes ghost values!

June 15, 2015 19/47

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGlobalToLocalBegin (dm, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@® DMGlobalToLocalEnd (dm, gvec, mode, lvec)
o Finishes the communication

The process can be reversed with DMLocalToGlobalBegin () and
DMLocalToGlobalEnd ().

June 15, 2015 20/47

Monolithic Global Monolithic Local

—

(LocalToGlobalMapping)

Split Local

rank 0 Split Global

rank 0

LocalToGlobal ()
I rank O
rank 1 rank 1 I :IEank 1
\ rank 2
rank 2

rank 2 I I

(GetSubMatrix() / GetSubVector())

June 15, 2015 21/47

What is a DMDA?

DMDA is a topology interface handling parallel data layout on structured
grids
@ Handles local and global indices
@ DMDAGetGlobalIndices () and DMDAGetAO ()
@ Provides local and global vectors
@ DMGetGlobalVector () and DMGetLocalVector ()
@ Handles ghost values coherence
@ DMGetGlobalToLocal () and DMGetLocalToGlobal ()

June 15, 2015 22/47

DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20 |26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5|11 12
o 1 2|3 X o 1 2|9 10

Proc O Proc 1 Proc O Proc 1

Local numbering Global numbering

June 15, 2015 23/47

Creating a DADM

DMDACreate2d (comm, bdX, bdyY, type, M, N, m, n, dof, s, 1lm[], 1ln[], DMDA =xc

bd: Specifies boundary behavior
@ DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, Of
DMDA_BOUNDARY_PERIODIC

~ype: Specifies stencil
@ DA_STENCIIL_BROX Of DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

Im/n: Alternative array of local sizes
o Use PETSC_NULL for the default

June 15, 2015 24 /47

DMDA Stencils

Both the box stencil and star stencil are available.

proc 10

proc 0

proc 1

Box Stencil

proc 0

proc 1

Star Stencil

June 15, 2015

25/47

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.

June 15, 2015 26 /47

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

June 15, 2015 26 /47

How do | create matrices?

MatCreate (MPI_Comm, Mat =)
MatSetSizes (Mat, int m, int n, int M, int N)
MatSetType (Mat, MatType typeName)
MatSetFromOptions (Mat)

o Can set the type at runtime
MatMPIBAIJSetPreallocation (Mat,...)

e important for assembly performance, more tomorrow
MatSetBlockSize (Mat, int bs)

o for vector problems
MatSetValues (Mat, ...)

o MUST be used, but does automatic communication
@ MatSetValuesLocal (), MatSetValuesStencil ()
@ MatSetValuesBlocked()

June 15, 2015 27147

Matrix Storage Layout

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

@ diagonal blocks

proc 0 m offdiagonal blocks

proc 1
proc 2
proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A,int #*start,int =*end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

June 15, 2015 28/ 47

Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
e mode is either INSERT_VALUES or ADD_VALUES
e Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY

June 15, 2015 29/47

Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
e mode is either INSERT_VALUES or ADD_VALUES
e Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
e type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY
@ For vector problems
MatSetValuesBlocked (Mat A, m, rows[],
n, cols[], values([], mode)
@ The same assembly code can build matrices of different format

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = —-1.0;
if (rank == 0) {
for (row = 0; row < N; row++) {
cols[0] = row—-1; cols[l] = row; cols[2] = rowtl;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v([1], INSERT_VALUES)
} else if (row == N-1) {
MatSetValues (A, 1, &row,2,cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;

MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

June 15, 2015 30/47

A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = —-1.0;
for (row = start; row < end; rowt+) {
cols[0] = row—-1; cols[l] = row; cols[2] = rowt+l;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;
} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;
}

MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

June 15, 2015 31/47

Matrix Memory Preallocation

@ PETSc sparse matrices are dynamic data structures
e can add additional nonzeros freely
@ Dynamically adding many nonzeros
@ requires additional memory allocations
e requires copies
e can kill performance
@ Memory preallocation provides

o the freedom of dynamic data structures
@ good performance

@ Easiest solution is to replicate the assembly code

e Remove computation, but preserve the indexing code
o Store set of columns for each row

@ Call preallocation routines for all datatypes

@ MatSegAIJSetPreallocation()
@ MatMPIBAIJSetPreallocation ()
@ Only the relevant data will be used

June 15, 2015 32/47

Sequential Sparse Matrices

MatSegAIJSetPreallocation (Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i

June 15, 2015 33/47

Parallel Sparse Matrices

MatMPIAIJSetPreallocation (Mat A, int dnz, int
dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portior
onnz(i): expected number of nonzeros in row i in the offdiagonal portion

June 15, 2015 34/47

Verifying Preallocation

@ Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

@ Use runtime option —-info

@ Output:
[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used
[proc #] Number of mallocs during MatSetValues()
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unnheeded, 250 used

[0]MatAssemblyEnd_ SquIJ Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_ CheckIncode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize :PETSce successfully ended!

June 15, 2015 35/47

Matrix Polymorphism

The PETSc Mat has a single user interface,
@ Matrix assembly
@ MatSetValues ()
@ Matrix-vector multiplication
@ MatMult ()
@ Matrix viewing
@ MatView ()

but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense, Elemental
@ Matrix-Free
@ etc.
A matrix is defined by its interface, not by its data structure.

