
Optimization and sensitivity analysis
of time-dependent simulations

Hong Zhang

Mathematics and Computer Science Division
Argonne National Laboratory

June 16, 2015

Tie rod

A-Arm

Leaf spring link

Leaf spring force element

Steering rack

Wheel
Bump stop

Hubwheel

Wheel

Nonlinear spring-damper X

Y

Z

What is sensitivity analysis and why is it important?

Sensitivity studies can quantify how much
model output are affected by changes in
model input

Figure 2: Monthly gradients from various species emissions.

 20

Figure: Air quality sensitivities to emissions of
selective chemical species

Can be used to
I Identify most influential parameters

I Study dynamical systems (trajectory
sensitivities)

I Provide gradients of objective
functions

G = g(y(tF)) +

∫ tF

t0

r(t, y)dt

I experimental design
I model reduction

I optimal control
I parameter estimation

I data assimilation
I dynamic constrained optimization

2 / 26

Approaches
(i) Finite difference approach

p G

Model

pi+Δp G+ΔG +

- dG
dpi

(ii) Forward approach

Governing
equations Discretization Differentiation

p
Discrete

dG
dp

dG
dp

Governing
equations Discretization Differentiation

p
Continuous

(iii) Adjoint approach

Governing
equations

Adjoint of
algorithms

Discretization
p

Discrete
dG
dp

dG
dp

Governing
equations Discretization Adjoint of

equations

p
Continuous

3 / 26

Finite difference

I Easy to implement
I Inefficient for many parameter case, due to one-at-a-time (OTA)
I Error depends critically on the perturbation value h

h

e
rr

o
r

Truncation error

Total error

Roundoff error

Truncation error

Total error

Roundoff error

Truncation error

Total error

Roundoff error

Truncation error

Total error

Roundoff error

4 / 26

Forward approach

Discrete
• Governing equation

M
dy

dt
= f(t, y), y(t0) = y0(p)

• Discretization with a time stepping algorithm (e.g. backward Euler)

Myn+1 =Myn + hf(tn+1, yn+1)

• Differentiation on parameter such that solution sensitivities S`,n = dyn/dp`, 1 ≤ ` ≤ m

MS`,n+1 =MS`,n + h (fy(tn+1, yn+1)S`,n+1 + fp(tn+1, yn+1))

Continuous
• Governing equation (same as above)

• Differentiation on parameter such that solution sensitivities S` = dy/dp`, 1 ≤ ` ≤ m

M
dS`

dt
=

∂f

∂y
(t, y)S` +

∂f

∂p`

(t, y), S`(t0) =
∂y0

∂p`

• Solving for S` with the same time stepping algorithm and same step size h gives

MS`,n+1 =MS`,n + h (fy(tn+1, yn+1)S`,n+1 + fp(tn+1, yn+1))

5 / 26

Discrete Adjoint approach

Assume the ODE/DAE is integrated with a one-step method (e.g. Euler,
Crank-Nicolson, or Runge-Kutta)

yk+1 = Nk(yk), k = 0, . . . , N − 1, y0 = γ(p) (1)

The exact objective function Ψ = g(y(tF)) is approximated by Ψd = g(yN). We use
the Lagrange multipliers λ0,. . . ,λN to account for the ODE/DAE constraint

L = Ψd − (λ0)T (y0 − γ)−
N−1∑
k=0

(λk+1)T (yk+1 −N (yk)) (2)

6 / 26

Discrete adjoint approach (cont.)

Differentiating this function at p and reorganizing yields

dL
dp

= (λ0)T
dγ

dp
−
(
dg

dy
(yN)− (λN)T

)
∂yN

∂p
−
N−1∑
k=0

(
(λk)T − (λk+1)T

dN
dy

(yk)

)
∂yk

∂p

(3)

By defining λ to be the solution of the discrete adjoint model

λN =

(
dg

dy
(yN)

)T
, λk =

(
dN
dy

(yk)

)T
λk+1, k = N − 1, . . . , 0 (4)

Then we will have

∇pΨd =

(
dγ

dp

)T
λ0

7 / 26

Discrete adjoint approach (cont.)

t0 tf

yn+1 = yn +Δt • f (tn+1, yn+1)

