

SLEPc Current Achievements and Plans for the Future

Jose E. Roman

D. Sistemes Informàtics i Computació Universitat Politècnica de València, Spain

Celebrating 20 years of PETSc, Argonne - June, 2015

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on parallel computers

- Linear eigenproblems (standard or generalized, real or complex, Hermitian or non-Hermitian)
- ▶ Also support for SVD, PEP, NEP and more

$$Ax = \lambda x$$
 $Ax = \lambda Bx$ $Av_i = \sigma_i u_i$ $T(\lambda)x = 0$

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas

http://slepc.upv.es

Current version: 3.6 (released June 2015)

Timeline

Andres Tomas

Eloy Romero

Carmen Campos

Alejandro Lamas

Applications

Google Scholar: 320 citations of main paper (ACM TOMS 2005)

Nuclear Engineering 6	%
Computational Electromagnetics, Electronics, Photonics9	%
Plasma Physics11	. %
Astrophysics 1	. %
Computational Physics, Materials Science, Electronic Structure 20	%
Acoustics	. %
Computational Fluid Dynamics13	%
Earth Sciences, Oceanology, Hydrology, Geophysics 4	. %
Bioengineering, Computational Neuroscience	%
Structural Analysis, Mechanical Engineering 6	%
Information Retrieval, Machine Learning, Graph Algorithms 7	′ %
Visualization, Computer Graphics, Image Processing	%
PDE's, Numerical Methods10	%
Dynamical Systems, Model Reduction, Inverse Problems 4	. %

Problem Classes

The user must choose the most appropriate solver for each problem class

Problem class	Model equation	Module
Linear eigenproblem	$Ax = \lambda x, Ax = \lambda Bx$	EPS
Quadratic eigenproblem	$(K + \lambda C + \lambda^2 M)x = 0$	†
Polynomial eigenproblem	$(A_0 + \lambda A_1 + \dots + \lambda^d A_d)x = 0$	PEP
Nonlinear eigenproblem	$T(\lambda)x = 0$	NEP
Singular value decomp.	$Av = \sigma u$	SVD
Matrix function	y = f(A)v	MFN

[†] QEP removed in version 3.5

Auxiliary classes: ST, BV DS, RG, FN

PETSc SLEPc

I LISC								JLLI C										
Nonline	ear Sys	stems			Ti	ime S	teppers	ı	Polynon	lver	Nonlinear Eigensolver							
Line Search	Trust Region	Oth	er	Euler	Backv Eul		Pseudo Time Step	Other		TOAR	Q- Arnolo	Line:		SLP	RII	N- Arnold	Interp.	
Krylov Subspace Methods										SVD Solver M. Func						ction		
GMRES CO	CGS	Bi-C0	Stal	TFQM	TFQMR Richardson Chebychev Other Cross Product Matrix Lanczos					705	hick F	1 1	Krylov					
Preconditioners									Linear Eigensolver									
Additive Schwarz		ock cobi	Ja	cobi ILU		ICC	LU	Other		Krylov-Schur		ichur GD JD		LOBPCG		CISS	Other	
Matrices									S	pectra	l Tra	ansfor	mati	on				
Compress Sparse R		Block CSR		Symme Block C		Dens	se CUSP	Other		Shift Shift-and-invert			vert	Cayley Pr		Precond	Preconditioner	
Ved	ctors					Sets			BV		DS	5	ı	RG		FN		
Standard	CI	USP		Indices	В	lock	Stride	Other										

Outline

- Linear Eigenvalue Problems
 - EPS: Eigenvalue Problem Solver
 - Selection of wanted eigenvalues
 - Preconditioned eigensolvers
- Non-Linear Eigenvalue Problems
 - PEP: Polynomial Eigensolvers
 - NEP: General Nonlinear Eigensolvers
- Additional Features
 - MFN: Matrix Function
 - Auxiliary Classes

EPS: Eigenvalue Problem Solver

Compute a few eigenpairs (x, λ) of

Standard Eigenproblem

$$Ax = \lambda x$$

Generalized Eigenproblem

$$Ax = \lambda Bx$$

where A,B can be real or complex, symmetric (Hermitian) or not

User can specify:

- Number of eigenpairs (nev), subspace dimension (ncv)
- Tolerance, maximum number of iterations
- The solver
- Selected part of spectrum
- Advanced: extraction type, initial guess, constraints, balancing

Available Eigensolvers

User code is independent of the selected solver

- 1. Basic methods
 - ► Single vector iteration: power iteration, inverse iteration, RQI
 - ► Subspace iteration with Rayleigh-Ritz projection and locking
 - Explicitly restarted Arnoldi and Lanczos
- 2. Krylov-Schur, including thick-restart Lanczos
- 3. Generalized Davidson, <u>Jacobi-Davidson</u>
- 4. Conjugate gradient methods: LOBPCG, RQCG
- 5. CISS, a contour-integral solver
- 6. External packages, and LAPACK for testing

... but some solvers are specific for a particular case:

- ▶ LOBPCG computes smallest λ_i of symmetric problems
- ightharpoonup CISS allows computation of all λ_i within a region

Selection of Eigenvalues (1): Basic

Largest/smallest magnitude, or real (or imaginary) part

Example: QC2534

-eps_nev 6

-eps_ncv 128

-eps_largest_imaginary

Computed eigenvalues

Selection of Eigenvalues (2): Region Filtering

RG: Region

- ► A region of the complex plane (interval, polygon, ellipse, ring)
- ▶ Used as an inclusion (or exclusion) region

Example: sign1 (NLEVP) n=225, all λ lie at unit circle, accumulate at ± 1

- -eps_nev 6
- -rg_type interval
- -rg_interval_endpoints -0.7,0.7,-1,1

Selection of Eigenvalues (3): Closest to Target

Shift-and-invert is used to compute interior eigenvalues

$$Ax = \lambda Bx \qquad \Longrightarrow \qquad (A - \sigma B)^{-1} Bx = \theta x$$

- ▶ Trivial mapping of eigenvalues: $\theta = (\lambda \sigma)^{-1}$
- Eigenvectors are not modified
- lacktriangle Very fast convergence close to σ

Things to consider:

- ▶ Implicit inverse $(A \sigma B)^{-1}$ via linear solves
- Direct linear solver for robustness
- lacktriangle Less effective for eigenvalues far away from σ

Selection of Eigenvalues (4): Interval (in GHEP)

Indefinite (block-)triangular factorization: $A - \sigma B = LDL^T$ A byproduct is the number of eigenvalues on the left of σ (inertia)

$$\nu(A - \sigma B) = \nu(D)$$

Spectrum Slicing strategy:

- Multi-shift scheme that sweeps all the interval
- Compute eigenvalues by chunks
- Use inertia to validate sub-intervals

C. Campos and J. E. Roman, "Strategies for spectrum slicing based on restarted Lanczos methods", *Numer. Algorithms*, 60(2):279–295, 2012.

Multi-communicator version, one subinterval per partition

Selection of Eigenvalues (5): All inside a Region

CISS solver¹: compute all eigenvalues inside a given region

Example: QC2534

-eps_type ciss

-rg_type ellipse

-rg_ellipse_center -.8-.1i

 $-rg_ellipse_radius$ 0.2

-rg_ellipse_vscale 0.1

¹Contributed by Y. Maeda, T. Sakurai

Selection of Eigenvalues (5): All inside a Region

Example: MHD1280 with CISS

 Alfvén spectra: eigenvalues in intersection of the branches

RG=ellipse, center=0, radius=1

RG=ring, center=0, radius=0.5, width=0.2, angle=0.25..0.5

Selection of Eigenvalues (6): User-Defined

Selection with user-defined function for sorting eigenvalues $\label{eq:pdde_stability} \mathsf{pdde_stability} \ n = 225,$

wanted eigenvalues:

 $\|\lambda\| = 1$

-1 - .50 0

Arbitrary selection: apply criterion to an arbitrary user-defined function $\phi(\lambda,x)$ instead of just λ