June 15, 2015 36/47

Block and symmetric formats

e BAIJ

o Like AlJ, but uses static block size
o Preallocation is like AlJ, but just one index per block

@ SBAIJ

e Only stores upper triangular part

e Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

@ MatSetValuesBlocked()

o Better performance with blocked formats

o Also works with scalar formats, if Mat SetBlockSize () was called

o Variants MatSetValuesBlockedLocal (),
MatSetValuesBlockedStencil ()

e Change matrix format at runtime, don’t need to touch assembly
code

June 15, 2015 37/47

Performance of blocked matrix formats

Format | Core 2, 1 process | Opteron, 4 processes

Kernel AlJ ‘ BAIJ ‘ SBAIJ | AlJ ‘ BAIJ ‘ SBAIJ
MatMult 812 | 985 | 1507 | 2226 | 2918 | 3119
MatSolve 718 | 957 955 | 1573 | 2869 | 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo
(P8700) and Opteron 2356 (two sockets). MatSolve is a forward- and
back-solve with incomplete Cholesky factors. The AlJ format is using
“‘inodes” which unrolls across consecutive rows with identical nonzero
pattern (pairs in this case).

June 15, 2015 38/47

Objects

Mat A;

PetscInt m,n,M,N;

MatCreate (comm, &A) ;

MatSetSizes (A,m,n,M,N) ; /* or PETSC_DECIDE %/
MatSetOptionsPrefix (A, "foo_");
MatSetFromOptions (A) ;

/* Use A */

MatView (A, PETSC_VIEWER_DRAW_WORLD) ;

MatDestroy (A) ;

@ Mat is an opaque object (pointer to incomplete type)
e Assignment, comparison, etc, are cheap
@ What’s up with this “Options” stuff?
o Allows the type to be determined at runtime: —foo_mat_type
sbaij
o Inversion of Control similar to “service locator”,
related to “dependency injection”

@ Other options (performance and semantics) can’be changed at
June 15, 2015 39/47

Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.

June 15, 2015 40/47

Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.
Fundamental objects for storing stiffness matrices and Jacobians

°
@ Each process locally owns a contiguous set of rows
@ Supports many data types

o AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
Supports structures for many packages

o MUMPS, Spooles, SuperLU, UMFPack, DSCPack

June 15, 2015 40/47

Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide significant performance
benefits
e PETSc has many formats and makes it easy to add new data
structures

@ Assembly is difficult enough without worrying about partitioning

o PETSc provides parallel assembly routines

@ Achieving high performance still requires making most operations
local

e However, programs can be incrementally developed.

@ MatPartitioning and MatOrdering can help

@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
o For other ordering, PETSc provides “Application Orderings” (AQ)

June 15, 2015 41/47

MatGetLocalSubMatrix () spaces

@ Newton method for F(x) = 0 solves

J(x)ox = —F(x)

Jaa Jab Jac
J=|Jdpa JIob Jbe
Jca Jcb Jcc

@ Conceptually, there are three spaces in parallel

V' “monolithic” globally assembled space

V; “split” global space for a single physics i

V; Local space (with ghosts) for a single physcs i

V [1, Vi Concatenation of all single-physics local spaces
@ Different components need different relationships
V; — V field-split
V — V coupled Neumann domain decomposition methods

V; natural language for modular residual evaluation and assembly

June 15, 2015 42 /47

MatGetLocalSubMatrix (Mat A, IS rows,IS cols,Mat =*B);
@ Primarily for assembly
@ B is not guaranteed to implement MatMult
e The communicator for B is not specified,
only safe to use non-collective ops (unless you check)
@ IS represents an index set, includes a block size and
communicator

@ MatSetValuesBlockedLocal () is implemented

@ MatNest returns nested submatrix, no-copy

@ No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

@ Most other matrices return a lightweight proxy Mat

@ COMM_SELF
Values not copied, does not implement MatMult
Translates indices to the language of the parent matrix
Multiple levels of nesting are flattened

June 15, 2015 43 /47

MatGetLocalSubMatrix () spaces

V' Globally assembled space

V; Global space for a single physics i
V; Local space (with ghosts) for a single physcs i

V TJ, Vi Concatenation of all single-physics local spaces

@ Multiple physics x = [Xa, Xp, Xc]
/i Map indices from V; to V.
R; Global physics restriction R; : V — V;

Rix = x[lj] = xi

_I; Map indices from V; to V;
R; Extract local single-physics part from global single-physics

Rixi = xi[l]] = ;i

I; Map indices from V; to V

MatGetLocalSubMatrix () spaces

@ Globally assembled coupled matrix in terms of assembled
single-physics blocks

J=Y R/JR
i

e Language of Schwarz and fieldsplit

@ Assembled single-physics blocks in terms of local single-physics
matrices o
Jj = R; JjiR;

e Language of assembly and Neumann/FETI| domain decomposition
@ MatSetValuesLocal ()

June 15, 2015 45/47

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn/[],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

June 15, 2015 46 /47

DMDA matrices

@ DMCreateMatrix(DM da,Mat *A)
@ Evaluate only the local portion
e No nice local array form without copies

@ Use MatSetValuesStencil () to convert (i, j, k) toindices

@ make NP=2 EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-mat_view_draw —-draw_pause -1" runbratu

@ make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

—-da_grid_z 5 -mat_view_draw -draw_pause —-1" runbratu

June 15, 2015 47 /47