λn = λn+1 +Δt • fy (tn+1, yn+1)
T •λn

tn tn+1

Forward run

Reverse(adjoint) run

Properties
I The adjoint equation (4) is solved backward in time
I Only one backward run is needed to compute the sensitivities
I Efficient for many parameters and few objective functions
I Need to be derived for the specific time stepping method
I If the simulation problem is nonlinear, the adjoint is linear

Implementation
I The backward run follows the same trajectory
I The Jacobian in the forward run can be reused
I Need to checkpoint the states and time points in the forward run

8 / 26

Continuous adjoint approach

Continuous adjoint equation reads

dλ

dt
= −fyT (t, y)λ, λ(tF) = ∇yg(tF)

Theoretically adjoint and forward equations can be solved with different time stepping
algorithms

Even if solved with the same time stepping algorithm and the same step size,
continuous adjoint is inconsistent with discrete adjoint

continuous backward Euler discrete backward Euler

λn = λn+1 + (−h)(−fy(tn, yn))Tλn λn = λn+1 + h(fy(tn+1, yn+1))Tλn

Unfortunately the objective function depends on the numerical solution, not the exact
solution; this may cause the optimization procedure converge slowly or even not to
converge

9 / 26

Make the right choice

number of parameters >> number of functions ⇒ Adjoint
number of parameters << number of functions ⇒ Forward
optimization ⇒ Discrete adjoint

10 / 26

Why PETSc and discrete adjoint?

I A large number of users and applications
I A rich set of time stepping solvers and sophisticated nonlinear/linear solvers
I Motivated by optimization problems
I Comparison with existing tools

SUNDIALS FATODE PETSc-SA

(LLNL) (Virginia Tech) (ANL)

start year ∼ 2000 2010 2014

problem type ODE/DAE ODE ODE/DAE

language C Fortran/MATLAB C

time stepping multistep Runge-Kutta type ERK, THETA (Extensible)

adjoint continuous discrete discrete

checkpointing external+recomputation in-memory (Extensible) all external (Extensible)

11 / 26

Another perspective of adjoints from Automatic Differentiation

Code!

Automatic Differentiation Perspective!

Linear solves!

Nonlinear solves!

Time stepping solves!

Model equations!

Level of
Abstraction

User’s
Work

Developer’s
Work

Traditional AD!

Libadjoint!

Discrete Adjoint!
FATODE/PETSc!

Continous Adjoint!
CVODES/IDAS!

Optimization!

12 / 26

Adjoint sensitivity in PETSc

• General form of the objective function

G = g(y(tF)) +

∫ tF

t0

r(t, y)dt

• Derived from the extended system

ẏ = f(t, y)

ṗ = 0

q̇ = r(t, y)

• Sensitivity w.r.t. initial values

λn = λn+1 + h (fy(tn+1, yn+1))T λn + h (ry(tn+1, yn+1))T

µn = µn+1 + h (fp(tn+1, yn+1))T λn + h (rp(tn+1, yn+1))T

• Sensitivity w.r.t. parameters

• Sensitivity of the integrals in the objective function

13 / 26

Adjoint sensitivity in PETSc (cont.)

I Implemented as TS operators
I Add a new object TSTrajectory for checkpointing
I TSTrajectory can also be used for postprocessing

 *snesfunction(…)
 *snesjacobian(…)
 *setup(…)
 *step(…)
 *interpolate(…)
 *evaluatestep(…)
 *setfromoptions(…)
 *destroy(…)
 *view(…)
 *reset(…)
 *linearstability(…)
 *load(...)
 *rollback(…)
 *getstages(…)
 *adjointstep(…)
 *adjointsetup(…)
 *adjointintegral(…)
 *forwardstep(…)
 *forwardsetup(…)
 *forwardintegral(…)

TS

AdjointStep_Theta(…)

14 / 26

Usage

ẏ = z

ż = µ
(
(1− y2)z − y

)
TSSetSaveTrajectory(ts); //checkpointing
TSSetIFunction(ts,NULL,IFunction,&user);
TSSetIJacobian(ts,A,A,IJacobian,&user);
…
TSSolve(ts,x);
TSSetCostGradients(ts,2,lambda,mup);
TSAdjointSetRHSJacobian(ts,Jacp,RHSJacobianP,&user);
TSAdjointSolve(ts);

IFunction: Mẋ− f(x) =

[
ẏ − z

ż − µ
(
(1− y2)z − y

)]
IJacobian: M · shift−

df

dx
=

[
1 0
0 1

]
· shift−

[
0 1

µ(−2 y z − 1) µ(1− y2)

