Current and Planned AMR Support in PETSc

Toby Isaac tisaac@ices.utexas.edu

The University of Chicago at Austin

June 18, 2015

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 1 / 19
(,,

motivation why adapt?

- Your non-adaptive calculations have reached the end of your resources (or the end of weak-scalability), and you want to push back.
- 2 You have a performance model that predicts it can help.

hp-FEM theory

```
predicts exponential convergence in N_{dof}:
```

- If we want zero error, it's worth it.
- If we have a nonzero tolerance, we must consider that hp systems require more resources per dof to solve than uniform, low-order systems. There is always a crossover.

_				
	Isaac I	U (hica	σn
	.ouuc j			5~,

wishlist

The latter requires the former. The former clearly lives in DM, but the latter doesn't fit anywhere at the moment:

- KSP, SNES, TS, TAO: the dimension is fixed.
- PetscQol_AMR (hypothetical): compile years of research into *a posteriori* methods.

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	3 / 19

Performance ← Generality

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 4 / 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 5 / 19
(or enledge)		54110 10, 1010 0 / 15

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 5	/ 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	5 / 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 5 / 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	5 / 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	5 / 19

Overview

The p4est library (p4est.org, lead developer Carsten Burstedde) provides scalable AMR routines via a *forest-of-octrees/quadtrees*:

- a unstructured hexahedral mesh ("the forest");
- where each hexahedron contains an arbitrarily refined octree;
- space-filling curve (SFC) orders elements;
- philosophy: as-simple-as-possible coarse mesh describes geometry, refinement captures all detail.

6 / 19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 7 / 19
-----------------------	--------------	----------------------

19

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 7
-----------------------	--------------	-----------------

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	7 / 19
-----------------------	--------------	---------------	--------

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	7 / 19
-----------------------	--------------	---------------	--------

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	8 / 19

wanting an interface to solvers

GMG+AMG

(Sundar et al., SC12), (Rudi et al., best poster SC14, Rudi et al., paper submitted SC15): geometric-algebraic multigrid for mantle convection built on p4est.

The implementation of GMG+AMG is very intrusive: it would've required more time than I had to adapt it to the thin-domain extension.

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 9 / 19

wanting extensibility, configurability

Scalability to 458K BG/Q cores of JUQUEEN from arXiv:1406.0089 (accepted SISC 2015).

AMR in PETSc

Support non-conforming cell interfaces in DMPlex. [done, in PETSc 3.6]

- 2 p4est-to-DMPlex conversion [done, in devel p4est, needs trivial update for PETSc 3.6]
- B DMForest interface, with p4est as first implementation. [stub]
 - Immediate solver support via backend conversion to DMPlex.
 - High-performance, native solver support if needed.
- 4 Runtime conversion of DMPlex to root forest (-plex_convert_to_forest -forest_type X):
 - user specifies coarse DMPlex that captures topology/geometry/X, has immediate access to all DMForest implementations.

			_
T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 11 / 1	9

Forest-of-DM

Design principle

Leaves on one level are roots on the next.

- All other aspects (coarse-mesh redundancy, partitioning, implicit vs. explicit tree) are implementation specifics.
- Other SFC approaches: Hilbert, Peano, Sierpinski
- Other external packages
- In particular, Forest-of-DA:
 - would allow a fair assessment of adaptivity overhead on domains other than boxes, i.e., compare locally-refined p4est to DA rather than to uniformly-refined p4est.

non-conforming cells in DMPlex

We want contributors to write contributions meant for conforming meshes that still work for non-conforming meshes.

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	13 / 19

which is the proper partition completion?

T Isaac I	(U Chie	ago)
1. ISaac		-ago

	· · ·		
T lease l		Chicag	<u>(</u>)
1. ISuuc		Cincag	U

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 16 / 19
(or emerge)	7.000 2.000	54HC 10, 2010 10 / 15

constraints

- Child points don't have global dofs (i.e., in global vectors), but they do have dofs in local vectors:
 - so that DMPlexVecGet/SetClosure() [get/set the closure of a function on a cell] always works.
- "Hanging-node" constraints must enforce $H^1/H^{\text{curl}}/H^{\text{div}}$ continuity, i.e., there is an interpolation operator I_a^c from *anchor* dofs to *constrained* dofs that must be applied.
 - Incorporated into DMGlobalToLocal()/DMLocalToGlobal(): constraints are always satisfied on local vectors/summed properly into global residuals.
 - DMPlexMatSetClosure() constructs the correct Jacobian.

	T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 17 / 1
--	-----------------------	--------------	----------------------

automatic constraints

computing I_a^c

Most non-conforming meshes (such as p4est meshes) come from "reference" refinement rules:

DMPlexSetReferenceTree(...):

- (PetscFE) Hanging constraints computed on the reference refinement, copied into I_a^c (works even for curvilinear meshes).
- Structured anisotropic refinement fits in this framework as well.

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015	18 / 19

summary & current work

DMForest will be a bridge from the successful, scalable p4est library to an extensible structured AMR interface:

- Increase the availability of adaptivity to non-experts.
- \blacksquare Develop (and fairly test) algorithms for $>10^6$ processes.
- DMPlex can now serve as a general format for (hierarchically) non-conforming meshes, as it already has for conforming meshes.
 - Finite element support is complete (as complete as PetscFE).
 - Finite volume and discontinuous Galerking methods are in development, but the interface can be improved to hide complexity from the user.

Thank you!

T. Isaac (U. Chicago)	AMR in PETSc	June 18, 2015 19 / 19