
PETSc Structure

June 15, 2015 1 / 47

The PETSc Programming Model

Goals
Portable, runs everywhere
High performance
Scalable parallelism

Approach
Distributed memory (“shared-nothing”)
No special compiler
Access to data on remote machines through MPI
Hide within objects the details of the communication
User orchestrates communication at a higher abstract level

June 15, 2015 2 / 47

Library Design

Numerical libraries should interact at a higher level than MPI

MPI coordinates data movement and synchronization for data
parallel applications
Numerical libraries should coordinate access to a given data
structure

MPI can handle data parallelism and something else (runtime
engine) handle task parallelism (van de Geijn, Strout, Demmel)
Algorithm should be data structure neutral, but its main operation is
still to structure access

June 15, 2015 3 / 47

Collectivity

MPI communicators (MPI_Comm) specify collectivity
Processes involved in a computation

Constructors are collective over a communicator
VecCreate(MPI_Comm comm, Vec *x)
Use PETSC_COMM_WORLD for all processes and
PETSC_COMM_SELF for one

Some operations are collective, while others are not
collective: VecNorm()
not collective: VecGetLocalSize()

Sequences of collective calls must be in the same order on each
process

June 15, 2015 4 / 47

Initialization

Call PetscInitialize()
Setup static data and services
Setup MPI if it is not already
Can set PETSC_COMM_WORLD to use your communicator
(can always use subcommunicators for each object)

Call PetscFinalize()
Calculates logging summary
Can check for leaks/unused options
Shutdown and release resources

Can only initialize PETSc once

June 15, 2015 5 / 47

Vector Algebra

A PETSc Vec

Supports all vector space operations
VecDot(), VecNorm(), VecScale()

Has a direct interface to the values
VecGetArray(), VecGetArrayF90()

Has unusual operations
VecSqrtAbs(), VecStrideGather()

Communicates automatically during assembly
Has customizable communication (VecScatter)

June 15, 2015 6 / 47

Object-Oriented Design

Design based on operations you perform,
rather than the data in the object

Example: A vector is
not a 1d array of numbers

an object allowing addition and scalar multiplication
The efficient use of the computer is an added difficulty

which often leads to code generation

June 15, 2015 7 / 47

Vector Algebra

What are PETSc vectors?
Fundamental objects representing field solutions, right-hand
sides, etc.
Each process locally owns a subvector of contiguous global data

How do I create vectors?
VecCreate(MPI_Comm, Vec *)

VecSetSizes(Vec, int n, int N)

VecSetType(Vec, VecType typeName)

VecSetFromOptions(Vec)
Can set the type at runtime

June 15, 2015 8 / 47

Vector Algebra

A PETSc Vec
Has a direct interface to the values
Supports all vector space operations

VecDot(), VecNorm(), VecScale()

Has unusual operations, e.g. VecSqrt(), VecWhichBetween()
Communicates automatically during assembly
Has customizable communication (scatters)

June 15, 2015 8 / 47

Parallel Assembly
Vectors and Matrices

Processes may set an arbitrary entry
Must use proper interface

Entries need not be generated locally
Local meaning the process on which they are stored

PETSc automatically moves data if necessary
Happens during the assembly phase

June 15, 2015 9 / 47

Vector Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

VecSetValues(Vec v, int n, int rows[],
PetscScalar values[], mode)

mode is either INSERT_VALUES or ADD_VALUES
Two phase assembly allows overlap of communication and
computation

VecAssemblyBegin(Vec v)
VecAssemblyEnd(Vec v)

June 15, 2015 10 / 47

One Way to Set the Elements of a Vector

VecGetSize(x, &N);
MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i = 0, val = 0.0; i < N; i++, val += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);

}
}
/* These routines ensure that the data is distributed
to the other processes */
VecAssemblyBegin(x);
VecAssemblyEnd(x);

June 15, 2015 11 / 47

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange(x, &low, &high);
for(i = low,val = low*10.0; i < high; i++,val += 10.0)
{
VecSetValues(x, 1, &i, &val, INSERT_VALUES);

}
/* These routines ensure that the data is distributed
to the other processes */
VecAssemblyBegin(x);
VecAssemblyEnd(x);

June 15, 2015 12 / 47

Ghost Values

To evaluate a local function f (x), each process requires
its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node

June 15, 2015 13 / 47

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a Vec.
PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

You must return the array to PETSc when you finish
VecRestoreArray(Vec, double *[])