]
RHSJacobianP:

df

dp
=

[
0

((1− y2)z − y)

]
15 / 26

Forward sensitivity in PETSc

• One solution sensitivity variable S` corresponds to one parameter

MS`,n+1 =MS`,n + h
((
fy(tn+1, yn+1)S`,n+1 + fp(tn+1, yn+1)

))
(6)

• Initial values are also considered as parameters

• The sensitivities of integral functions

q =

∫ tF

t0

r(t, y, p)dt

w.r.t. model parameters can be computed as

∂q

∂p
=

∫ tF

t0

(
∂r

∂y
(t, y, p)S +

∂r

∂p
(t, y, p)

)
dt

16 / 26

Usage

TSSetIFunction(ts,NULL,IFunction,&user);
TSSetIJacobian(ts,A,A,IJacobian,&user);
TSSetForwardSensitivities(ts,3,sensi);
TSForwardSetRHSJacobianP(ts,jacp,RHSJacobianP,&user);
…
TSSolve(ts,x);

17 / 26

Application in power system

Mẋ = f(t, x, y, p), x(t0) = Ix0(p) (Machine ODEs)

0 = g(t, x, y, p), y(t0) = Iy0(p) (Network algebraic equations)

I x→ machine dynamic variables
I y → network + machine algebraic variables
I gy is invertible (semi-explicit index-1 DAE)

the derivative is unavailable or difficult to obtain. It is based
on Taylor series truncated at various orders of expansion.
A sequence of finite difference approximations gives the
gradient. Consider the cost function Hi (x (p) , y (p)), where
p 2 Rnp. The cost function is defined from Rnp ! R. Now
the partial derivative with respect to the kth component of p?
can be approximated as follows

@Hi

@pk
(p?) ⇡

Hi (x (p? + ✏ k) , (y (p? + ✏ k)))

✏
(12)

� Hi (x (p?) , y (p?))

✏
.

Here k is the kth canonical basis vector and ✏ is a small
perturbation. The gradient with respect to p performing the
computation is shown in Equation (12) for k = 1, 2, · · · , np.
The gradient can be written as

rpHi (x (p) , y (p)) =

@Hi

@p1
(p?)

@Hi

@p2
(p?) . . .

@Hi

@pnp
(p?)

�T

.
(13)

The approximation in Equation (12) is first-order accurate.
The accuracy can be improved by performing central finite
differencing. However, this requires an extra cost function
evaluation for each evaluation of the partial derivative. The
approximations by central finite differencing are second-order
accurate and can be written as

@Hi

@pk
(p?) ⇡

Hi (x (p? + ✏ k) , (y (p? + ✏ k)))

2✏
(14)

� Hi (x (p? � ✏ k) , y (p? � ✏ k))

2✏
.

It is important to choose the right ✏ to get good approxima-
tions. One of the factors to consider is the ratio of ✏ and pk.
A guideline for its selection is that it should be greater than
but close to the square root of the round-off error.

VI. TEST CASE AND SIMULATION RESULTS

The test case, shown in Fig. 1, used in this work is the
3-generator, 9-bus system available in [29] Chapter 7. All
generators use a 4th order two-axis model with an IEEE Type-
1 exciter. The objective function (1) used in this work is the
minimization of the total generation cost where the cost for
each generator’s real power output is given by a second order
polynomial term C(p) =

Pm
i=1

�
↵Pgi

2 + �Pgi + �
�
. The cost

coefficients used are from the MATPOWER [30] package.
The proposed scheme is implemented in MATLAB by using

its nonlinear optimization solver fmincon available through
its optimization toolbox. An interior-point method, available
in fmincon, is used to solve the the TSOPF problem. To
avoid the complication of computing the Hessian analytically
or the additional eror that would stem from finite difference
approximations (which are less accurate for Hessian than they
are for gradients), we use a quasi-Newton BFGS scheme,
available with fmincon, to approximate the Hessian.

For the numerical discretization of the DAE equations, an
implicit-trapezoidal (Crank-Nicholson) scheme is employed

!

