Scalability of Shift-and-Invert Parallel Spectral Transformations for Quantum Chemistry Applications Murat Keçeli¹ Hong Zhang¹, Peter Zapol¹, David Dixon^{2,} Al Wagner¹ Argonne National LaboratoryThe University of Alabama ## The problem - Our goal is to discover new synthesis pathways through simulations involving tens of thousands of atoms for molecules and solids by developing scalable methods. - Scaling bottleneck of many of the quantum chemistry methods is the diagonalization step. $$\mathbf{H}\mathbf{x} = \lambda \mathbf{S}\mathbf{x}$$ - **H** and **S** are real and symmetric, and **S** is positive-definite. - 40% to 60% of the eigensolutions are required. - Matrices are sparse for large systems. ## **Strong scaling of SIPs**