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Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

Linear eigenproblems (standard or generalized, real or
complex, Hermitian or non-Hermitian)

Also support for SVD, PEP, NEP and more
Azr = Mz Az = \Bzx Av; = oju; TNz =0

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas
http://slepc.upv.es

Current version: (released June 2015)
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Google Scholar: 320 citations of main paper (ACM TOMS 2005)

Nuclear Engineering ...... ... .ot 6 %
Computational Electromagnetics, Electronics, Photonics ............ 9 %
Plasma Physics ... ..ot 11 %
ASEIOPNYSICS ..o 1%
Computational Physics, Materials Science, Electronic Structure .. ... 20 %
ACOUSEICS ottt ettt 4%
Computational Fluid Dynamics ...t 13 %
Earth Sciences, Oceanology, Hydrology, Geophysics ................. 4%
Bioengineering, Computational Neuroscience ....................... 2%
Structural Analysis, Mechanical Engineering ....................... 6 %
Information Retrieval, Machine Learning, Graph Algorithms ......... 7%
Visualization, Computer Graphics, Image Processing ................ 3%
PDE’s, Numerical Methods ........... .. ... ... ... ... .......... 10 %
Dynamical Systems, Model Reduction, Inverse Problems ............ 4%
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The user must choose the most appropriate solver for each
problem class

Problem class Model equation Module
Linear eigenproblem Ax =Xz, Ax = ABzx EPS
Quadratic eigenproblem (K+XC + XN M)x =0 T
Polynomial eigenproblem (A +AA; 4 --- + A9 A )z =0 PEP
Nonlinear eigenproblem TNz =0 NEP
Singular value decomp. Av =ou SVD
Matrix function y=f(Av MFN

1 QEP removed in version 3.5

Auxiliary classes: ST, BV DS, RG, FN
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PETSc SLEPc
Nonlinear Systems Time Steppers Polynomial Eigensolver| Nonlinear Eigensolver
Line Trust Backward | Pseudo Q- | Linear- N-
Search | Region i | | Bl Euler | Time Step Other TOAR Arnoldi| ization SLP | RII Arnoldi Interp.
Krylov Subspace Methods SVD Solver M. Function
GMRES| G| CGS |Bi-CGStab| TFQMR|Richardson| Chebychev| Other | | €705 | CYelie | 11y | Thick R Krylov
Product| Matrix Lanczos
Preconditioners Linear Eigensolver
Additive |- Block 1 . opi | LU | 1cC | LU | Other | | KrylowSchur | 6D | JD |LOBPCG| CISs |Other
Schwarz Jacobi
Matrices Spectral Transformation
Compressed Block Symmetric : ! : o
Sparse Row CSR Block CSR Dense | CUSP | Other Shift |Shift-and-invert| Cayley | Preconditioner
Vectors Index Sets BV DS RG EN
Standard CUSP Indices | Block | Stride | Other
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Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

EPS: Eigenvalue Problem Solver
Selection of wanted eigenvalues
Preconditioned eigensolvers

PEP: Polynomial Eigensolvers

o NEP: General Nonlinear Eigensolvers

© ©

MFEN: Matrix Function
Auxiliary Classes
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Compute a few eigenpairs (x, \) of

Ax = \x Ax = \Bx

where A, B can be real or complex, symmetric (Hermitian) or not

User can specify:
Number of eigenpairs (nev), subspace dimension (ncv)

Tolerance, maximum number of iterations

The solver
Selected part of spectrum
Advanced: extraction type, initial guess, constraints, balancing
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User code is independent of the selected solver

Basic methods
Single vector iteration: power iteration, inverse iteration, RQI
Subspace iteration with Rayleigh-Ritz projection and locking
Explicitly restarted Arnoldi and Lanczos

Krylov-Schur, including thick-restart Lanczos

Generalized Davidson, Jacobi-Davidson

Conjugate gradient methods: LOBPCG, RQCG

CISS, a contour-integral solver

External packages, and LAPACK for testing

... but some solvers are specific for a particular case:

LOBPCG computes smallest \; of symmetric problems
CISS allows computation of all A; within a region
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Largest/smallest magnitude, or real (or imaginary) part

Example: QC2534

-eps_nev 6
-epsncv 128

-eps_largest_imaginary

x Computed
eigenvalues
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RG: Region
A region of the complex plane (interval, polygon, ellipse, ring)

Used as an inclusion (or exclusion) region

X
. X X
Example: signl (NLEVP) n = 225, all
A lie at unit circle, accumulate at +1 )
-epsnev 6 i !
-rg_type interval
-rg_interval_endpoints -0.7,0.7,-1,1 » »
X
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Shift-and-invert is used to compute interior eigenvalues

Az=MBz | = (A—0B) Bz =0z

Trivial mapping of eigenvalues: § = (A — o)~!
Eigenvectors are not modified

Very fast convergence close to o

Things to consider:
Implicit inverse (A — o B)~! via linear solves
Direct linear solver for robustness

Less effective for eigenvalues far away from o
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Indefinite (block-)triangular factorization: A —oB = LDLT
A byproduct is the number of eigenvalues on the left of o (inertia)

v(A—oB)=v(D)
Spectrum Slicing strategy:
Multi-shift scheme that sweeps all the interval

Compute eigenvalues by chunks

Use inertia to validate sub-intervals

\ | | | \

a

‘ | | | ‘b
01 g2 g3

C. Campos and J. E. Roman, “Strategies for spectrum slicing based on restarted Lanczos
methods”, Numer. Algorithms, 60(2):279-295, 2012.

E®» Multi-communicator version, one subinterval per partition
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CISS solver!: compute all eigenvalues inside a given region

Example: QC2534

-eps_type ciss

-rg_type ellipse
-rg_ellipse_center -.8-.1i
-rg_ellipse_radius 0.2

-rg_ellipse_vscale 0.1

!Contributed by Y. Maeda, T. Sakurai
15/36



Linear Eigenvalue Problems
Non-Linear Eigenvalue Problems
Additional Features

RG=ellipse, center=0, radius=1
1

Example: MHD1280 with CISS .
iy
Alfvén spectra: eigenvalues in
intersection of the branches soon= o 0
o
-1
-1 0 1
500 T+
RG=ring, center=0, radius=0.5,
. width=0.2, angle=0.25..0.5
1
-500 1

e

-200 -100 0 X
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14 H

Selection with %
user-defined function for

sorting eigenvalues ol sy

pdde_stability n = 225,

wanted eigenvalues: x

X

X =1 + # :

-50 0

PetscErrorCode MyEigenSort(PetscScalar ar,PetscScalar ai,
PetscScalar br,PetscScalar bi,PetscInt *r,void *ctx) {
PetscReal aa,ab;
PetscFunctionBeginUser;
aa = PetscAbsReal(SlepcAbsEigenvalue(ar,ai)-1.0);
ab = PetscAbsReal(SlepcAbsEigenvalue (br,bi)-1.0);
*r =aa>ab?1: (aa<ab?-1:0);
PetscFunctionReturn(0);

}

Arbitrary selection: apply criterion to an arbitrary user-defined
function ¢(\, ) instead of just A
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Pitfalls of shift-and-invert:
Direct solvers have high cost, limited scalability
Inexact shift-and-invert (i.e., with iterative solver) not robust

try to overcome these problems

Davidson-type solvers
Jacobi-Davidson: correction equation with iterative solver

Generalized Davidson: simple preconditioner application

E. Romero and J. E. Roman, “A parallel implementation of Davidson methods for large-
scale eigenvalue problems in SLEPc", ACM Trans. Math. Softw., 40(2):13, 2014.