Allows PETSc to handle data structure conversions
Commonly, these routines are inexpensive and do not involve a
copy

June 15, 2015 14 / 47

VecGetArray in C

Vec v;
PetscScalar *array;
PetscInt n, i;
PetscErrorCode ierr;

VecGetArray(v, &array);
VecGetLocalSize(v, &n);
PetscSynchronizedPrintf(PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);

PetscSynchronizedFlush(PETSC_COMM_WORLD);
for(i = 0; i < n; i++) {
array[i] += (PetscScalar) rank;

}
VecRestoreArray(v, &array);

June 15, 2015 15 / 47

VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;
PetscScalar array(1)
PetscOffset offset
PetscInt n, i
PetscErrorCode ierr

call VecGetArray(v, array, offset, ierr)
call VecGetLocalSize(v, n, ierr)
do i=1,n
array(i+offset) = array(i+offset) + rank

end do
call VecRestoreArray(v, array, offset, ierr)

June 15, 2015 15 / 47

VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;
PetscScalar pointer :: array(:)
PetscInt n, i
PetscErrorCode ierr

call VecGetArrayF90(v, array, ierr)
call VecGetLocalSize(v, n, ierr)
do i=1,n
array(i) = array(i) + rank

end do
call VecRestoreArrayF90(v, array, ierr)

June 15, 2015 15 / 47

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x
VecAYPX(Vec y, PetscScalar a, Vec x) y = x + a ∗ y
VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x
VecScale(Vec x, PetscScalar a) x = a ∗ x
VecCopy(Vec y, Vec x) y = x
VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi
VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = maxri
VecShift(Vec x, PetscScalar r) xi = xi + r
VecAbs(Vec x) xi = |xi |
VecNorm(Vec x, NormType type, PetscReal *r) r = ||x ||

June 15, 2015 16 / 47

What is a DM?

Interface for linear algebra to talk to grids
Defines (topological part of) a finite-dimensional function space

Get an element from this space: DMCreateGlobalVector()

Provides parallel layout
Refinement and coarsening

DMRefine(), DMCoarsen()
Ghost value coherence

DMGlobalToLocalBegin()

Matrix preallocation:
DMCreateMatrix() (formerly DMGetMatrix())

June 15, 2015 17 / 47

Topology Abstractions

DMDA
Abstracts Cartesian grids in 1, 2, or 3 dimension
Supports stencils, communication, reordering
Nice for simple finite differences

DMPLEX
Abstracts general topology in any dimension
Also supports partitioning, distribution, and global orders
Allows aribtrary element shapes and discretizations

DMCOMPOSITE
Composition of two or more DMs

DMNetwork - for discrete networks like power grids and circuits
DMMoab - interface to the MOAB unstructured mesh library

June 15, 2015 18 / 47

DM Vectors

The DM object contains only layout (topology) information
All field data is contained in PETSc Vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM da, Vec *gvec)

Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector(DM da, Vec *lvec)

includes ghost values!

June 15, 2015 19 / 47

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DMLocalToGlobalBegin() and
DMLocalToGlobalEnd().

June 15, 2015 20 / 47

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.
June 15, 2015 21 / 47

What is a DMDA?

DMDA is a topology interface handling parallel data layout on structured
grids

Handles local and global indices
DMDAGetGlobalIndices() and DMDAGetAO()

Provides local and global vectors
DMGetGlobalVector() and DMGetLocalVector()

Handles ghost values coherence
DMGetGlobalToLocal() and DMGetLocalToGlobal()

June 15, 2015 22 / 47

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

June 15, 2015 23 / 47

Creating a DADM

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

bd: Specifies boundary behavior
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, or
DMDA_BOUNDARY_PERIODIC

type: Specifies stencil
DA_STENCIL_BOX or DA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

lm/n: Alternative array of local sizes
Use PETSC_NULL for the default

June 15, 2015 24 / 47

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

June 15, 2015 25 / 47

Matrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

June 15, 2015 26 / 47

Matrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

June 15, 2015 26 / 47

How do I create matrices?

MatCreate(MPI_Comm, Mat *)

MatSetSizes(Mat, int m, int n, int M, int N)

MatSetType(Mat, MatType typeName)

MatSetFromOptions(Mat)
Can set the type at runtime

MatMPIBAIJSetPreallocation(Mat,...)
important for assembly performance, more tomorrow

MatSetBlockSize(Mat, int bs)
for vector problems

MatSetValues(Mat,...)
MUST be used, but does automatic communication
MatSetValuesLocal(), MatSetValuesStencil()
MatSetValuesBlocked()

June 15, 2015 27 / 47

Matrix Storage Layout

Each process locally owns a submatrix of contiguous global rows
Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3
proc 2
proc 1

proc 0
diagonal blocks
offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

June 15, 2015 28 / 47

Matrix Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

MatSetValues(Mat A, m, rows[], n, cols[],
values[], mode)

mode is either INSERT_VALUES or ADD_VALUES
Logically dense block of values

Two phase assembly allows overlap of communication and
computation

MatAssemblyBegin(Mat m, type)
MatAssemblyEnd(Mat m, type)
type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY

For vector problems
MatSetValuesBlocked(Mat A, m, rows[],

n, cols[], values[], mode)
The same assembly code can build matrices of different format

choose format at run-time. June 15, 2015 29 / 47

Matrix Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

MatSetValues(Mat A, m, rows[], n, cols[],
values[], mode)

mode is either INSERT_VALUES or ADD_VALUES
Logically dense block of values

Two phase assembly allows overlap of communication and
computation

MatAssemblyBegin(Mat m, type)
MatAssemblyEnd(Mat m, type)
type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY

For vector problems
MatSetValuesBlocked(Mat A, m, rows[],

n, cols[], values[], mode)
The same assembly code can build matrices of different format

choose format at run-time. June 15, 2015 29 / 47

One Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
for(row = 0; row < N; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {

MatSetValues(A,1,&row,2,&cols[1],&v[1],INSERT_VALUES);
} else if (row == N-1) {

MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
} else {

MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);
}

}
}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

June 15, 2015 30 / 47

A Better Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {
MatSetValues(A,1,&row,2,&cols[1],&v[1],INSERT_VALUES);

} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

June 15, 2015 31 / 47

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations
requires copies
can kill performance

Memory preallocation provides
the freedom of dynamic data structures
good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code
Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation()
MatMPIBAIJSetPreallocation()
Only the relevant data will be used

June 15, 2015 32 / 47

Sequential Sparse Matrices
MatSeqAIJSetPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i

June 15, 2015 33 / 47

Parallel Sparse Matrices

MatMPIAIJSetPreallocation(Mat A, int dnz, int
dnnz[],

int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
onnz(i): expected number of nonzeros in row i in the offdiagonal portion

June 15, 2015 34 / 47

Verifying Preallocation

Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err
Use runtime option -info
Output:
[proc #] Matrix size: %d X %d; storage space:
%d unneeded, %d used
[proc #] Number of mallocs during MatSetValues()
is %d

June 15, 2015 35 / 47

Matrix Polymorphism

The PETSc Mat has a single user interface,
Matrix assembly

MatSetValues()

Matrix-vector multiplication
MatMult()

Matrix viewing
MatView()

but multiple underlying implementations.
AIJ, Block AIJ, Symmetric Block AIJ,
Dense, Elemental
Matrix-Free
etc.

A matrix is defined by its interface, not by its data structure.

June 15, 2015 36 / 47

Block and symmetric formats

BAIJ
Like AIJ, but uses static block size
Preallocation is like AIJ, but just one index per block

SBAIJ
Only stores upper triangular part
Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

MatSetValuesBlocked()
Better performance with blocked formats
Also works with scalar formats, if MatSetBlockSize() was called
Variants MatSetValuesBlockedLocal(),
MatSetValuesBlockedStencil()
Change matrix format at runtime, don’t need to touch assembly
code

June 15, 2015 37 / 47

Performance of blocked matrix formats

XXXXXXXXXXXKernel
Format Core 2, 1 process Opteron, 4 processes

AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ
MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo
(P8700) and Opteron 2356 (two sockets). MatSolve is a forward- and
back-solve with incomplete Cholesky factors. The AIJ format is using
“inodes” which unrolls across consecutive rows with identical nonzero

pattern (pairs in this case).

