Solving the Load Flow and Helmholtz Equations using PETSc

Domenico Lahaye and helping friends

DIAM - TU Delft

PETSc-20, June 15th-18th, 2015

Helping Friends

- Reijer Idema (graduated November 2012)
- Abdul Sheikh Hannan (graduated November 2013)
- Romain Thomas (PhD started October 2012)
- Martijn de Jong (PhD started October 2012)
- Prof. Kees Vuik
- . . .

Newton-Krylov Solver for the Load Flow Equations

Accelerating the Complex Shifted Laplacian using Deflation

Future Power Systems = Power Webs

- large: European study (UCTE) model with 10,000+ nodes
- bi-directional: market mechanisms
- uncertainty: time-variable production by renewables
- operated closer to limits: electrical vehicle charging

Load Flow Equations

- x: voltage amplitude and phase at each node in network
- F(x) = 0: non-linear system matching generation with demand
- $J_i x_i = F_i$: linear system at i-th Newton iteration
- in the past solved by direct methods
- currently solved approximately by ILU/GMRES
- implemented in PETSc

・ロト・(四ト・(日下・(日下・))への)

・ 「 」 ・ ・ 「 」 ・ ・ 「 」 ・ ・ 「 」 ・ うへの

Accelerating the Complex Shifted Laplacian using Deflation

Helmholtz Equation

$$-\Delta \mathbf{u}(x,y) - k^2 \, \mathbf{u}(x,y) = \mathbf{g}(x,y)$$
 on Ω

Dirichlet and/or Sommerfeld on $\partial \Omega$

finite differences or elements

A u = f sparse complex symmetric

all standard solvers fail

▶ ∃ 𝒴𝔄

Conclusions

Complex Shifted Laplace Preconditioner

preconditioning by damping

 $M: -\Delta \mathbf{u} - (1 + \frac{\beta_2 \mathbf{i}}{\mathbf{i}})k^2 \mathbf{u}$

M-solve using multigrid

 $M^{-1}A$ favorable spectrum

standard in many applications

Erlangga e.a. 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Complex Shifted Laplace Preconditioner

Number of outer Krylov iterations

	Wavenumber					
Grid	<i>k</i> = 10	k = 20	<i>k</i> = 30	<i>k</i> = 40	<i>k</i> = 50	<i>k</i> = 100
<i>n</i> = 32	10	17	28	44	70	13
<i>n</i> = 64	10	17	28	36	45	173
<i>n</i> = 96	10	17	27	35	43	36
<i>n</i> = 128	10	17	27	35	43	36
<i>n</i> = 160	10	17	27	35	43	25
<i>n</i> = 320	10	17	27	35	42	80

Conclusions

A D F A 同 F A E F A E F A Q A

Complex Shifted Laplace Preconditioner

Good News

• SLP preconditioner renders spectrum favorable to Krylov

However ...

- eigenvalues rush to zero as k increases
- outer Krylov convergence limited by near-null space

Can deflation improve?

A D F A 同 F A E F A E F A Q A

Deflation using Multigrid Vectors

Deflation perspective

- replace preconditioned system $M^{-1} A = M^{-1} b$
- by deflated preconditioned system $P^T M^{-1} A = P^T M^{-1} b$
- deflation vectors Z and Galerkin coarse grid matrix $E = Z^T A Z$
- deflation operator P = I AQ where $Q = ZE^{-1}Z^{T}$
- *P*: projection (later modified to shift to 1)
- Z: columns of the coarse to fine grid interpolation good approx to near-null space for k h fixed

A D F A 同 F A E F A E F A Q A

Deflation using Multigrid Vectors

Multigrid perspective

• replace smoother $I - M^{-1} A$

(*M* complex shifted-Laplacian, M^{-1} as before)

- by smoother + coarse grid solve (I QA) $(I M^{-1}A)$ $(Q = ZE^{-1}Z^{T}$ coarse grid solve, E^{-1} new element)
- Fourier two-grid analysis for
 - 1D problem with Dirichlet bc
 - uniform coarsening
 - E and M inverted exactly

Spectrum Deflated Preconditioned Operator

tighter clusters at low frequency

spread due to E^{-1} at high frequency

Avoiding Eigenvalue Spread at High Wavenumber

- deflate friend of A instead of A (unsuccessful)
- choose other deflation vectors (under investigation)

A D F A 同 F A E F A E F A Q A

Deflation using Multigrid Vectors

Multilevel Extension

- composite two-level preconditioner $P^T M^{-1} A = P^T M^{-1} b$
- deflation operator P = I AQ where $Q = ZE^{-1}Z^{T}$
- coarse grid Helmholtz operator $E = Z^T A Z$
- apply idea recursively to apply P
- multilevel Krylov method (Erlangga-Nabben 2009)

Convergence Outer Krylov Acceleration

Number of outer Krylov iterations with/without deflation

Grid	<i>k</i> = 10	k = 20	<i>k</i> = 30	<i>k</i> = 40	<i>k</i> = 50	<i>k</i> = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
<i>n</i> = 64	4/10	6/17	8/28	12/36	18/45	173/163
<i>n</i> = 96	3/10	5/17	7/27	9/35	12/43	36/97
<i>n</i> = 128	3/10	4/17	6/27	7/35	9/43	36/85
<i>n</i> = 160	3/10	4/17	5/27	6/35	8/43	25/82
<i>n</i> = 320	3/10	4/17	4/27	5/35	5/42	10/80

Less iterations and therefore speedup

(Abdul Sheikh Hannan, D.L. and Kees Vuik, NLA, 2013).

(ロ) (同) (三) (三) (三) (○) (○)

Numerical Results

3D problem with wedge-like contrast in wavenumber using 20 grid points per wavelength

Wave number k	So	lve Time	Iterations		
	PREC	DEF+PREC	PREC	DEF+PREC	
5	0.09	0.24	9	11	
10	1.07	1.94	15	12	
20	16.70	18.89	32	16	
30	73.82	78.04	43	21	
40	1304.2	214.7	331	24	
60	XX	989.5	xx	34	

speedup in CPU of by a factor 6

(Abdul Sheikh Hannan, D.L. and Kees Vuik, submitted to JCP).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical Results

2D Marmousi Problem using 20 grid points per wavelength

Frequency f	Sol	ve Time	Iterations		
	PREC	DEF+PREC	PREC	DEF+PREC	
1	1.23	5.08	13	7	
10	40.01	21.83	106	8	
20	280.08	131.30	177	12	
40	20232.6	3997.7	340	21	

speedup in CPU of by a factor 5

Conclusions

Newton-Krylov Load Flow Solver

- scalable much faster for large problems
- flexible reuse of data in contingency analysis

Deflated Shifted-Laplacian Helmholtz Solver

- less iterations than shifted-Laplacian
- faster than shifted-Laplacian solver for sufficiently large problems

Conclusions

Newton-Krylov Load Flow Solver

- scalable much faster for large problems
- flexible reuse of data in contingency analysis

Deflated Shifted-Laplacian Helmholtz Solver

- less iterations than shifted-Laplacian
- faster than shifted-Laplacian solver for sufficiently large problems

Happy 20th Birthday PETSc!