Preconditioned Eigensolvers

Pitfalls of shift-and-invert:

- Direct solvers have high cost, limited scalability
- Inexact shift-and-invert (i.e., with iterative solver) not robust

Preconditioned eigensolvers try to overcome these problems

- 1. Davidson-type solvers
 - Jacobi-Davidson: correction equation with iterative solver
 - Generalized Davidson: simple preconditioner application
 - E. Romero and J. E. Roman, "A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc", ACM Trans. Math. Softw., 40(2):13, 2014.
- 2. Conjugate Gradient-type solvers (for GHEP)
 - ▶ RQCG: CG for the minimization of the Rayleigh Quotient
 - ▶ LOBPCG: Locally Optimal Block Preconditioned CG

Nonlinear Eigenproblems

Increasing interest in nonlinear eigenvalue problems arising in many application domains

- Structural analysis with damping effects
- Vibro-acoustics (fluid-structure interaction)
- Linear stability of fluid flows

Problem types

- ▶ QEP: quadratic eigenproblem, $(\lambda^2 M + \lambda C + K)x = 0$
- ▶ PEP: polynomial eigenproblem, $P(\lambda)x = 0$
- ▶ REP: rational eigenproblem, $P(\lambda)Q(\lambda)^{-1}x = 0$
- ▶ NEP: general nonlinear eigenproblem, $T(\lambda)x = 0$

Test cases available in the NLEVP collection [Betcke et al. 2013]

Polynomial Eigenproblems via Linearization

PEP:
$$P(\lambda)x = 0$$

Monomial basis:
$$P(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \cdots + A_d\lambda^d$$

Companion linearization: $L(\lambda) = \mathcal{L}_0 - \lambda \mathcal{L}_1$, with $L(\lambda)y = 0$ and

$$\mathcal{L}_{0} = \begin{bmatrix} & I & & & & \\ & & \ddots & & \\ & & & I \\ -A_{0} & -A_{1} & \cdots & -A_{d-1} \end{bmatrix} \mathcal{L}_{1} = \begin{bmatrix} I & & & & \\ & \ddots & & \\ & & I & \\ & & & A_{d} \end{bmatrix} y = \begin{bmatrix} x \\ x\lambda \\ \vdots \\ x\lambda^{d-1} \end{bmatrix}$$

Compute an eigenpair (y, λ) of $L(\lambda)$, then extract x from y

- ▶ Pros: can leverage existing linear eigensolvers (PEPLINEAR)
- Cons: dimension of linearized problem is dn

PEP: Krylov Methods with Compact Representation

Arnoldi relation:
$$SV_j = \begin{bmatrix} V_j & v \end{bmatrix} \underline{H}_j, \qquad S := \mathcal{L}_1^{-1} \mathcal{L}_0$$
 Write Arnoldi vectors as $v = \text{vec} \left[v^0, \dots, v^{d-1} \right]$

Block structure of S allows an implicit representation of the basis

- $ightharpoonup \ \operatorname{Q-Arnoldi:}\ V^{i+1}_j = \begin{bmatrix} V^i_j & v^i \end{bmatrix} \underline{H}_j$

Arnoldi relation in the compact representation:

$$S(I_d \otimes U_{j+d-1})G_j = (I_d \otimes U_{j+d}) \begin{bmatrix} G_j & g \end{bmatrix} \underline{H}_j$$

PEPTOAR is the default solver

- Memory-efficient (also in terms of computational cost)
- ▶ Many features: restart, locking, scaling, extraction, refinement

