PETSc: a SWOT analysis

David Keyes
Extreme Computing Research Center
KAUST

NITRD agency success story: PETSc (1992-)

The Portable Extensible Toolkit for Scientific Computing (PETSc)
m used in thousands of scientific and engineering codes

m software structure has inspired countless other library developers

Suite of distributed data structures and routines for the scalable solution of
large systems of equations

Has won R&D 100 award, been part of multiple Gordon Bell prizes, Best
Paper prizes; its developers won DOE’s E. O. Lawrence award in 2011

Funded by Argonne National Laboratory, DOE, and NSF

Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Bone Fractures, Brain Surgery, Cancer Surgery,
Cancer Hyperthermia, Carbon Sequestration, Cardiology, Cell Function, Combustion, Concrete,
Corrosion, Data Mining, Dentistry, Earth Quakes, Economics, Fission, Fluid Dynamics, Fusion,
Glaciers, Ground Water Flow, Hydrology, Linguistics, Mantle Convection, Magnetic Films, Material
Science, Medical Imaging, Ocean Dynamics, Oil Recovery, PageRank, Polymer Injection Molding,
Polymeric Membranes, Quantum Computing, Seismology, Semiconductors, Rockets, Relativity, ...

1 = —

NITRD Symposium, 16 Feb 2012

Helpful
to achieving the objective

Strengths

Internal origin
(attributes of the organization)

https://en.wikipedia.org/wiki/SWOT _analysis

Sample questions

Strengths
— What does PETSc do better than most?

Weaknesses

— What could PETSc improve?
Opportunities

— What trends favor PETSc’s future?

Threats
— What obstacles does PETSc face?

S £ =

Strengths: PETSc Praised

nat does PETSc do better than most?

nat are PETSc’s advantages?

nat resources can PETSc draw upon?

S £ =

Weaknesses: PETSc Panned

nat could PETSc improve?
nat are PETSc’s disadvantages?

nat resources does PETSc lack?

Opportunities: PETSc’s Prospects

nat trends favor PETSc’s future?
nat changes in technology?
nat changes in policy?

S ===

nat changes in culture?

S 2= =

Threats: PETSc’s Perils

nat obstacles does PETSc face?

nat C
nat C
nat C

nanges in technology?
nanges in policy?

nanges in culture?

nat are “competitors” doing?

PETSCc’s attributes

Portability — across HW/SW platforms

Extensibility — contexts, shells, custom registrations
Composability — nested calls, plug-n-play
Configurability — buildtime, runtime

Callability — many language bindings, library style
Compartmentability — subcommunicators
Comprehensibility — APl to external functionality
Profilability — rich instrumentation
Testability/reproducibility — repository, nightly regressions
Availability — open source

Reliability — debugged by the global community ©
Stability — 20+ year history

Inclusivity — open to outside contributions
Adoptability — open to new applications

PETSc set the culture of
scientific software engineering

* Today, many frameworks aspire to and, to
some extent, achieve these attributes

 PETSc has been enormously influential in

creating this open ecosystem of quality
software components

TOPS2 Midterm Review (2009)

“PETSc [59] includes a large suite of parallel linear
and nonlinear equation solvers that are callable from
C, C++, Fortran77, Fortran90, and Python. |t provides
distributed data structures with many mechanisms
needed within parallel application codes, such as
matrix and vector assembly routines that allow the
overlap of communication and computation. It
includes support for parallel hierarchical distributed
arrays and PETSc3.0, developed under the current
TOPS project, has its own mesh management library.
PETSc provides access through its standard TOPS
interface to the algebraic multigrid libraries
BoomerAMG from hyper and ML from Trilinos and
the smoothed aggregation AMG solver Prometheus
[62] is now maintained as a PETSc package.”

