PETSc Tutorial June 15, 2015

@ Introduction of tutors

Barry Smith
Satish Balay
Matt Knepley
Jed Brown
Dmitry Karpeyev
o Mark Adams

@ Material to be presented

o DAE/ODE integrators
Vectors and matrices
Linear preconditioners
Nonlinear solvers
Understanding performance

June 15, 2015 1/17

Valgrind

Valgrind is a debugging framework

@ Memcheck: Check for memory overwrite and illegal use
@ Callgrind: Generate call graphs

@ Cachegrind: Monitor cache usage

@ Helgrind: Check for race conditions

@ Massif: Monitor memory usage

June 15, 2015 2/17

http://www.valgrind.org

Valgrind

Memcheck

Memcheck will catch
@ lllegal reads and writes to memory
@ Uninitialized values
@ lllegal frees
@ Overlapping copies
@ Memory leaks

June 15, 2015 3/17

Valgrind

Memcheck

Let’s try a simple experiment

Memcheck is the default tool

valgrind --trace-children=yes —-suppressions=bin/simple.supp \
./bin/ex5 -use_coords

Try it for multiple processes

valgrind --trace-children=yes —--suppressions=bin/simple.supp \
SPETSC_DIR/S$SPETSC_ARCH/bin/mpiexec -n 2 ./bin/ex5 -use_coords

June 15, 2015 4/17

Valgrind

Memcheck

We get an error!

==13697== Invalid read of size 8

==13697== at 0x100005263: MyInitialGuess (AppCtxx, _p_Vecx) (myStuff.c:45
==13697== by 0x100004447: main (ex5.c:202)

==13697== Address 0x103dc6fal0 is 0 bytes after a block of size 48 alloc’d
==13697== at 0x10001ED75: malloc (vg_replace_malloc.c:236)

==13697== by 0x1005CABC4: PetscMallocAlign(unsigned long, int, char constx,

by 0x1009CCO07D: VecGetArray2d(_p_Vecx, int, int, int, int, doublexxx)

by 0x10030D980: DMDAVecGetArray (_p_DMx, _p_Vec*, voidx) (dagetarray.c:72)
==13697== by 0x100005102: MyInitialGuess (AppCtxx, _p_Vecx*) (myStuff.c:38)
==13697== by 0x100004447: main (ex5.c:202)
==13697== Invalid read of size 8
==13697== at 0x100005273: MyInitialGuess (AppCtxx*, _p_Vecx) (myStuff.c:45
==13697== by 0x100004447: main (ex5.c:202)
==13697== Address 0x18 is not stack’d, malloc’d or (recently) free’d
==13697==
==13698== Use of uninitialised value of size 8
==1369 at 0x10000529D: MyInitialGuess (AppCtxx, _p_Vecx) (myStuff.c:45
==13698== by 0x100004447: main (ex5.c:202)

Invalid read of size 8

at 0x10000529D: MyInitialGuess (AppCtxx*, _p_Vecx) (myStuff.c:45
==13698== by 0x100004447: main (ex5.c:202)
==13698== Address 0x6f5c300000018 is not stack’d, malloc’d or (recently) free’d

June 15, 20

char constx,
(rvector.c:1739

char c

5/17

Valgrind

Massif

Memcheck is the default tool

valgrind —--tool=massif --trace-children=yes \
--massif-out-file=vecfem.massif \
./vecfem --sizes=[100,100] -ksp_rtol 1.0e-9

Turn on stack profiling

valgrind --tool=massif —--trace-children=yes \
--massif-out-file=vecfem.massif \
./vecfem --stacks=yes --sizes=[100,100] -ksp_rtol 1.0e-9

Visualize output

ms_print --threshold=10.0 vecfem.massif

June 15, 2015 6/17

Correctness Debugging

e Automatic generation of tracebacks
e Detecting memory corruption and leaks

e Optional user-defined error handlers

June 15, 2015 7/17

An optimized build

@ $ intel-dbg/conf/reconfigure—-intel-dbg.py
PETSC_ARCH=intel-opt
——with-debugging=0 && make PETSC_ARCH=intel-opt

@ What does ——with-debugging=1 (default) do?