Conjugate Gradient-type solvers (for GHEP)
RQCG: CG for the minimization of the Rayleigh Quotient
> LOBPCG: Locally Optimal Block Preconditioned CG
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Increasing interest in nonlinear eigenvalue problems arising in many
application domains

Structural analysis with damping effects
Vibro-acoustics (fluid-structure interaction)

Linear stability of fluid flows

QEP: quadratic eigenproblem, (\2M + AC' + K)z =0
PEP: polynomial eigenproblem, P(\)z =0

REP: rational eigenproblem, P(A\)Q(A\) "tz =0

NEP: general nonlinear eigenproblem, T'(A)x = 0

Test cases available in the NLEVP collection [Betcke et al. 2013]
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PEP: P(\)z =0
Monomial basis:  P(\) = Ag + A1\ + A2A? + - + A \?
Companion linearization: L(\) = Ly — ALy, with L(A\)y = 0 and

I I T
r r TA
o I e I O
—Ay —A; - —Ag Ay zAd1

Compute an eigenpair (y, A) of L(\), then extract x from y

Pros: can leverage existing linear eigensolvers (PEPLINEAR)

Cons: dimension of linearized problem is dn
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Arnoldi relation: SV; = [V} v] H;, S = /Jl_lﬁo

Write Arnoldi vectors as v = vec [vo, cee vd_l]

Block structure of .S allows an implicit representation of the basis
Q-Arnoldi: VZ’Irl [Vz vi] ﬁj

TOAR: [V} ] = Uy [G) o]
Arnoldi relation in the compact representation:
S(Ia® Ujra—1)Gj = (Is@ Ujya) (G5 9] H,
PEPTOAR is the default solver

Memory-efficient (also in terms of computational cost)

Many features: restart, locking, scaling, extraction, refinement

C. Campos and J. E. Roman, “Parallel Krylov solvers for the polynomial eigenvalue problem
in SLEPC”, submitted, 2015.
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Set S, := ([,0 — Uﬁl)flﬁl

Linear solves required to extend the Arnoldi basis z = S,w

ol I F 07 T w0 ]
ol - 2! wt
I N :

o] 7 Ld—2 w2

Ao —A1 - —Agg —Ag] T [Aaw™

with Ad_g = Ag_o + ol and Ad—l =Ay_1+0Ay

From the block LU factorization, we can derive a simple recurrence
to compute 2z — involves a linear solve with P(o)
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3D pyramidal quantum dot discretized with finite volumes

Tsung-Min Hwang et al. (2004). “Numerical Simulation
of Three Dimensional Pyramid Quantum Dot,” Journal of
Computational Physics, 196(1): 208-232.

(———— h =04408

3,= 06170

3= 06170
v ¥

mll |

Quintic polynomial, n =~ 12 mill.

Scaling for tol=10"%, nev=>5, ncv=40 with
inexact shift-and-invert (bcgs+bjacobi)

32

64

128
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polynomial basis
P(\) = Aogo(A) + A1p1(A) + -+ + Aada(N)
Implemented for Chebyshev, Legendre, Laguerre, Hermite

Enables polynomials of arbitrary degree

iterative refinement
Optional for ill-conditioned problems

Implemented for single eigenpairs as well as invariant pairs

not based on linearization

E®» PEPJD provides Jacobi-Davidson for polynomial eigenproblems
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T:Q — C™" is a matrix-valued function analytic on Q c C

: Rational eigenproblem arising in the study of free
vibration of plates with eIasticaIIy attached masses

—K:E—I—)\M.T—}-Z

All matrices symmetric, K > 0, M > 0 and C} have small rank

. Discretization of parabolic PDE with time delay 7

(=M +A+e ™ B)z=0
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The user provides code to compute T'(\), T"(\)

T(A)z = 0 can always be rewritten as
-1

(AofoN) +ALfI(N)+- -+ A1 fer1 (V) z = (Z Az’fi()‘)> z =0,
=0

with A; n X n matrices and f; : 2 — C analytic functions
Often, the formulation from applications already has this form

We need a way for the user to define f;
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The FN class provides a few predefined functions
The user specifies the type and relevant coefficients
Also supports evaluation of f;(X) on a small matrix
Basic functions:

Rational function (includes polynomial)

plz) oz 4t a1z,

Other: exp, log, sqrt, ¢-functions

ED and a way to functions (with addition, multiplication,
division or function composition), e.g.:

F) = (1- x2>exp( ‘“”” )

14 22
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The user provides an array of matrices A; and functions f;

FNCreate (PETSC_COMM_WORLD, &f1) ; /* f1
FNSetType (£1,FNRATIONAL) ;

coeffs[0] = -1.0; coeffs[1] = 0.0;
FNRationalSetNumerator (f1,2,coeffs);

-lambda */

FNCreate (PETSC_COMM_WORLD, &£f2) ; /x £2
FNSetType (£2,FNRATIONAL) ;

coeffs[0] = 1.0;

FNRationalSetNumerator (£2,1,coeffs);

1 %/

FNCreate (PETSC_COMM_WORLD, &f3) ; /* £3 = exp(-tau*lambda) */
FNSetType (£3,FNEXP) ;
FNSetScale(f3,-tau,1.0);

mats[0] = A; funs[0] = f2;
mats[1] = Id; funs[1] = f1;
mats[2] = B; funs[2] = £3;
NEPSetSplitOperator (nep,3,mats,funs,SUBSET_NONZERO_PATTERN) ;
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Single-vector iterations
Residual inverse iteration (RII) [Neumaier 1985]
Successive linear problems (SLP) [Ruhe 1973]

Nonlinear Arnoldi [Voss 2004]
Performs a projection on Rl iterates, V}*T(S\)ij =0
Requires the split form

Polynomial Interpolation: use PEP to solve P(\)z =0
P(-) is the interpolation polynomial in Chebyshev basis

=D Contour Integral
Extension of the CISS method in EPS
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From the Taylor series expansion of e

A 2
y=elv=v+ v+ vt
1! 2!
so y can be approximated by an element of KC,,, (A, v)

Given an Arnoldi decomposition AV,, = V,,,;1H,,

U = BVint1exp(Hp)el

This extends to other functions y = f(A)v

What is needed:
Efficient construction of the Krylov subspace

Computation of f(X) for a small dense matrix — FN
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: Spectral Transformation

: Mathematical Function
Represent the constituent functions of the nonlinear operator
in split form
Function to be used when computing f(A)v

: Region (of the complex plane)

Discard eigenvalues outside the wanted region
Compute all eigenvalues inside a given region

: Direct Solver (or Dense System)
High-level wrapper to LAPACK functions

: Basis Vectors
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BV provides the concept of a block of vectors that represent the
basis of a subspace; sample operations:

BVMult Y =8Y +aXQ
BVAXPY Y=Y +aX
BVDot M=Y*X
BVMatProject M =Y AX
BVScale Y =aY
Goal: to increase (BLAS-2 vs BLAS-1)
$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type vecs
BVMult 32563 1.0 3.2903e+01 1.0 6.61e+10 1.0 0.0e+00 0.0e+00 ... 2009
BVDot 32064 1.0 1.6213e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3128

$ ./ex9 -n 8000 -eps_nev 32 -log_summary -bv_type mat
BVMult 32563 1.0 2.4755e+01 1.0 8.24e+10 1.0 0.0e+00 0.0e+00 ... 3329
BVDot 32064 1.0 1.4507e+01 1.0 5.07e+10 1.0 0.0e+00 0.0e+00 ... 3497

Even better in block solvers (LOBPCG): BLAS-3, MatMatMult
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Short term plans:
More EPS solvers: improved LOBPCG, block Krylov methods
More PEP solvers: SOAR, improved JD
More NEP solvers: NLEIGS
More MFN solvers: rational Krylov

Improved GPU support in BV

A new solver class for

Krylov methods for the continuous-time Lyapunov equation

AX + XAT =C

Other equations: Sylvester, Stein, Ricatti
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Funding agencies:

Thanks to: E —ﬁ BIER BERR.
The PETSc team

Contributors )
Computing resources:

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Users providing feedback
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