

Computational Mesoscale Materials Problems

Dmitry Karpeyev

CI: UChicago & Argonne

Xujun Zhao, Xikai Jiang, Hong Zhang: MSD & MCS Argonne

with collaborators

Hanqi Guo, Carolyn Phillips, Todd Munson, Tom Peterka, MCS Argor

Igor Aranson, George Crabtree, Andreas Glatz, Olle Heinonen, Ivan Sadovskyy, Alex Koshelev: MSD Argonne

Serge Nakhmanson, John Mangeri: U.Conn; Daniel Massatt, U. Minn.

the de Pablo Lab, IME U.Chicago

and many others!

Discrete-continuum models of mesoscale phenomena

- Continuum and continuum-particle methods
- Methods/code development:
 - High performance simulation
 - Optimization/sensitivity
 - Visualization

Soft matter: Institute for Molecular Engineering

Translocation of DNA through nanochannels/nanoslits

- Multiphysics
 - Continuum:
 - Electrostatics
 - Hydrodynamics (Stokes)
 - Counter-ions drift-diffusion (Nernst-Planck)

(A

- Discrete:
 - Excluded volume (Lennard-Jones)
 - Nonlinear spring
- Continuum-discrete:
 - Capture singular charges/forces
- "Geometry"
 - Separation of spatial scales
 - "Irregular" boundary
- Outer-loop
 - Long-time noise-driven evolution
 - Shape optimization

Resolving point singularities

- GGEM: General Geometry Ewald-like Method
 - O(N) via alpha tuning
 - PRL 98, 140602 (2007), J. Hernandez-Ortiz, J. de Pablo, M. Graham
 - Serial workhorse of particle simulations
 - Slow: weeks to months for physically relevant runs
- Parallelization based on PETSc/libMesh (Xujun Zhao)
 - Particle-particle computation may be suitable for GPU/MIC

$$-\nu\Delta u + \nabla p = \sum_{i} f_i \delta(x - x_i), \quad \nabla \cdot u = 0, \quad u|_{\Gamma} = \overline{u}$$

$$\delta(x - x_i) = g_{\alpha}(x - x_i) + (\underbrace{\delta(x - x_i) - g_{\alpha}(x - x_i)}_{\hat{\delta}_{\alpha}(x - x_i)})$$

$$(-x_i)$$
) $-\nu\Delta\hat{G}_{\alpha} + \nabla\hat{P}_{\alpha} = \sum_i f_i\hat{\delta}_{\alpha}(x-x_i)$

$$-\nu\Delta u_l + \nabla p_l = \sum_i f_i g_\alpha(x - x_i), \quad \nabla u_l = 0, \quad u_l|_{\Gamma} = \overline{u} - \hat{u}|_{\Gamma}$$

$$G_{\alpha}(x) = \frac{1}{8\pi\nu} \left(I - \frac{xx^{T}}{r} \right) \frac{1}{r} \times \underbrace{\operatorname{erfc}(\alpha r)}_{\operatorname{erfcx}(\alpha r)e^{-\alpha^{2}r^{2}}} - \frac{1}{8\pi\nu} \left(I + \frac{xx^{T}}{r} \right) \frac{2\alpha}{\pi^{1/2}} e^{-\alpha^{2}r^{2}}$$

$$u_s(x) = \sum_i G_\alpha(x - x_i) f_i$$

 $g_{\alpha}(x) = \frac{\alpha^3}{\pi^{3/2}} e^{-\alpha^2 r^2} \left(\frac{5}{2} - \alpha^2 r^2\right)$

Particles-mesh

Preconditioned Stokes Solver

Optimal FieldSplit configuration

	Direct Solver	Iterative Solver							
KSP	Super_LU (dist)	GMF	RES	TFO	MR	GMRES			
PC		ASM		ASM		FIELDSPLIT(with user PC)			
Sub PC		ILU	ASM	ILU	ASM	multiplicative	Schur Complement		
lter #		377	377	219	219	56	43		
time	2695.8s	125.8s	130.8	127.8	131.5	98.6	87.1s		

J

- > System size : 100 x 20 x 100 micrometers;
- Mesh: 50 x 10 x 50
- Element: Q2-Q1 mixed element
- Total DOF: 671,274
- Relative tol: 1E-9

$$= \begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & -B^T A^{-1} B \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