Keys to PETSc’s success

* Tight integration with MPI’s performance
oriented features

* Control over granularity and scheduling of
memory allocations and communications

* Opportunity to overlap useful computation
with communication latency and
synchronization latency (begin/end, get/
restore)

More keys to PETSc’s success

Large variety of methods
Large variety of data structures

Variety of flavors (e.g., set versus add, matrix
explicit versus matrix-free)

Extensive services (e.g., monitors, viewers)

Comprehensive instrumentation for
correctness debugging and performance
debugging

Still more keys to PETSc’s success

* Rich set of test and tutorial codes
* Conservative defaults for parameters

— robustness, for novices

 Multilayered access to parameters

— progressive performance, for experts

lcing on the user’s cake

* Quality, self-generating documentation
* Regularly available workshops and tutorials

* Conscientious user community responsiveness
with e-mail tracking and blogging

Icing on the developer’s cake

Direct participation in algorithmic research
Direct participation in stakeholder applications

Adoption of PETSc as a software stack offering by
commercial vendors (e.g., Cray) and as a driver
for evaluating new processors (e.g., Intel)

Snowball effects
— feature combination (“features attract features”)

— community buy-in (“users attract users”)

/(]

— accomplishment (“citations attract citations”, “prizes
attract prizes”)

PETSc checks the boxes

e Users of scalable solvers seek:

™ Interface standardization
® Solver interoperability
® Vertical integration
WArchitecture-adaptive performance
o Application-adaptive convergence

S £ =

Weaknesses: PETSc Panned

nat could PETSc improve?
nat are PETSc’s disadvantages?

nat resources does PETSc lack?

Areas to improve today?

Learning curve

Naming conventions
Built-in graphics
Computational steering
“Branding”

Archiving of success stories
 for more stable support
 for more bootstrapped successes

Opportunities: PETSc’s Prospects

nat trends favor PETSc’s future?
nat changes in technology?
nat changes in policy?

S ===

nat changes in culture?

Trends favorable to PETSc

More demanding applications

 multi-physics, multi-scale, multi-dimensions, multi-
models, etc.

More sophisticated algorithms

* polyalgorithms, multi-levels, multi-precisions,
discretization adaptivity, convergence adaptivity, etc.

More complex architectures

* massively distributed, manycore, deeply hierarchical
memory, hierarchical coherence domains

PETSc functionality can expand user aspiration

More trends favorable to PETSc

Still higher stacking for post-forward problems
* Sensitivity

* Validation and verification
 Uncertainty quantification

* Optimization

* Inversion

 Data Assimilation

* Analytics

Combined post-forward problems
 Optimization under uncertainty

* Design of experiments

PETSc functionality can expand user aspiration

Still more trends favorable to PETSc

* With increasing hardware complexity and
shrinking government and industrial
investment, fewer simulation communities
will “roll their own” below the level of the
modeling

 willdemand infrastructure that allows higher
productivity

 PETSc users exponentially beget future
generations of PETSc users

S 2= =

Threats: PETSc’s Perils

nat obstacles does PETSc face?

nat C
nat C
nat C

nanges in technology?
nanges in policy?

nanges in culture?

nat are “competitors” doing?

Threats to PETSc

Leaders are targets
e common to see unfair comparisons against PETSc

Some needed or wanted improvements will
disrupt backward compatibility

Difficult to attract support simply to maintain
research infrastructure

* increased overhead in raising support distracts from
doing the work and inhibits long-term planning and
hiring

Increasing number of external dependencies

increase burden on integrators closest to users

Biggest threat to PETSc

 Coming “discontinuity” in hardware and
programming models

“A good player plays where the puck is, while a great
player skates to wheg2At: puck'_is going to be.”

.. -‘
!