June 15, 2015 38 / 47

Objects

Mat A;
PetscInt m,n,M,N;
MatCreate(comm,&A);
MatSetSizes(A,m,n,M,N); /* or PETSC_DECIDE */
MatSetOptionsPrefix(A,"foo_");
MatSetFromOptions(A);
/* Use A */
MatView(A,PETSC_VIEWER_DRAW_WORLD);
MatDestroy(A);

Mat is an opaque object (pointer to incomplete type)
Assignment, comparison, etc, are cheap

What’s up with this “Options” stuff?
Allows the type to be determined at runtime: -foo_mat_type
sbaij
Inversion of Control similar to “service locator”,
related to “dependency injection”
Other options (performance and semantics) can be changed at
runtime under -foo_mat_ June 15, 2015 39 / 47

Matrices, redux

What are PETSc matrices?
Linear operators on finite dimensional vector spaces.
Fundamental objects for storing stiffness matrices and Jacobians
Each process locally owns a contiguous set of rows
Supports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
Supports structures for many packages

MUMPS, Spooles, SuperLU, UMFPack, DSCPack

June 15, 2015 40 / 47

Matrices, redux

What are PETSc matrices?
Linear operators on finite dimensional vector spaces.
Fundamental objects for storing stiffness matrices and Jacobians
Each process locally owns a contiguous set of rows
Supports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
Supports structures for many packages

MUMPS, Spooles, SuperLU, UMFPack, DSCPack

June 15, 2015 40 / 47

Why Are PETSc Matrices That Way?

No one data structure is appropriate for all problems
Blocked and diagonal formats provide significant performance
benefits
PETSc has many formats and makes it easy to add new data
structures

Assembly is difficult enough without worrying about partitioning
PETSc provides parallel assembly routines
Achieving high performance still requires making most operations
local
However, programs can be incrementally developed.
MatPartitioning and MatOrdering can help

Matrix decomposition in contiguous chunks is simple
Makes interoperation with other codes easier
For other ordering, PETSc provides “Application Orderings” (AO)

June 15, 2015 41 / 47

MatGetLocalSubMatrix() spaces

Newton method for F (x) = 0 solves

J(x)δx = −F (x)

J =

Jaa Jab Jac
Jba Jbb Jbc
Jca Jcb Jcc

 .

Conceptually, there are three spaces in parallel
V “monolithic” globally assembled space
Vi “split” global space for a single physics i
V i Local space (with ghosts) for a single physcs i
V

∏
i V i Concatenation of all single-physics local spaces

Different components need different relationships
Vi → V field-split
V → V coupled Neumann domain decomposition methods

V i natural language for modular residual evaluation and assembly

June 15, 2015 42 / 47

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);

Primarily for assembly
B is not guaranteed to implement MatMult
The communicator for B is not specified,
only safe to use non-collective ops (unless you check)

IS represents an index set, includes a block size and
communicator
MatSetValuesBlockedLocal() is implemented
MatNest returns nested submatrix, no-copy
No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)
Most other matrices return a lightweight proxy Mat

COMM_SELF
Values not copied, does not implement MatMult
Translates indices to the language of the parent matrix
Multiple levels of nesting are flattened

June 15, 2015 43 / 47

MatGetLocalSubMatrix() spaces

Spaces
V Globally assembled space
Vi Global space for a single physics i
V i Local space (with ghosts) for a single physcs i
V

∏
i V i Concatenation of all single-physics local spaces

Multiple physics x = [xa, xb, xc]
Ii Map indices from Vi to V .

Ri Global physics restriction Ri : V → Vi

Rix = x [Ii] = xi

I i Map indices from V i to Vi
R i Extract local single-physics part from global single-physics

R ixi = xi [I i] = x i

Ĩi Map indices from V i to V
June 15, 2015 44 / 47

MatGetLocalSubMatrix() spaces

Globally assembled coupled matrix in terms of assembled
single-physics blocks

J =
∑

ij

RT
i JijRj

Language of Schwarz and fieldsplit

Assembled single-physics blocks in terms of local single-physics
matrices

Jij = R
T
i J ijR j

Language of assembly and Neumann/FETI domain decomposition
MatSetValuesLocal()

June 15, 2015 45 / 47

Setting Values on Regular Grids

PETSc provides
MatSetValuesStencil(Mat A, m, MatStencil idxm[], n, MatStencil idxn[],

PetscScalar values[], InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col

June 15, 2015 46 / 47

DMDA matrices

DMCreateMatrix(DM da,Mat *A)
Evaluate only the local portion

No nice local array form without copies

Use MatSetValuesStencil() to convert (i,j,k) to indices
make NP=2 EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-mat_view_draw -draw_pause -1" runbratu

make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

-da_grid_z 5 -mat_view_draw -draw_pause -1" runbratu

June 15, 2015 47 / 47