Keeps debugging symbols (of course)

Maintains a stack so that errors produce a full stack trace (even

SEGV)

Does lots of integrity checking of user input

Places sentinels around allocated memory to detect memory errors

Allocates related memory chunks separately (to help find memory

bugs)

Keeps track of and reports unused options

Keeps track of and reports allocated memory that is not freed
-malloc_dump

June 15, 2015 8/17

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ —-on_error_attach_debugger [gdb, dbx, noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —-display khan.mcs.anl.gov:0.0

June 15, 2015 9/17

Interacting with the Debugger

$./ex6 —-start_in_debugger noxterm, 11db
[0]PETSC ERROR: PETSC: Attaching 11ldb to ./ex6 of pid 7432
Process 7432 stopped
frame 0: 0x00007£££8d94b48a libsystem_kernel.dylib'__ se
libsystem_kernel.dylib‘__semwait_signal:

-> 0x7f££f£8d94b48a <+10>: jae Ox7£££8d94b494
0x7f£f£8d94b48c <+12>: movqg $rax, %rdi
0x7£f££8d94b48f <+15>: Jjmp 0x7£££8d946c78
0x7£££8d94b494 <+20>: retqg

(11db) c

Process 7432 resuming

(11db)

Process 7432 stopped
frame 0: 0x0000000102ecbb80 ex6'‘main (argc=3, args=0x000

71 ierr = PetscBinaryRead (fd,avec, sz, PETSC_SCALAR) ;C
-> 72 avec[10000000] = 23;

73 ierr = VecRestoreArray (vec, &avec) ; CHKERRQ (ierr) ;
(11db)

June 15, 2015 10/17

Time integration in PETSc

@ ODE forms supported

G(t, x,x) = F(t,x)
Jo = aGy + Gy or
M(t)x = F(t, x)
Jo =aMor
x = F(t,x)
@ User provides:

@ FormRHSFunction(ts,t, X, F,void xctx);
@ FormIFunction (ts,t, X, X, G,void xctx);
e FormIJacobian(ts,t, X, X,a,d,Jp, void *ctx);

June 15, 2015 11/17

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
o harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
@ Severe order reduction

o Still need implicit solvers, similar complexity to implicit
(]

June 15, 2015 12/17

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
e Severe order reduction

o Still need implicit solvers, similar complexity to implicit
o Why bother?

June 15, 2015 12/17

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated

Severe order reduction
Still need implicit solvers, similar complexity to implicit
Very expensive non-stiff residual evaluation
Non-stiff components are non-smooth.
@ TVD limiters for monotone transport
@ Phase change

June 15, 2015 12/17

IMEX time integration in PETSc

@ Can have L-stable DIRK for stiff part G, SSP explicit part, etc.

@ Orders 2 through 5, embedded error estimates

Dense output, hot starts for Newton

More accurate methods if G is linear, also Rosenbrock-W

Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported

Extensible adaptive controllers, can change order within a family

°
°
°
°
@ Easy to register new methods: TSARKIMEXRegister ()
°

Single step interface so user can have own time loop
@ Same interface for Extrapolation IMEX

June 15, 2015 13/17

Some TS methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit
SSP Runge-Kutta ¢y = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages,
L-stable, optimal (Constantinescu)
TSARKIMEXS3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)

TSROSWRASBPW three stage, third order, for index-1 PDAE, A-stable,
R(o0) = 0.73, second order strongly A-stable embedded
method (Rang and Angermann, 2005)

TSROSWRAS34PW?2 four stage, third order, L-stable, for index 1
PDAE, second order strongly A-stable embedded method
(Rang and Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP
explicit, L-stable embedded method (Constantinescu)

June 15, 2015 14 /17

Globalizing the lid-driven cavity

@ Pseudotransient continuation (Vic)
e Do linearly implicit backward-Euler steps, driven by steady-state
residual
o Residual-based adaptive controller retains quadratic convergence
in terminal phase
@ Implemented in src/ts/examples/tutorials/ex26.c
@ S5 ./ex26 —-ts_type pseudo —-lidvelocity 100 —-grashof 1e5
-da_grid_x 16 -da_grid_y 16 —-ts_monitor

June 15, 2015 15/17

Globalizing the lid-driven cavity

@ Pseudotransient continuation (Vic)
e Do linearly implicit backward-Euler steps, driven by steady-state
residual
o Residual-based adaptive controller retains quadratic convergence
in terminal phase
@ Implemented in src/ts/examples/tutorials/ex26.c
@ S5 ./ex26 —-ts_type pseudo —-lidvelocity 100 —-grashof 1e5
—da_grid_x 16 -da_grid_y 16 —-ts_monitor

16x16 grid, lid velocity = 100, prandtl # = 1, grashof # = 100000
0 TS dt 0.03125 time O

1 TS dt 0.034375 time 0.034375

2 TS dt 0.0398544 time 0.0742294
3 TS dt 0.0446815 time 0.118911
4 TS dt 0.0501182 time 0.169029

24 TS dt 3.30306 time 11.2182

25 TS dt 8.24513 time 19.4634

26 TS dt 28.1903 time 47.6537

27 TS dt 371.986 time 419.64

28 TS dt 379837 time 380257

29 TS dt 3.01247e+10 time 3.01251e+10
30 TS dt 6.80049%e+14 time 6.80079%e+14

CONVERGED_TIME at time 6.80079e+14 after 30 steps

June 15, 2015 15/17

Globalizing the lid-driven cavity

@ Pseudotransient continuation (Vic)
e Do linearly implicit backward-Euler steps, driven by steady-state
residual
o Residual-based adaptive controller retains quadratic convergence
in terminal phase
@ Implemented in src/ts/examples/tutorials/ex26.c
@ S5 ./ex26 —-ts_type pseudo —-lidvelocity 100 —-grashof 1e5
-da_grid_x 16 -da_grid_y 16 —-ts_monitor
@ Make the method nonlinearly implicit: —snes_type 1s
—-snes_monitor
o Compare required number of linear iterations
@ Try error-based adaptivity: -ts_type rosw
—ts_adapt_dt_min le-4
@ Tryincreasing -lidvelocity, —grashof, and problem size
@ Coffey, Kelley, and Keyes, Pseudotransient continuation and
differential algebraic equations, SIAM J. Sci. Comp, 2003.

June 15, 2015 15/17

TS Examples

@ 1D nonlinear hyperbolic conservation laws
@ src/ts/examples/tutorials/ex9.c
@ ./ex9 -da_grid_x 100 -initial 1 -physics shallow -limit
minmod -ts_ssp_type rks2 -ts_ssp_nstages 8
-ts_monitor_draw_solution
@ Stiff linear advection-reaction test problem
@ src/ts/examples/tutorials/ex22.c
@ ./ex22 -da_grid_x 200 -ts_monitor_draw_solution
—-ts_type rosw —-ts_rosw_type ra34pw2 -ts_adapt_monitor
@ 1D Brusselator (reaction-diffusion)
@ src/ts/examples/tutorials/ex25.c
@ ./ex25 -da_grid_x 40 -ts_monitor_draw_solution -ts_type
rosw —ts_rosw_type 2p -ts_adapt_monitor

June 15, 2015 16/17

Main Routine

‘ Timestepping Solvers (TS) ‘

{

‘ Nonlinear Solvers (SNES) ‘

+

[Linear Solvers (KSP) J

: PETSc
v [Preconditioners (PC) J

A

Application Function Jacobian P i
s ostprocessing
Initialization Evaluation Evaluation F °

@ IGA used to evaluate nonlinear residuals

@ PETSc DA used to manage parallelism.

@ Adaptive time integration using method of lines.
e Generalized o method from PETSc Ts.

June 15, 2015 17 /17