— Wayne Gretzsky

Background: www.exascale.org/iesp

INTERNATIONAL

EXASCALE ROADMAP1.0

SOFTWARE PROJECT

The International Exascale
Software Roadmap,

J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer

Jack Dongarra Alok Choudhary Sanjay Kale Matthias Mueller Bob Sugar
Pete Beckman Sudip Dosanjh Richard Kenway Wolfgang Nagel Shinji Sumimoto o L
Terry Moore Thom Dunning David Keyes Hiroshi Nakashima William Tang Appllcanons 25 (1)’ 2 O 1 1’ I SS N
Patrick Aerts Sandro Fiore Bill Kramer Michael E. Papka John Taylor
Giovanni Aloisio Al Geist Jesus Labarta Dan Reed Rajeev Thakur
Jean-Claude Andre Bill Gropp Alain Lichnewsky Mitsuhisa Sato Anne Trefethen 1 09 4- 3 4 2 O .
David Barkai Robert Harrison Thomas Lippert Ed Seidel Mateo Valero
Jean-Yves Berthou Mark Hereld Bob Lucas John Shalf Aad van der Steen
Taisuke Boku Michael Heroux Barney Maccabe David Skinner Jeffrey Vetter
Bertrand Braunschweig Adolfy Hoisie Satoshi Matsuoka Marc Snir Peg Williams
Franck Cappello Koh Hotta Paul Messina Thomas Sterling Robert Wisniewski
Barbara Chapman Yutaka Ishikawa Peter Michielse Rick Stevens Kathy Yelick
Xuebin Chi Fred Johnson Bernd Mohr Fred Streitz

[]
SPONSORS : TR Ie=9)| WRELO
& R - z
(= ‘.’:: 77
..................... INRIA
€DF A

o

e 1 . 5
=2 GENCI @ p. o muﬁ.ﬁr«% E
NVIDIA. RIKZN

R

Uptake from IESP meetings

 While obtaining the next 2 orders of performance, we
need 1-2 orders more Flop/s per Watt

— target: 50 Gigaflop/s/W, today less than 5 Gigaflop/s/W
* Draconian reduction required in power per flop and per
byte will make computing and moving data less reliable

— circuit elements will be smaller and subject to greater physical
noise per signal, with less space and time redundancy for
resilience in the hardware

— more errors must be caught and corrected in software

 Power may be cycled off and on or clocks slowed and
speeded

— based on compute schedules (user-specified or software
adaptive) and dynamic thermal monitoring

— makes per-node performance rate unreliable

Some exascale architecture themes

Clock rates cease to increase while arithmetic
capability continues to increase dramatically w/
concurrency consistent with Moore’s Law
Memory storage capacity diverges exponentially
below arithmetic capacity
Transmission capability (memory BW and network
BW) diverges exponentially below arithmetic
capability
Mean time between hardware interrupts shortens
Billions of S € £ ¥ of scientific software
worldwide hangs in the balance until better
algorithms arrive to span the architectural gap

Main challenge going forward for BSP

* Almost all “good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., require frequent synchronizing

global communication

— inner products, norms, and fresh global residuals are
“addictive” idioms

— tends to hurt efficiency beyond 100,000 processors

— can be fragile for smaller concurrency, as well, due to
algorithmic load imbalance, hardware performance variation,
etc.

* Concurrency is heading into the billions of cores

— already 3 million on the most powerful system today

Bad news/good news (1) */

 One will have to explicitly control more

of the data motion

e carries the highest energy cost in the exascale
computational environment

* One finally will get the privilege of

controlling the vertical data motion

* horizontal data motion under control of users
already

* but vertical replication into caches and registers
was (until recently with GPUs) mainly scheduled
and laid out by hardware and runtime systemes,
mostly invisibly to users

Bad news/good news (2) */

e “Optimal” formulations and algorithms may
lead to poorly proportioned computations for

exascale hardware resource balances
* today’s “optimal” methods presume flops are
expensive and memory and memory bandwidth
are cheap
* Architecture may lure scientific and
engineering users into more arithmetically
intensive formulations than (mainly) PDEs

 tomorrow’s optimal methods will (by definition)
evolve to conserve whatever is expensive

Bad news/good news (3) i/

Fully hardware-reliable executions may be regarded
as too costly/synchronization-vulnerable
Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability

 developers will partition their data and their program

units into two sets

 asmall set that must be done reliably (with today’s standards
for memory checking and IEEE ECC)

 alarge set that can be done fast and unreliably, knowing the
errors can be either detected, or their effects rigorously
bounded

Examples already in direct and iterative linear

algebra
Anticipated by Von Neumann, 1956 (“Synthesis of
reliable organisms from unreliable components”)

Bad news/good news (4) {/

e Default use of (uniform) high precision in nodal bases on
dense grids may decrease, to save storage and bandwidth
* representation of a smooth function in a hierarchical basis or
on sparse grids requires fewer bits than storing its nodal

values, for equivalent accuracy

 we will have to compute and communicate “deltas”
between states rather than the full state quantities, as when
double precision was once expensive (e.g., iterative
correction in linear algebra)

 ageneralized “combining network” node or a smart memory
controller may remember the last address, but also the last
values, and forward just the deltas

 Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Bad news/good news (5)

* Fully deterministic algorithms may be regarded as too

synchronization-vulnerable
 rather than wait for missing data, we may predict it using

various means and continue

 we do this with increasing success in problems without
models (“big data”)

 should be fruitful in problems coming from continuous
models

 “apply machine learning to the simulation machine”

 Arich numerical analysis of algorithms that make use of

statistically inferred “missing” quantities may emerge

* future sensitivity to poor predictions can often be estimated

* numerical analysts will use statistics, signal processing, ML,
etc.

What will first “general purpose” exaflop/s
machines look like?

 Hardware: many potentially exciting paths beyond
today’s CMOS silicon-etched logic, but not
commercially at scale within the decade

* Software: many ideas for general-purpose and
domain-specific programming models beyond “MPI +
X", but not penetrating the mainstream CS&E
workforce for the next few years

— “X” is CUDA, OpenMP, OpenACC, OpenCL, etc., or MPI,
itself

The gap

. Algorithms must adapt to span the gulf

between demanding applications and austere
architectures

— full employment program for computational scientists and
engineers

— see, e.g., recent postdoc announcements from

» Berkeley (8) for Cori Project (Cray & Intel MIC)
e Oak Ridge (8) for CORAL Project (IBM & NVIDIA NVLink)
* IBM (10) for Data-Centric Systems initiative

for porting applications to emerging hybrid architectures

Philosophy of software investment

I. Hoteit M. Mai V. Bajic

F. Bisetti R. Samtaney

A. Fratalocchi

G. Schuster
Pl
- "

U. Schwingenschloegl

fﬂ ® A
T
TYY
rYYy
M a2

Applications Math & CS
drive CS enable

Required software

Model-related
Geometric modelers
Meshers
Discretizers

- Partitioners
_ Solvers / integrators
- Adaptivily systems

Random no. generators
Subgridscale physics
Uncertainty
guantification

Dynamic load balancing

Graphs and
combinatorial algs.

Compression

Development-related

Configuration systems
Source-to-source
translators

Compilers

Simulators

Messaging systems
Debuggers

Profilers

High-end computers come
with little of this stuff.
Most has to be

contributed by the user
community

Production-related

Dynamic resource
management
Dynamic performance
optimization
Authenticators

/O systems
Visualization systems
Workflow controllers
Frameworks

Data miners

Fault monitoring,
reporting, and
recovery

Optimal hierarchical algorithms
e At large scale, one must start with algorithms
with optimal asymptotic scaling, O(N logP N)
* Some optimal hierarchical algorithms
— Fast Fourier Transform (1960’s)
— Multigrid (1970’s)
— Fast Multipole (1980’s)
— Sparse Grids (1990’s)
— H matrices (2000’s)

“With great computational power comes great
algorithmic responsibility.” — Longfei Gao

Algorithmic agenda

e New formulations with

— greater arithmetic intensity (flops per byte moved into
and out of registers and upper cache)

. including assured accuracy with (adaptively) less floating-
point precision

— reduced synchronization and communication
. less frequent and/or less global
— greater SIMD-style thread concurrency for accelerators

— algorithmic resilience to various types of faults
e Quantification of trades between limited resources

* Plus all of the exciting analytical agendas that
exascale is meant to exploit

— “post-forward” problems: optimization, data
assimilation, parameter inversion, uncertainty
guantification, etc.

Last segment flashes sample “points of light” that

accomplish one or moré of these agendas
< DAG-based data flow for dense symmetric linear
algebra
GPU impleméntationsf dense symmetric linear
algebra b 2 e
Fast Multipole for PoiSson solves

_ Algebrajé Fast Multipole for variable coefficient
problems .
Nonlinear preconditioning for Newton’s method
New programming paradigms for PDE codes

NVIDIA. —_— -

GPU " THE SUPERCOMPUTER COMPANY

RESEARCH CENTER OF EXCELLENCE
CENTER ol Paraliol Computnn Cant

Motivation

 Dominant use of wall-clock time at supercomputer
centers goes to:

— Poisson and other elliptic solves in molecular
dynamics, DFT, CFD, E&M, porous media, etc.

— Linear algebra on dense Hermitian matrices in
Schroedinger, covariance, reduced Hessians, etc.

—1/0®
* These first two are the major thrusts of the ECRC at

KAUST

— And also initiatives like FastMATH for the US DOE,
ExaSolvers, ExaDune, etc., for the German DFG, etc.

DAG-based data flow tile algorithms
for dense finear algebra

<> Reduce synchrony
<> Increase concurrency e

.
.
»

Reducing over-ordering and synchronization
through dataflow: generalized eigensolver

Ax = ABx
Operation Explanation LAPACK routine name
Q@ B=LxL" Cholesky factorization POTRF
©@ C=L"1xAxLT application of triangular factors SYGST
or HEGST

© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
QO Tx=Xx QR iteration STERF

) D

o D

@

© @

© @

® ©

S @

© ©

© ©

D D

D @D

ne
r?f .
M aic/o H. Ltaief (KAUST)

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

 Diagram shows a
dataflow ordering of the
steps of a 4x4 symmetric
generalized eigensolver

e Nodes are tasks, color-
coded by type, and
edges are data
dependencies

« Time s vertically
downward

* Wideis good; short is
good

CRCNCRCNCRCNONCRCRORCRCNCNCRCRCRCRCRCRCNCHCRORG

#\c/o H. Ltaief (KAUST)

GPU implementations of
dense linear algebra ®

< Increase SIMD-style thread concurrency
< overcome memory handwidth limitations of the
matrix-vector multiply,'y =.0a Ax+py
< coalesced memory accesses
. » < double’buffering * |
<> polyalgorithmic approach based on block size

.

e

80

70

60

8 Gflop/s &

30

20

* Highly optimized GEMV/SYMV kernels
* NVIDIA has adopted for its CUBLAS 6.0 library ™

New linear algebra software, KAUST’s GPU
BLAS, now in NVIDIA’s CUBLAS

DSYMV-LOWER Performance on K20c (ECC OFF)

| cublas-5.5(slow) _ . _

kblas-1.0 _
magmablas-1.4.0 __
cublas-5.5(fast) __
cula-r17 ___

2000 4000 6000 8000 70000 12000
Matrix Dimension

16

20

0|

20

20 |

0L

20

o

1 gpu: kblas-1.0
1 gpu: magmablas-1.4.0 _
2 gpu: kblas-1.0
2 gpu: magmablas-1.4.0
3 gpu: kblas-1.0
3 gpu: magmablas-1.4.0 _ _ _
4 gpu: kblas-1.0 ____
4 gpu: magmablas-1.4.0 _ _ _
5 gpu: kblas-1.0
5 gpu: magmablas-1.4.0
6 gpu: kblas-1.0 ___
6 gpu: magmablas-1.4.0 _ _ _
7 gpu: kblas-1.0
7 gpu: magmablas-1.4.0 _ _7/
8 gpu: kblas-1.0
8 gpu: magmablas-1.4.0 _/

ofm =
7

DSYMV-LOWER Performance on K20c¢ cluster

i
10000

c/o A. Abdelfattah (UTenn ICL, KAUST)

76000 20000 25000 30000
Matrix Dimension

70000

48000

Fast Multipole for Poisson solves

-

<~ Increase arithmetic intensity
<> Reduce synchrony
< Increase concurrency

Arithmetic intensity of numerical kernels

2048

— Intel Sandy Bridge
— AMD Abu Dhabi /
_ 10247 —|BM BG/Q
—Fujitsu FX10

| —NVIDIA Kepler
Intel Xeon Phi

(&)
-
N

64

Double precision performance (Gflop/s
0 N
N oo

>
FMM M2L (Spherical)

FMM M2L (Cartesian)

8

116 1/8 1 256

.PS/O orders of magnitude variation

é/ c/o R. Yokota (TiTech, KAUS

e

FMM as preconditioner

FMM is a solver for free-space problems for
which one has a Green’s function

For finite boundaries, FMM combines with
BEM

FMM and BEM have controllable truncation
accuracies; can precondition other, different
discretizations of the same PDE

Can be regarded as a precondltloner for
“nearby” problems, e.g., 'V~ for

V-1+e(x))V

FMM/BEM preconditioning of
FEM-discretized Poisson accelerated by CG

10° , , .

: : =— FMM (e=10"9)
FMM (e=10"
: : ——+— FMM (e=107%)
1003::"1"""""":" R EEREPREPT PP AMG |
|y, : : — 85— GMG
\ : : Inc Chol

Residual
o%

107 -------

| R

10°®

o = 1;0 1;5 20
. N Iterations

N

- J c/o H. Ibeid (KAUST)

AV

FMM/BEM preconditioning of
FEM-discretized Poisson: serial scaling

10°

~—PCSelUp(FMM)] .
~-PCAPDIY(FMM) | ©
-+-PCSetUp(AMG) |} | i1iti

|o-PcApplyamG) | T e
R R R T

time [s]

B RS

oL i
10°

- | clo H. Ibeid (KAUST)

FMM vs AMG preconditioning:
strong scaling on Stampede*

time [s]

10° 10 10° 10
Number of cores

-v'f'*“i’;}?ﬁ.lGM dofs FEM Poisson problem, Dirichlet BCs via BEM (cost included)

_ | cloH. Ibeid (KAUST)

Algebraic Fast Multipole for
variable coefficient problems

<> All the benefits of Fast Multipole

plus e

‘<> Make Fast Multipole less*fragile

Is there an algebraic FMM?

* Consider the H? hierarchical matrix method of
Hackbusch, et al.

......

......

* Off diagonal blocks A; = U; S, V can have low rank,
based on an ”admi55|b|I|ty condmon |

* Bases can be hierarchically nested K

ooooo

— U, for columns, V; for rows

o |

. 4,, ' c/lo G. Turkiyyah (KAUST)

2

Is there an algebraic FMM?

One needs to store the unreducible diagonal blocks, A;

For the entire rest of the matrix, first the S;;, the U; and
V; at the finest level

Then the E; (column basis conversion) and F; (row basis
conversion) blocks at each level

Two stage compression procedure: SVD each block,
then convert to common bases

.....

1T

‘‘‘‘‘

.....

.....

,,,,

.....

.....

.....

....

.....

B i S S S

'\;,/c/o G. Turkiyyah (KAUST)

“Algebraic Fast Multipole” (AFM)

®* (Can we cast general matrix operations (add, multiply,
invert, etc.) in terms of the fast multipole recursive
“tree-based” data structure?

1 —T1

<?ﬁ\ =
Nl |

* Yes, after compressing the matrix in H? form
®* presumes hierarchical low rank structure

®* may offer breakthrough in application performance
®* See Supercomput. Front. Innov. 1:62-83 (2014)

e

-

;L.’:/c/o G. Turkiyyah (KAUST)

Fast matrix-vector multiply, y = Ax

() (o) e 5 g s

(i.3)eD (i,5)€L

I
(i,5)eD i€ (i,5)€L Upsweep
Dense mat-vecs ;
operations N Coupling phase -
Downsweep

cerrrrrrrrrrr el I
CErTr o r P PP P TP i 7l T

-4 c/o W. Bukharam (KAUST)
il

Fast matrix-vector multiply, y = Ax

250

200

w GPU Sustained BW

150
= Streaming HICMA+KBLAS

—#— HICMA+KBLAS

100
—l— HiICMA+CUSPARSE

w CPU Sustained BW

50

—4— HICMA+MKL

-4 c/o W. Bukharam (KAUST)

Nonlinear preconditioning
for Newton’s method

<> Reduce synchrony in frequency and scope

Implemented in PETSc, as “ASPIN”

Key idea

Finding the solution u* by solving an equivalent nonlinear system

Fu*)=0& F(u")=0

using Inexact Newton with Backtracking

() How to construct the equivalent nonlinear system?
Y4 .
Fo. (u):0, i=1....N
i \ N
A =3 Y=o
1=1 =1
Assumption

F'(u) is continuous in a neighborhood D of the exact solution u*,

and the matrix F’(u*) is nonsingular.

Theorem

(Cai and Keyes, 2002). F(u) and F(u) are equivalent in the sense
that they have the same solution in a neighborhood of u* in D.

c/o L. Liu (KAUST)

S

Nonlinear iterations
=

On 2D slice from
SPE10 reservoir

' Newton convergence

A M

—+— ASPIN
—<=—INB

1 1 1
50 100 150
Time (days)

1 1
200 250 300

Other examples being developed at the
Extreme Computing Research Center at KAUST

* ACR, a new spin on 45-year-old cyclic reduction that recursively
uses ‘H matrices on Schur complements to reduce O(N?)
complexity to O(N log?N)

 BDDC, a preconditioner well suited for high-contrast elliptic

problems that trades lots of local flops for low iteration count,
now in PETSc

e QDWH-SVD, a 2-year-old SVD algorithm that performs more flops
but generates essentially arbitrary amounts of dynamically
schedulable concurrency, and beats state-of-the-art on GPUs

e MWD, a multicore wavefront diamond-tiling stencil evaluation

library that reduces memory bandwidth pressure on multicore
processors

How will PDE computations adapt?

Programming model will still be dominantly message-
passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

Load-balanced blocks, scheduled today with nested
loop structures will be separated into critical and
non-critical parts

Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or
runtimes

— e.g., ADLB, Charm++, Quark, StarPU, OmpSs, Parallex, Argo
Noncritical parts will be made available for NUMA-
aware work-stealing in economically sized chunks

Adaptation to
asynchronous programming styles

e To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming

— create separate threads for logically separate tasks,
whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

— join priority threads in a directed acyclic graph
(DAG), a task graph showing the flow of input

dependencies; fill idleness with noncritical work or
steal work

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

e Can write code in styles that do not require artifactual
synchronization

e Critical path of a nonlinear implicit PDE solve is

essentially
... lin_solve, bound_step, update; lin_solve, bound_step, update ...

* However, we often insert into this path things that
could be done less synchronously, because we have
limited language expressiveness

— Jacobian and preconditioner refresh
— convergence testing

— algorithmic parameter adaptation

— 1/0, compression

— visualization, data mining

Trends according to Pete Beckman, Argonne

Trending Up

Trending Down

Asynchrony, Latency Hiding

Block synchronous

Over Decomp & Load Balancing

Static partitioning per core

Massive Parallelism

Countable parallelism

Reduced RAM per Flop

Whole-socket shared memory

Software-managed memory

Simple NUMA

Expensive Data Movement

Expensive flops

Fault / Resilience Strategies

Pure checkpoint/restart

Low BW to Storage, in-situ analysis

Save all

c/o P. Beckman (Argonne)

Algorithmic trends

Trending Up

Trending Down

User-controlled data replication

System-controlled data replication

User-controlled error handling

System-controlled error handling

Adaptive variable precision

Default high precision

Computing with “deltas”

Computing directly with Qol

High order discretizations

Low order discretizations

Exploitation of low rank

Default full rank

An algorithmic theme: defeat the “curses” of dimensionality and
multiple scales with the “blessings” of continuity and low rank

alllasc £llall a=ala

Shaheen II <

KAUST Supercomputmg Lab

F

L) P
_ - « =0 i
: — _. -
i -— - .
L S
_' iy - A
- mang . ’ .
I
.
'!
L : 1 |
b) T 1 g
PR -
& »A’..) - o ey
LYY

ShaheenIISpecs

- 36 cahinets of Cray XC40 with Intel Haswell 2.3 Ghz with 16 cores
- 128 GB of RAM per node

- Number of nodes: 6192

- Number of cores: 198144

- Peak Performance: 7.3 PFlops/s

- LINPACK : 5.6 PFlops/s

- 2.8 MW at peak

- 11.4 PB of Parallel File System

- 1/0 throughput: over 500 GB/s

- Burst Buffer capacity: 1.5 TB

- Burst Buffer throughput: over 1.2 TB/s

“Quality
software
renormalizes
the difficulty
of doing
computation.’

)

— Peter Lax

(.

Thank you

B e -] [e in
5 AT B <ot o, v ot o [T g =

david.keyes@kaust.edu.sa