Optimal FieldSplit configuration $J = \begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & -B^T A^{-1} B \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$

- KSP(A):tol1, KSP_INNER(A): tol2,KSP(S):tol3
- Uses derivative-free optimization (POUNDERS) over tol1,tol2,tol3
 - Limit: **500** total evaluations (Stokes solves), **17 hours**
 - 212 points over 7 local optimization runs and 288 points randomly sampled over the domain.
 - time-to-evaluate the starting points for the 6 completed local optimization:
 - 282.6, 291.5, 276.0, 271.5, 288.5, 294.7
 - These are 6 best randomly sampled points, the corresponding minima had solve time
 - 235.2, 282.2, 271.3, 256.0, 286.8, 270.6
 - So the improvement percentages are
 - 16.8%, 3.2%, 1.7%, 5.7%, 0.6%, 8.2%, 0.4%

Mean evaluation times for the 288 sample points: 407.2. Minimum found is 42% better.

Discrete choice (e.g., replacing S by Mp) requires more work

Correlation matrix

- Very long-time simulation
- BdW by far most expensive
- Computed by Chebyshev approximation
- SLEPc spectral estimate, lagged
- Can we do better?
- Use Krylov space of M?
- H-matrix representation of M?

$$dx_{i} = u(x_{i}) + B_{ij}dW_{j}$$
$$u_{i} = M_{ij}f_{j}$$
$$M : f_{i} \to f(x) = \sum_{i} f_{i}\delta(x - x_{i}) \to \text{Stokes} \to u(x) \to u(x_{i})$$
$$B = \sqrt{k_{B}TM}$$

Future (nascent) directions

- Extended particles
- Singular interfaces/boundaries
 - forces
 - charges
- GGEM not always applicable:
 - Boundary integral operator/equation formulations
 - Accelerated by FMM
 - In parallel
 - Take advantage of accelerators (GPU, etc.)?
 - Same for particles?

Thermoelastic Contact

Contact: FieldSplit preconditioning

$$\mathbf{u}_{L} \quad \mathbf{u}_{S} \quad \mathbf{u}_{M} \quad \mathbf{u}_{R} \quad \lambda \\ \mathbf{u}_{S} \quad \begin{pmatrix} K_{LL} & K_{LS} & 0 & 0 & 0 \\ K_{SL} & K_{SS} & 0 & 0 & I \\ 0 & 0 & K_{MM} & K_{MR} & -I \\ 0 & 0 & K_{RM} & K_{RR} & 0 \\ 0 & I & -I & 0 & 0 \end{pmatrix} \begin{bmatrix} \delta \mathbf{u}_{L} \\ \delta \mathbf{u}_{S} \\ \delta \mathbf{u}_{M} \\ \delta \lambda \end{bmatrix} = \\ \begin{bmatrix} \mathbf{f}_{L} - K_{LL} \mathbf{u}_{L}^{0} & -K_{LS} \mathbf{u}_{S}^{0} \\ \mathbf{f}_{S} - K_{SL} \mathbf{u}_{L}^{0} & -K_{SS} \mathbf{u}_{S}^{0} \\ \mathbf{f}_{M} - K_{MM} \mathbf{u}_{M}^{0} - K_{MR} \mathbf{u}_{R}^{0} + \lambda^{0} \\ \mathbf{f}_{R} - K_{RM} \mathbf{u}_{M}^{0} - K_{RR} \mathbf{u}_{R}^{0} \\ \mathbf{x}_{M} - \mathbf{x}_{S} + (\mathbf{u}_{M}^{0} - \mathbf{u}_{S}^{0}) \end{bmatrix}$$

$$f(x) + \lambda^T B(x) = 0$$

$$0 \le \lambda \perp g(x) \ge 0$$

$$B(x) = \nabla g(x)$$

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix}$$

Contact: FieldSplit preconditioning

	λ	\mathbf{u}_S		\mathbf{u}_L	\mathbf{u}_M	\mathbf{u}_R	
\mathbf{u}_S	$\left(I \right)$	K_{SS}	÷	K_{SL}	0	0)	$\int \delta \lambda$
λ	0	Ι	÷	0	-I	0	$\delta \mathbf{u}_S$
•••							
\mathbf{u}_L	0	K_{LS}	÷	K_{LL}	0	0	$\delta \mathbf{u}_L \ \delta \mathbf{u}_M$
\mathbf{u}_M	-I	0	÷	0	K_{MM}	K_{MR}	$\delta \mathbf{u}_R$
\mathbf{u}_R	$\int 0$	0	÷	0	K_{RM}	K_{RR} /	