G G

G

2 87 9 3

65

4

1

Fig. 1. 3-generator, 9-bus test case system

with a time-step of 0.01667 seconds. We used coefficients
�=5e3 and ⌘=2 for computing the dynamics constraint func-
tion given by (10). We note that the choice of � is heuristic and
dependent on the system conditions. A forward differencing
approach is used for computing rpH (x (p) , y (p)) using a
perturbation of ✏=1e-5. We note that the gradient calculation
using forward finite differencing entails np runs, one for
each component of p, of the DAE solver. While this may
be seem onerous, especially for large systems, it is perfectly
parallelizable since it is an embarrassingly parallel calculation.
We have not done this derivative calculation in parallel in our
current implementation, but it is a part of our future work.

A. OPF without dynamic security constraints

The generation schedule obtained from OPF without dy-
namic security constraints is presented in Table I. The total
cost for this schedule is $5921.47/hr. We note here that Gen2
has the maximum power dispatch since it is the cheapest
generator.

TABLE I
GENERATION SCHEDULE WITHOUT DYNAMIC CONSTRAINTS

Generator Bus Number MW
Gen1 1 89.81
Gen2 2 134.33
Gen3 3 94.20

To assess the dynamic security of this OPF solution, we
considered two cases for a self-clearing 3-phase solid fault on
Bus 7 and Bus 9. The fault lasts for 12 cycles, initiating at
t=0.1 seconds and extinguishing at t=0.3 seconds. The system
is considered to be dynamically secure if the frequency of
the generators does not exceed the upper and lower frequency
limits of 60.8 Hz and 59.2 Hz, respectively, that is, a deviation
of 0.8 Hz from the nominal frequency. The dynamic security
measure given by Equation 10 with these limits is shown in
Figure 2. As seen in Figure 3, for the fault at Bus 7, the system
is not dynamically secure, since the generator frequencies

Figure: 9 bus problem

18 / 26

Application in power system (cont.)
Dynamics security constrained Optimal Power Flow problem needs to consider a
dynamic constraint aggregation

H(x(p, t), y(p, t)) =

∫ T

0
h(x(p, t), y(p, t)) dt ≤ ρ

An example of H(x, y): Generator frequency, ω ⊂ x, deviation

H(x, y) =

∫ T

0

[
max

(
0, ω(t)− ω+, ω− − ω(t)

)]η
dt

Computing partial of the dynamic constraint, Hp, was difficult!

Without dynamic constraints

Total cost = $5297.41

Table: Generation schedule without dynamic constraints

Generator Bus Number MW

Gen1 1 89.81

Gen2 2 134.33

Gen3 3 94.20

0 0.2 0.4 0.6 0.8 1
58.5

59

59.5

60

60.5

61

61.5

Time (sec)

F
re

q
u

en
cy

 =
 ω

/2
π

 Gen 1

Gen 2

Gen 3

Figure: Generator frequencies for
fault at Bus 7

0 0.2 0.4 0.6 0.8 1
58.5

59

59.5

60

60.5

61

61.5

62

Time (sec)

F
re

q
u

en
cy

 =
 ω

/2
π

Gen 1

Gen 2

Gen 3

Figure: Generator frequencies for
fault at Bus 9

M2ACS presentation DSOPF

With dynamic constraints enforced

Fault at Bus 7
Total cost = $5971.92

Generator Bus Number MW

Gen1 1 152.20

Gen2 2 86.20

Gen3 3 78.95

0 0.2 0.4 0.6 0.8 1
58.5

59

59.5

60

60.5

61

61.5

Time (sec)

F
re

q
u

e
n

c
y

 =
 ω

/2
π

Gen1

Gen2

Gen3

Figure: Generator frequencies for
fault at Bus 7

Fault at Bus 9
Total cost = $5699.66

Generator Bus Number MW

Gen1 1 129.00

Gen2 2 137.04

Gen3 3 51.62

0 0.2 0.4 0.6 0.8 1
58.5

59

59.5

60

60.5

61

61.5

Time (sec)

F
re

q
u

e
n

c
y

 =
 ω

/2
π

Gen1

Gen2

Gen3

Figure: Generator frequencies for
fault at Bus 9

M2ACS presentation DSOPF

19 / 26

Results

Basic settings

dof. No. of parameters No. of functions

9 bus 54 24 3

118 bus 884 344 54

CPU time comparison

forward adjoint simulation

9 bus 3.82 s (7.3x) 1.80 s (3.5x) 0.52 s (1x)