C. Campos and J. E. Roman, "Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc", submitted, 2015.

Shift-and-Invert on the Linearization

Set
$$S_{\sigma} := (\mathcal{L}_0 - \sigma \mathcal{L}_1)^{-1} \mathcal{L}_1$$

Linear solves required to extend the Arnoldi basis $z = S_{\sigma} w$

$$\begin{bmatrix} -\sigma I & I & & & & \\ & -\sigma I & \ddots & & & \\ & & \ddots & I & & \\ & & & -\sigma I & I \\ -A_0 & -A_1 & \cdots & -\tilde{A}_{d-2} & -\tilde{A}_{d-1} \end{bmatrix} \begin{bmatrix} z^0 \\ z^1 \\ \vdots \\ z^{d-2} \\ z^{d-1} \end{bmatrix} = \begin{bmatrix} w^0 \\ w^1 \\ \vdots \\ w^{d-2} \\ A_d w^{d-1} \end{bmatrix}$$

with
$$\tilde{A}_{d-2} = A_{d-2} + \sigma I$$
 and $\tilde{A}_{d-1} = A_{d-1} + \sigma A_d$

From the block LU factorization, we can derive a simple recurrence to compute $z^i \longrightarrow$ involves a linear solve with $P(\sigma)$

Quantum Dot Simulation

3D pyramidal quantum dot discretized with finite volumes

Tsung-Min Hwang et al. (2004). "Numerical Simulation of Three Dimensional Pyramid Quantum Dot," Journal of Computational Physics, 196(1): 208-232.

Quintic polynomial, $n \approx 12$ mill.

Scaling for tol= 10^{-8} , nev=5, ncv=40 with inexact shift-and-invert (bcgs+bjacobi)

PEP: Additional Features

Non-Monomial polynomial basis

$$P(\lambda) = A_0 \phi_0(\lambda) + A_1 \phi_1(\lambda) + \dots + A_d \phi_d(\lambda)$$

- Implemented for Chebyshev, Legendre, Laguerre, Hermite
- Enables polynomials of arbitrary degree

Newton iterative refinement

- Optional for ill-conditioned problems
- Implemented for single eigenpairs as well as invariant pairs

Other solvers not based on linearization

PEPJD provides Jacobi-Davidson for polynomial eigenproblems

General Nonlinear Eigenproblems

NEP:

$$T(\lambda)x = 0, \qquad x \neq 0$$

 $T:\Omega\to\mathbb{C}^{n\times n}$ is a matrix-valued function analytic on $\Omega\subset\mathbb{C}$

Example 1: Rational eigenproblem arising in the study of free vibration of plates with elastically attached masses

$$-Kx + \lambda Mx + \sum_{j=1}^{k} \frac{\lambda}{\sigma_j - \lambda} C_j x = 0$$

All matrices symmetric, K>0, M>0 and C_j have small rank

Example 2: Discretization of parabolic PDE with time delay au

$$(-\lambda I + A + e^{-\tau \lambda}B)x = 0$$

NEP User Interface - Two Alternatives

Callback functions

The user provides code to compute $T(\lambda)$, $T'(\lambda)$

Split form

 $T(\lambda)x = 0$ can always be rewritten as

$$(A_0 f_0(\lambda) + A_1 f_1(\lambda) + \dots + A_{\ell-1} f_{\ell-1}(\lambda)) x = \left(\sum_{i=0}^{\ell-1} A_i f_i(\lambda)\right) x = 0,$$

with A_i $n \times n$ matrices and $f_i : \Omega \to \mathbb{C}$ analytic functions

- Often, the formulation from applications already has this form
- ightharpoonup We need a way for the user to define f_i

FN: Mathematical Functions

The FN class provides a few predefined functions

- ► The user specifies the type and relevant coefficients
- ▶ Also supports evaluation of $f_i(X)$ on a small matrix

Basic functions:

1. Rational function (includes polynomial)

$$r(x) = \frac{p(x)}{q(x)} = \frac{\alpha_1 x^{n-1} + \dots + \alpha_{n-1} x + \alpha_n}{\beta_1 x^{m-1} + \dots + \beta_{m-1} x + \beta_m}$$