 $\frac{A}{B^T}$

- Primal reduced system
- Also phasefield models (volume fraction constraint)
- On-going work with Todd Munson, Jason Sarich, Fande Kong

	λ	\mathbf{u}_S	:	\mathbf{u}_L	\mathbf{u}_M	\mathbf{u}_R	
11	(I)	K_{SS}	÷	K_{SL}	0	0	$\int \delta \lambda$
$rac{\mathbf{u}_S}{\lambda}$	0	Ι	÷	0	-I	0	$\delta \mathbf{u}_S$
							δ117
\mathbf{u}_L	0	0	÷	K_{LL}	K_{LS}	0	$\delta \mathbf{u}_{M}$
\mathbf{u}_M	0	0	÷	K_{SL}	$K_{MM} + K_{SS}$	K_{MR}	$\delta \mathbf{u}_R$
\mathbf{u}_R	\setminus_0	0	÷	0	K_{RM}	K_{RR}	

Contact: FieldSplit preconditioning

 $\left[\begin{array}{c} \delta \lambda \end{array} \right]$

$$\lambda \quad \mathbf{u}_S \quad \mathbf{u}_L \quad \mathbf{u}_M \quad \mathbf{u}_R$$
$$\mathbf{u}_S \quad \left(\begin{array}{cccc} I & \vdots & K_{SS} & K_{SL} & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{array} \right)$$

 λ \mathbf{u}_S \mathbf{u}_L \mathbf{u}_M \mathbf{u}_R

 $\mathbf{u}_{S} \quad \begin{pmatrix} I & \vdots & K_{SS} & K_{SL} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \vdots & I & 0 & -I & 0 \\ 0 & \vdots & K_{LS} & K_{LL} & 0 & 0 \\ 0 & \vdots & K_{SS} & K_{SL} & K_{MM} & K_{MR} \\ 0 & \vdots & 0 & 0 & K_{RM} & K_{RR} \end{pmatrix} \begin{bmatrix} \delta \lambda \\ \vdots \\ \delta \mathbf{u}_{S} \\ \delta \mathbf{u}_{L} \\ \delta \mathbf{u}_{M} \\ \delta \mathbf{u}_{R} \end{bmatrix}$ \mathbf{u}_{R}

- Preconditioner?
- PCASM is remarkably robust
- Limited to small subdomains

PCGASM

- Multirank subdomains
- Hierarchical partitioning
- Multirank MatIncreaseOverlap()
 - On-going work with Fande Kong

Geometric multigrid support for libMesh

Phasefield crystal

- Phasefield Crystal (PFC) is used in problems where atomic effects are needed, but on a larger time scale, typically microseconds.
- PFC is a type of Density Functional Theory, which requires minimizing the energy functional:

$$\frac{\beta \triangle F}{\rho_0} = \int dr ([1 + n(r)] \ln[1 + n(r)] - n(r)) \\ - \frac{\rho_0}{2} \int \int dr_1 dr_2 n(r_1) c^{(2)} (|r_1 - r_2|) n(r_2)$$

INL LDRD: M. Tonks, Y. Zhang U.Michigan: K. Thornton's group D. Massatt: 2014 Argonne Givens Fellow

- The Fourier Transform of $c^{(2)}$ can be approximated by a Rational Function Fit, $\rho_0 \hat{c}_{RFF}^{(2)} = \sum_{j=1}^m \left[\frac{A_j}{k^2 + \alpha_j} + \frac{A_j^*}{k^2 + \alpha_j^*}\right]$
- Taking the inverse Fourier Transform, one finds:

$$\rho_0 \int c^{(2)}(|r_1 - r_2|)n(r_2)dr_2 = \sum_j [L_j(r) + L_j^*(r)]$$

Where L_j defined to be the solution to $-\triangle L_j(r) + \alpha_j L_j(r) = A_j n(r)$, and $-\triangle L_j^*(r) + \alpha_j^* L_j^*(r) = A_j^* n(r)$.

Helmholtz Equation

$$-\triangle u + \gamma u = f$$
$$A^h u^h = f^h$$

Difficulties of Solving Helmholtz

- GMRES Block Jacobi or Additive Schwarz Method (ASM) preconditioning have poor convergence rates
- Geometric Multigrid diverges
- Algebraic Multigrid (AMG) using Hypre BoomerAMG has too expensive a setup time

[Luksch]

Helmholtz Eigenvalues

$$-\frac{d^2}{dx^2}u - k^2u = f, \qquad A^h u^h = f^h$$

Eigenvalues:
$$\lambda_i = \frac{4}{h^2} \sin^2\left(\frac{\pi i h}{2}\right) - k^2$$

- Prolongation generates error dependent on $(1 - \frac{\lambda^h}{\lambda^H})$, which makes eigenvalue sign changes problematic, so use GMRES as an outer iteration
- For π/5 ≤ kh ≤ 2 cos(πh/2), damped Jacobi smoothers have poor convergence, so use GMRES as a smoother on these intermediate levels.

		256 El	ements		512 Elements			
	k =	$= 4 \pi$	$k = 8 \pi$		$k=4~\pi$		k =	$= 8 \pi$
# levels	MG	GMRS	MG	GMRS	MG	GMRS	MG	GMRS
2	6	3	11	4	7	3	6	4
3	25	5	-	6	10	6	-	5
4	-	6	-	8	-	6	-	7
5	-	7	-	12	-	7	-	8
6	-	10	-	16	-	8	-	12
7	-	11	-	19	-	10	-	17
8	-	12	-	20	-	11	-	19
9	-	12	-	20	-	12	-	19
10					-	12	-	19

For the 3D, we compare using Multigrid with Damped Jacobi Smoothers to adding FGMRES as an outer iteration, and then adding GMRES smoothers to the appropriate intermediate and coarse levels.

Domain: $65 \times 65 \times 65$, 6 levels of Multigrid						
γ	MG	FGMRES outer	Elman smoothing			
0	5	4	N/A			
0606 +.746i	5	4	N/A			
-3.062 +.7919i	5	4	N/A			
-10 + i	5	4	4			
-25 + i	5	4	4			
-27 + i	6	5	4			
-28.5 + i	24	6	6			
-30 + i	-	6	6			
-50 + i	-	6	4			
-100 + i	-	14	8			
-200 + i	-	54	9			
-300 + i	-	391	11			
-400 + i	-	2000+	19			

Here we compare Elman's method to GMRES with ASM preconditioner, and to AMG.

Domain: $401 \times 401 \times 401$, 5 levels of Multigrid								
γ	FGMRES, PC Multigrid							
0606 +.746i	3	176s	555	2080s				
-3.239 +.472i	3	165s	595	2180s				
-1.568 + .601i	3	174s	556	2046s				
-1.734 + 1.074i	3	168s	574	2113s				
-3.062 + .7919i	3	181s	593	2169s				
-1.554 - 1.394i	3	170s	572	2087s				

Domain: $201 \times 201 \times 201$, 4 levels of Multigrid								
γ	BoomerAMG							
0606 +.746i	4	23s	4	357s				
-3.239 +.472i	4	24s	4	352s				
-1.568 + .601i	4	26s	4	362s				
-1.734 + 1.074i	4	27s	4	352s				
-3.062 + .7919i	4	28s	4	356s				
-1.554 - 1.394i	4	22s	4	351s				

Multigrid on AMR meshes

- Most interesting problems are not on uniform grids, so we move to unstructured grids.
- We are using Fast Adaptive Composite (FAC) grid refinement since it is simpler to setup in libMesh.
- The Multi-level Adaptive Technique (MLAT) is faster, but harder to implement.

High temperature type-II superconductors (zero electrical resistance material)

- Magnetic field penetrates the superconductor as quantized fluxes – magnetic vortices
- Vortices are flexible tubes that move, twist, repel, merge.
- Vortices determine *all* the electrodynamic responses of superconductors to electric and magnetic fields
- Vortex moving leads to power dissipation. Vortices can be pinning on non-superconducting defects

Magnetic vortices

Lossless energy transport in through superconducting cables

1st generation cable including insulation & cooling ↓

high-current transmission (in urban areas, here NY) ↓

← 2nd generation cable with illustration of vortex motion

compact generators & motors ↓

Other applications

LHC magnets

Maglev trains

ITER magnets

Diagnostic applications (MNR, MRI, ...)

Superconducting cables

- 5x power capacity of copper in same cross-sectional area
 - Relieve urban power bottleneck in cities and suburbs
- Cables operating at 77 K are technically ready
 - in-grid demonstrations at Copenhagen DK, Albany NY, Long Island NY, Columbus OH, New Orleans LA, Amsterdam

Barriers to grid penetration

- Reduce cost by factor 10 100 to compete with copper
- Demonstrate reliable multiyear operation

Ginzburg-Landau equations

Time dependent Ginzburg-Landau equations

$$\begin{split} \frac{\partial \Psi}{\partial t} &= -\frac{\delta \mathcal{F}_{\text{GL}}}{\delta \Psi^*} , \ \frac{\delta \mathcal{F}_{\text{GL}}}{\delta \mathbf{A}} = 0 \\ u(\partial_t + i\mu)\psi &= \epsilon(\mathbf{r})\psi - |\psi|^2\psi + \left(\nabla - i\mathbf{A}\right)^2\psi + \zeta(\mathbf{r},t) \\ \kappa^2\nabla \times (\nabla \times \mathbf{A}) &= \mathbf{J}_n + \mathbf{J}_s + \mathcal{I}, \end{split}$$

Total current $\mathbf{J} = \mathbf{J}_{s} + \mathbf{J}_{n}$

 $\mathbf{J} = \operatorname{Im} \left[\psi^* (\nabla - i\mathbf{A}) \psi \right] - (\nabla \mu + \partial_t \mathbf{A})$

Critical current $J_{\rm C}$ (maximal possible nondissipative current) is usually defined when voltage V is a small fraction (e.g., 1%) of the free flow value $V_{\rm ff}$.

Modelling of the inclusions

Vortex motion and dissipation

Pinning defects: nanodots, disorder, 2nd phases, dislocations, intergrowths, etc

Higher transition temperature \Rightarrow new materials

Higher currents \Rightarrow control "vortex matter"

Materials by design

Materials by design: Angular dependence

Materials by design: Strong non-additivity of defects

Columnar defects works like a shortcuts for magnetic vortices

Interpreting voltage curves

Identifying and visualizing vortices

Output of Ginzburg-Landau Simulation: complex scalar defined over mesh

Graph Analysis

- Disentangle vortices
- Remove tiny (unstable) loops

Se. 1

8 0 1 0

🤝 🔹 🎫 5% 😥 Sun 10:0

timestep=150

.

oscon-scidac.org

Coupled phasefield models of solid state materials

Energy Harvesters (with Seungbum Hong, ANL)

Core-Shell Nanoparticles: from Structure to Elastic Fields to Optical Properties

Core-Shell Nanoparticles: Structure

- Composite nanoparticles (metal-semiconductor, semiconductor-semiconductor)
- Here, ZnO/TiO₂ and Zn/ZnO ~25 nm outer diameter
- Potentially useful for photovoltaics (solar absorption)

Bandgap = $E_2 - E_1$ depends on strain

- What is the strain/stress in a core-shell nanoparticle (bulk and surface)?
- How do we relate the stress to the band gap and absorption spectrum?
- Can we tune the absorption spectrum by tuning the stress?

Stress Fields in Core-Shell Nanoparticles

Spherical Zn core (hexagonal) Monocrystalline ZnO shell (almost isotropic)

Spherical ZnO core (almost isotropic) Monocrystalline TiO₂ shell (rutile, tetragonal)

	🐔 Chrome File Edit V	iew History Bookmarks Window Help 🗔 🕼 🖏 🖨 🌢 📥 d 🌲 💬 😤 🐗 💷 100% 🗷	} Thu Jan 8 12:14 Q 🔚
Mr.	000/@\@\ @ \ @ \ @	🖸 🔢 😝 🚳 🏟 🍙 🕼 խ 🛄 M Parallewille x 🗖 emanter-Cai x 🗖 Parallewille x 🗖 ellamer-Dvi x 🗖 emanter-Cai x 🗖 ellamer-D	W X di Take a serve X D R
ionna-haften to-khda	← → C A https://demo.e	matter.org	Q. 😭 🔳
	Share to Google + ProxyIt1	🗹 Gmail 🔛 eMatter 🔛 AWS 🔛 Chef 🔛 Mac 🔛 Unix 🔛 git 🔛 MODSE/IbMesh 🔛 Python 🔛 Physics 🔛 Perl 🔛 Law 🔛 Foto 🔛 U.Chicago	House Apps >
	eMatter Globus Galaxies	Analyze Data Workflow Shared Data - Admin Help - User -	Using 2.7 Mill
 Hides software stack Multiple bardware recourses 	Tools 0	Name: Console:	CHiMaD demo runs 2.7 MB 0
• Multiple naruware resources	MATERIALS SCIENCE MOOSE Tools	S Output the results using the default settings for Console output	10: • Ø H
 Amazon 	 MOOSE 	CSV:	IIS_SM_GCC_newton_exm_exodu x.e
 Remote clusters <i>Mira</i> <i>GPU clusters</i> Integrate multiple tools Workflows Batch runs Parameter sweeps Sensitivity/UQ 	Ferret DATA TRANSFER Ciobus Data Transfer Browse and Get Data via Globus Online Transfer data from Globus Online to Globus Online Transfer data from Globus Online Transfer data from Globus Online Transfer data via Globus Online Transfer data from globus Online transfer. Upload File from your computer Directory Fath Dataset Creates a dataset that consists of a directory path. WORKELOWS All workflows	Output the scalar variable and postprocessors to a car file using the default CSV output. Excolus: Output the routs using the default settings for Excolus output. Interval: Image: The interval at which timesteps are output to the solution file. Output final: Force the final timestep to be output, regardless of output interval. Output linitial: Requere that be initial condition is output to the solution file. Output linitial: Requere that all intermediate steps (not initial or final) are output. Types Add mem Type:	9: Test0. Ferretondata ⊕ Ø 32 2: Exodusii 708 tyris format: Itemi, database: 7 Framework Information: MOOSE version: git commit 64cfacts on 2014- 12: 23 PETS: Version: 3.5.2 Carrent Time: Thu Jan 8 17:5414 2015 Executable Timestamp: Tue Jan 6 23: 08:14 2015 IECACY MCNES ENABLED: Computing EXECLIN @ 00 #The file 8: Test0. Ferretondata ⊕ Ø 32 2: Exodusii 7: Test0. Ferretondata ⊕ Ø 32 2: Exodusii 6: Test0_Ferretondata ⊕ Ø 32 2: Exodusii
• Postprocessing	Batch Submit		5: Test0_J erret_on_data 49: 0 11 2: Exodusti
Visualization		About MOOSE Framework The Multiphysics Object: Oriented Simulation Environment IMOOSE is a finite element, multiphysics framework primarily developed by Ildaho National LaboratoryI [http://www.ini.gov/] It provides a high-level interface to some of the most sophisticated [nonlinear solver technology[]http://www.mcs.ani.gov/petsc/] on the planet. MOOSE	O4: ♣ Ø № Test0.Ferret_on_data 2: Exodus!!
 Data management 		presents a straightforward API that aligns well with the real-world problems scientists and engineers need to tackle. Every detail about how an engineer interacts with MOOSE has been thought through from the installation process through running your simulation on state of the art supercomputers, the MOOSE system will accelerate your research.	03: ⊕ Ø 11 Test0_Ferret_on_data 2: Exodusii
Archive		Some of the capability at your fingertips: Fully-coupled. Fully-implicit multiphysics solver	2: mug # 40- 0 12
Share	44 1	Automatically constitut formest successful Children and C	II
	CatalogPoster.pptx *	Catalog.pptx * download (5) * moose.png * moose.put (2).e * moose.out (1).e	* # Show All X

- Publish
- Focus on configuration of kernels into a usable app