118 bus 2132.61 s (630.9x) 29.86 s (8.8x) 3.38 s (1x)

Forward approach is very costly

∂q

∂p
=

∫ tF

t0

(
∂r
∂y

(t, y, p)S +
∂r

∂p
(t, y, p)

)
dt

20 / 26

Sensitivity analysis for hybrid systems
The dynamic behavior of many systems may include discrete-event dynamics,
switching action and jump phenomena. Such nonlinear nonsmooth hybrid systems can
be complicated.
Example [Hiskens et. al. 2000]

ẋ = Aix

where the matrix Ai changes from

A1 =

[
1 −100
10 1

]
to A2 =

[
1 10
−100 1

]
when x2 = 2.75x1 and from A2 to A1 when x2 = 0.36x1. Initially x0 = [0 1]T and
i = 1.206 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

. The dynamical systems are defined by (7)
and (8), with generating the continuous state dynamics.
Each jump set is composed of conditions and

, where , are given by . The general nature
of and, hence, , allows arbitrarily complicated sets of
event triggering conditions to be described for each . The
jump transition map is defined by the change in that
corresponds to each , along with the reset map (5) cor-
responding to each .
Initial conditions for the model (2)–(6) are given by

(9)
(10)
(11)

where is a solution of

(12)

Note that in solving for , the constraint switching described by
(4) must be taken into account. Often will have multiple
solutions. For a given , , and , there may be a number of
possible .
The following examples illustrate the DAD model structure

(2)–(6). Even though they are quite simple, they exhibit many
of the complexities associated with hybrid systems.
Example 1: This example is taken from [1]. The system is

where

The index changes from 1 to 2 when and from
2 to 1 when . Initially and .
The phase portrait and time response are shown in Figs. 1 and
2, respectively.
This model can be rewritten in the DAD form as

when

where , , , and hence,
.

The change between and is achieved by resetting the
matrix elements , whenever a switching surface is encoun-
tered. The switching surfaces are given by the algebraic con-
straints. Alternating between active switching surfaces corre-
sponds to flipping the sign of .
The sensitivity of trajectories to variation of , i.e., the slope

of the steeper switching surface, is presented in Section VI-A.

Fig. 1. Phase portrait for Example 1.

Fig. 2. Time-domain response for Example 1.

Example 2: This example is based on a case given in [21].
The system description is

sgn
when

with . This is a crude model of the bounce of a
ball when the coefficient of restitution is 0.8. The phase portrait
and time response of this system are shown in Figs. 3 and 4,
respectively.
The model can be rewritten in the DAD form of (2)–(6) as

when

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

The approximation and the perturbed trajectory again coincide
when the perturbed trajectory switches.
The mismatch around the switching events is clarified by the

discussion of jump conditions at the end of Section V-B. The
perturbation of the slope parameter from 2.75 to 3.0 results in
a delay in the junction time for each event. The delays are
apparent in Fig. 7, where the switching of lags that of

at each event. The jump conditions at ensure that
the sensitivities accurately reflect trajectory perturbations at and
beyond the delayed junction time . Over the intervening
time interval the sensitivities cannot directly represent per-
turbations.
However, over the switching delay interval , the perturbed

trajectory can be accurately predicted through indirect use of
the sensitivities. A procedure is given in Appendix A. Fig. 8
provides a comparison of the actual trajectory , the
(direct) approximation from Fig. 7, and the approximation ob-
tained using this refinement. The improvement in the approxi-
mation is clearly evident.

B. Example 2—Continued
Figs. 3 and 4 gave the phase portrait and time response of

the nominal trajectory for this example. Fig. 9 illustrates the
sensitivity of that trajectory to perturbation of the coefficient of
restitution . The sensitivities of the algebraic state and the
continuous state are shown. Due to the simple structure of
this example, the sensitivity remains constant between
events. The continuous state is the integral of , so the sen-
sitivity is the integral of the sensitivity . This
can be seen in Fig. 9.
In Fig. 10, the trajectory sensitivity is used to provide

a first-order approximation of the trajectory of obtained when
is perturbed from 0.8 to 0.81. The nominal and perturbed tra-

jectories are shown as and , respectively.
The first order approximation is given by

where the sensitivity is evaluated for the nom-
inal trajectory. The refinement of Appendix A has been used to
improve the estimate over the switching delay intervals.
In this example, the oscillation period, i.e., the interval be-

tween corresponding reset events, decreases over time. In fact,
it approaches zero. As a consequence, a small change in the
coefficient of restitution leads to the nominal and perturbed
trajectories quickly moving out of phase. This can be seen in
Fig. 10. Initially there is an excellent match between and

. However around 5.5 s, the nominal and perturbed
trajectories lose synchronism. The jump conditions still produce
sensitivities which ensure is close to at time

. However, before that time is reached, the nominal tra-
jectory encounters another event, and the sensitivities take an-
other jump. Therefore, beyond 5.5 s, never catches up
to so the approximation is no longer valid.
This is an interesting case in that an equilibrium point is ap-

proached but can never be reached. Instead, the event triggering
times accumulate at a finite time. Beyond that accumulation

Fig. 6. Trajectory sensitivities for Example 1.

Fig. 7. Trajectory approximation for Example 1.

Fig. 8. Refined trajectory approximation for Example 1.

time, the solution is not defined in the usual sense. An alterna-
tive definition is required [26]. A consequence of this behavior

21 / 26

Jump condition

y(1)(t0) = θ(p)

ẏ(1) = f (1)(t, y(1)), t ∈ [t0, τ]

γ(y(1)(τ)) = 0

ẏ(2) = f (2)(t, y(2)), t ∈ (τ, tF]

• The states are continuous at the junction time

y(2)(τ) = y(1)(τ)

• f (1), f (2), γ are C1
• Transversality condition must be satisfied

dγ

dy
(τ)f (1)(τ, y(1)(τ)) 6= 0

Jump condition for discrete adjoint

λ
(1)

N(1) =

I +

∂y
(2)

N(1)

∂t
−
∂y

(1)

N(1)

∂t

 dγ

dy
(y

(1)

N(1))

dγ

dy
(y

(1)

N(1)) ·
∂y

(1)

N(1)

∂t


T

· λ(2)
N(1)

22 / 26

Use event monitor

• Event detection in PETSc EventFunction(...)

PetscErrorCode EventFunction(TS ts,PetscReal t,Vec U,PetscScalar *fvalue,void *ctx)
{ AppCtx *actx=(AppCtx*)ctx;
 const PetscScalar *u;
 …
 VecGetArrayRead(U,&u);
 if (actx->mode == 1) { fvalue[0] = u[1]-actx->lambda1*u[0];
 }else if (actx->mode == 2) { fvalue[0] = u[1]-actx->lambda2*u[0];}
 VecRestoreArrayRead(U,&u);
 …
}

• Event handling in PETSc PostEventFunction(...)

PetscErrorCode PostEventFunction(TS ts,PetscInt nevents,PetscInt
event_list[],PetscReal t,Vec U,PetscBool forwardsolve,void* ctx)
{ AppCtx *actx=(AppCtx*)ctx;
 …
 if (!forwardsolve) {ShiftGradients(ts,U,actx); }
 if (actx->mode == 1) { actx->mode = 2;
 } else if (actx->mode == 2) {actx->mode = 1;}
 …
}

• Works seamlessly with sensitivity analysis

23 / 26

Ongoing and future work

I Use ADIC to generate Jacobians (in a matrix-free manner) automatically; use the
matrix type MATSHELL and overload the matrix-vector multiplication operator

I Interface with libMesh (a framework for solving PDEs using arbitrary unstructured
mesh in parallel) to enable more applications

I Extend to more advanced time-stepping algorithms

I Develop heterogeneous checkpointing schemes

24 / 26

Summary

I Developed forward and discrete adjoint sensitivity analysis in PETSc

I Established the theory of discrete adjoint for hybrid systems

I Explored the application in power system

I Successful application requires to incorporate multiple components

SA

TS

TAO

Event PDE	
 ODE	

DAE	

Op(miza(on	

Hybrid	
 	

systems 	
 	

25 / 26

Theoretical methods are now sufficiently advanced so that it is
intellectually dishonest to perform modeling without sensitivity
analysis.

— Charles E. Kolb (Herschel Rabitz, 1989, Science)

Thank you!

Acknowledgment:
I am thankful to Shri for the help on the power system examples, to Kamil for the help
on deriving the jump condition of hybrid systems, to Krishna and Paul for the help on
ADIC, to Satish and Barry for the help on PETSc.

26 / 26

	Introduction