2. Other: exp, log, sqrt, φ -functions

and a way to combine functions (with addition, multiplication, division or function composition), e.g.:

$$f(x) = (1 - x^2) \exp\left(\frac{-x}{1 + x^2}\right)$$

NEP Usage in Split Form

The user provides an array of matrices A_i and functions f_i

```
FNCreate(PETSC COMM WORLD.&f1): /* f1 = -lambda */
FNSetType(f1,FNRATIONAL);
coeffs[0] = -1.0; coeffs[1] = 0.0;
FNRationalSetNumerator(f1,2,coeffs);
FNCreate(PETSC_COMM_WORLD,&f2); /* f2 = 1 */
FNSetType(f2,FNRATIONAL);
coeffs[0] = 1.0;
FNRationalSetNumerator(f2.1.coeffs):
FNCreate(PETSC_COMM_WORLD,&f3);
                               /* f3 = exp(-tau*lambda) */
FNSetType(f3,FNEXP);
FNSetScale(f3,-tau,1.0);
mats[0] = A; funs[0] = f2;
mats[1] = Id; funs[1] = f1;
mats[2] = B; funs[2] = f3;
NEPSetSplitOperator(nep,3,mats,funs,SUBSET_NONZERO_PATTERN);
```


Currently Available NEP Solvers

- 1. Single-vector iterations
 - Residual inverse iteration (RII) [Neumaier 1985]
 - Successive linear problems (SLP) [Ruhe 1973]
- 2. Nonlinear Arnoldi [Voss 2004]
 - Performs a projection on RII iterates, $V_j^*T(\tilde{\lambda})V_jy=0$
 - Requires the split form
- 3. Polynomial Interpolation: use PEP to solve $P(\lambda)x = 0$
 - $ightharpoonup P(\cdot)$ is the interpolation polynomial in Chebyshev basis
- 4. Contour Integral
 - Extension of the CISS method in EPS

MFN: Matrix Function

From the Taylor series expansion of e^A

$$y = e^{A}v = v + \frac{A}{1!}v + \frac{A^{2}}{2!}v + \cdots$$

so y can be approximated by an element of $\mathcal{K}_m(A,v)$

Given an Arnoldi decomposition $AV_m = V_{m+1}\underline{H}_m$

$$\tilde{y} = \beta V_{m+1} \exp(H_m) e_1$$

This extends to other functions y = f(A)v

What is needed:

- Efficient construction of the Krylov subspace
- ightharpoonup Computation of f(X) for a small dense matrix ightarrow FN

Auxiliary Classes

- ST: Spectral Transformation
- FN: Mathematical Function
 - Represent the constituent functions of the nonlinear operator in split form
 - ▶ Function to be used when computing f(A)v
- RG: Region (of the complex plane)
 - Discard eigenvalues outside the wanted region
 - Compute all eigenvalues inside a given region
- DS: Direct Solver (or Dense System)
 - ► High-level wrapper to LAPACK functions
- BV: Basis Vectors

BV: Basis Vectors

BV provides the concept of a block of vectors that represent the basis of a subspace; sample operations:

BVMult	$Y = \beta Y + \alpha X Q$
BVAXPY	$Y = Y + \alpha X$
BVDot	$M = Y^*X$
BVMatProject	$M = Y^*AX$
BVScale	$Y = \alpha Y$

Goal: to increase arithmetic intensity (BLAS-2 vs BLAS-1)

\$./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type vecs

```
BVMult 32563 1.0 3.2903e+01 1.0 6.61e+10 1.0 0.0e+00 0.0e+00 ... 2009
BVDot 32064 1.0 1.6213e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3128

$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type mat
BVMult 32563 1.0 2.4755e+01 1.0 8.24e+10 1.0 0.0e+00 0.0e+00 ... 3329
BVDot 32064 1.0 1.4507e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3497
```

Even better in block solvers (LOBPCG): BLAS-3, MatMatMult

Plans for Future Developments

Short term plans:

- ▶ More EPS solvers: improved LOBPCG, block Krylov methods
- More PEP solvers: SOAR, improved JD
- More NEP solvers: NLEIGS
- More MFN solvers: rational Krylov
- Improved GPU support in BV

A new solver class for Matrix equations

Krylov methods for the continuous-time Lyapunov equation

$$AX + XA^T = C$$

Other equations: Sylvester, Stein, Ricatti

Acknowledgements

Thanks to:

- The PETSc team
- Contributors
- Users providing feedback

Funding agencies:

Computing resources:

