The immersed boundary method for advection-electrodiffusion

Matus, et al. 2006

University of Michigan

Pilhwa Lee

Free boundary problems in physiology

Embryonic cardiac myocytes contraction vs. microenvironment

Engler, et al. 2008

Pulmonary arterial network, blood flow profiling

PETSc 20 workshop

Vanderpool, et al. 2011

Renal inner medulla, solute concentration

2

Pannabecker and Dantzler, 2007

The immersed boundary method

Charlie Peskin and David McQeen

Fluid-structure interaction 3D distributed memory parallel computing

Boyce Griffith

Adaptive mesh refinement

http://www.math.nyu.edu/faculty/peskin/ myo3D/config12_animation.html

The immersed boundary method with advection-electrodiffusion

Fluid-solute-structure interactionOsmotic effectsElectrodiffusionElectroneutrality - space charge layer

e Virtual Physiological

Rat Proiect

Computational issues

Immensely stiff in hyperbolic system Thin membrane, local mesh refinement Semi-implicit time stepping

Lee, Griffith, Peskin, J. Comp. Phys. 2010 PETSc 20 workshop

Numerical architecture

• PETSc-CUDA

• SAMRAI - multilevel adaptive mesh refinement

• Hypre - algebraic multigrid

The Stokes equations with permeable membrane

- Fast adaptive composite (FAC) method: preconditioner one layer of ghost cells, bottom solver (PFMG)
- Krylov subspace GMRES: main solver
- Cell-centered approximate projection method

Advection-electrodiffusion with immersed boundary

$$\frac{c_i^{n+1} - c_i^n}{\Delta t} + \mathbf{D}_h \cdot \mathbf{J}_i^{n+1} = 0$$

$$\mathbf{J}_i^{n+1} = -D_i (D_h c_i^{n+1}) + \left[\frac{D_i}{K_{\rm B}T} (-qz_i D_h \varphi^n - D_h \psi_i^n) + \mathbf{u}^n\right] c_i^{n+1}$$

$$-L_h \varphi^n = \left(\sum_i qz_i^n c_i^n + \rho_{\rm b}\right) / \epsilon$$

$$L_i^n c_i^{n+1} = c_i^n$$

$$L_i^n = L(\mathbf{u}^n, \varphi^n, \psi_i^n)$$

- Fast adaptive composite (FAC) method, preconditioner two layers of ghost cells
 bottom solver (PFMG), first order upwind
- GMRES, main solver

Advection-electrodiffusion with immersed boundary

Voltage-sensitive calcium ion channels

Rasmusson, et al. 2004

Voltage-sensitive calcium ion channels

The Virtual Physiological

Rat Project

Concentration dependent contraction

membrane is mostly impermeable to Ca++

PETSc 20 workshop

membrane is freely permeable to CI-

An immersed boundary method for two-phase fluids and gels

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \boldsymbol{v}_{\mathrm{p}}) = 0$$

$$\rho_{\rm f} \frac{\partial \boldsymbol{v}_{\rm f}}{\partial t} + \Gamma(\boldsymbol{v}_{\rm f} - \boldsymbol{v}_{\rm p}) = -(1 - \phi)\nabla p + \eta_{\rm f} \nabla \cdot (\nabla \boldsymbol{v}_{\rm f} + \nabla \boldsymbol{v}_{\rm f}^{\rm T}) + S\boldsymbol{F}_{\rm f}$$

 $\rho_{\rm p} \frac{\partial \boldsymbol{v}_{\rm p}}{\partial t} + \Gamma(\boldsymbol{v}_{\rm p} - \boldsymbol{v}_{\rm f}) = -\phi \nabla p - \sigma_0 \nabla \phi + \eta_{\rm p} \nabla \cdot (\nabla \boldsymbol{v}_{\rm p} + \nabla \boldsymbol{v}_{\rm p}^{\rm T}) + \mu \nabla \cdot (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\rm T}) + S \boldsymbol{F}_{\rm p}.$

$$\frac{d\boldsymbol{u}}{dt} = \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{v}_{\mathrm{p}} \cdot \nabla \boldsymbol{u} = \boldsymbol{v}_{\mathrm{p}}$$

 $\nabla \cdot \{(1-\phi)\boldsymbol{v}_{\mathrm{f}} + \phi \boldsymbol{v}_{\mathrm{p}}\} = 0$

$$\begin{aligned} \boldsymbol{F}_{\mathrm{p}} \cdot \boldsymbol{T} &= \Xi_{\mathrm{T}} S^{*} (\boldsymbol{v}_{\mathrm{f}} - \boldsymbol{v}_{\mathrm{p}}) \cdot \boldsymbol{T} \\ \boldsymbol{F}_{\mathrm{p}} \cdot \boldsymbol{N} &= \Xi_{\mathrm{N}} S^{*} (\boldsymbol{v}_{\mathrm{f}} - \boldsymbol{v}_{\mathrm{p}}) \cdot \boldsymbol{N} \\ \boldsymbol{F}_{\mathrm{f}} + \boldsymbol{F}_{\mathrm{p}} &= -\frac{\delta E}{\delta \boldsymbol{X}} \end{aligned}$$

An immersed boundary method for two-phase fluids and gels

Lee and Wolgemuth, submitted

3D solute concentration of inner medulla in renal peristaltic contraction

Schmidt-Nielsen, et al. 2011

Multi-scale, large-scale computational framework

The Virtual Physiological

Rat Project

3D solute concentration of inner medulla in renal peristaltic contraction

1. Rectified epithelial transport with electrolytes in interstitial matrix

2. Rectified epithelial transport with viscoelasticity in interstitial matrix

The Virtual Physiological

Rat Project

VP

3D peristaltic contraction

$$\begin{aligned} \zeta_{\mathrm{I}} u_{\mathrm{I}} &= -\nabla p_{\mathrm{I}} + \int_{\Omega_{\mathrm{L}}^{\mathrm{p}}} \delta(\mathbf{x} - \mathbf{X}_{\mathrm{p}}(s)) \mathbf{F}_{\mathrm{p}} ds \\ \nabla \cdot \mathbf{u}_{\mathrm{I}} &= 0 \end{aligned}$$

$$F_{\rm P} = \sum_{i} \frac{\partial (F_{\rm T}^{i} \tau_{i})}{\partial s_{i}}$$
$$F_{\rm T}^{i} = K_{s_{i}} (|\frac{\partial \mathbf{X}_{\rm p}}{\partial s_{i}}| - 1), \quad \tau_{i} = \frac{\partial \mathbf{X}_{\rm p}}{\partial \mathbf{X}_{\rm p}} |\frac{\partial s_{i}}{\partial s_{i}}|$$
$$K_{s_{1}} = K_{s_{1}}^{0} \sin(\omega t), \quad K_{s_{2}} = K_{s_{2}}^{0}$$

3D solute concentration

Luminal

$$\frac{\partial c_i^{\mathrm{L}}}{\partial t} + \frac{\partial J_i^{\mathrm{L}}}{\partial s} = -p_{\mathrm{L},i}^{\mathrm{E}} (c_i^{\mathrm{L}} - c_i^{\mathrm{E}})$$
$$J_i^{\mathrm{L}} = c_i^{\mathrm{L}} u_{\mathrm{L}}$$
$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} (\frac{q^2}{A}) + \frac{A}{\rho} \frac{\partial p_{\mathrm{L}}}{\partial x} = -2 \frac{\pi \nu r}{\delta} \frac{q}{A}$$
$$p_{\mathrm{L}} = p_{\mathrm{I}} (\mathbf{X} + \mathbf{R}_{\mathrm{E}}^{\mathrm{B}}) + p_{\mathrm{E}}$$

Interstitial

$$\begin{split} \frac{\partial c_i^{\mathrm{I}}}{\partial t} + \nabla \cdot \mathbf{J}_i^{\mathrm{I}} &= \int_{\Omega_{\mathrm{L}}} \delta(\mathbf{x} - \mathbf{X}(s) - \mathbf{R}_{\mathrm{E}}^{\mathrm{B}}(s, \theta)) p_{\mathrm{I},i}^{\mathrm{E}}(s) (c_i^{\mathrm{I}} - c_i^{\mathrm{E}}) ds d\theta \\ J_i^{\mathrm{I}} &= -D_i^{\mathrm{I}} \nabla c_i^{\mathrm{I}} \\ &- \frac{D_i^{\mathrm{I}}}{K_{\mathrm{B}} T} (\int_{\Omega_{\mathrm{L}}} \nabla \Psi_{\mathbf{R}_{\mathrm{E}}^{\mathrm{B}}}(\mathbf{x} - \mathbf{X}(s)) A(s) ds d\theta) c_i^{\mathrm{I}} \\ &+ u_{\mathrm{I}} c_i^{\mathrm{I}} \end{split}$$

Epithelial

$$\begin{aligned} \frac{\partial c_i^{\rm E}}{\partial t} &= -p_{{\rm E},i}^{\rm I} (c_i^{\rm E} - c_i^{\rm I} (\mathbf{X} + \mathbf{R}_{\rm E}^{\rm B})) - p_{{\rm E},i}^{\rm L} (c_i^{\rm E} - c_i^{\rm L}) \\ \zeta_{\rm A} \frac{\partial R_{\rm E}^{\rm A}}{\partial t} &= \Pi_{\rm A} RT \sum_i (c_i^{\rm L} - c_i^{\rm E}) \\ \zeta_{\rm B} \frac{\partial R_{\rm E}^{\rm B}}{\partial t} &= \Pi_{\rm B} RT \sum_i (c_i^{\rm E} - \tilde{c}_i^{\rm I} (\mathbf{X} + \mathbf{R}_{\rm E}^{\rm B})) \end{aligned}$$

Future work

Advection-electrodiffusion Two-phase fluids and gels

Coupling with vasculature/tubular network

Acknowledgement

Courant Institute, New York University

Charlie Peskin, David McQueen

Marsha Berger, Olof Widlund

University of North Carolina

Boyce Griffith

Mount Sinai School of Medicine

Eric Sobie

University of Michigan

Daniel Beard, Brian Carlson

PETSc team, Barry Smith, Satish Balay

Hypre team, Robert Falgout

SAMRAI team

University of Pennsylvania

Dennis Discher

University of Arizona

Charles Wolgemuth

Medical College of Wisconsin

Allen Cowley

University of Wisconsin, Madison

Naomi Chesler

University College of London/ University of Auckland

Nicolas Smith, Taha Sochi

North Carolina State University

Mette Olufsen