
How Not to Write
Software Libraries

William Gropp
www.cs.illinois.edu/~wgropp

2

Some Background

•  Why we couldn’t use numerical libraries for
PETSc.
♦  In Ronald F. Boisvert, editor, Proceedings of the IFIP

TC2/WG2.5 Working Conference on the Quality of
Numerical Software, Assessment and Enhancement,
pages 249–254. Chapman & Hall, 1997.

•  Exploiting existing software in libraries:
Successes, failures, and reasons why.
♦  In Michael Henderson, Christopher Anderson, and

Stephen L. Lyons, editors, Object Oriented Methods
for Interoperable Scientific and Engineering
Computing, pages 21–29. SIAM, 1999.

•  Much of this is unfortunately still true…

3

First, Why Write A Library?

• Promote a new algorithm, become
famous

• Solve one problem
♦ I.e., piece of my application

• Write what is needed to solve
some problems

• Whose problems?
♦ Yours and ?

4

Who is the Customer?

• The customer cannot be everyone!
♦ Failing to identify the customer is the

first (but still fatal) step toward
failure

• You should be one of the
customers
♦ Common failure mode: people who

don’t use their own product (you see
this often in reviews – “didn’t they try
this?!!”)

5

What Do They Want?

•  Few customers want a particular
algorithm. They want a solution.

•  Tradeoffs
♦ Convenience, simplicity, performance,

correctness, robustness,…
♦ BLAS (esp. levels 1 and 2 but even 3) use

character strings to select from related
operations (e.g., transpose an argument).

♦ Tradeoff: Fewer routines at the expense of
more overhead, which increases the
minimum size at which the routine performs
faster than simple user code

6

What Do They Need?

•  Classic misunderstanding: “Invert a
matrix”
♦ Need to find an approximate solution of a

linear (or more likely, non-linear) problem
•  More recent (and far more damaging to

computational science): “need POSIX I/O”
when no one needs POSIX I/O semantics
♦ Most applications only need simple single

(parallel) program read or write (not read and
write)

♦ A few need some sort of relaxed consistency
model

7

Five Ways to Fail

1. Nonportable code
♦  Unnecessary use of language extensions, invalid

assumptions about datatype size (int is not 32 bits).
Namespace pollution and poorly defined header files

2. Parallel code written for all processes only
(COMM_WORLD in MPI)
♦  MPI libraries that don’t use a private communication

context
3. Obscure or inappropriate data structures

♦  From the application’s view.
•  Block-cyclic may make sense for the algorithm writer

but not for the application developers
•  Even banded format is weird for users

8

Five Ways to Fail

4.  Slavish object-oriented design at the expense
of performance
♦  Closely related: Assumptions that the compilers can

produce fast code (faster than any programmer)
♦  We know this is not true, especially for vectorization
♦  Also related – “warning-free compiles” even when the

warning is incorrect
5.  Global state, lack of modularity and

assumptions about usage model
♦  E.g., an FFT library that computes state on the first call

and reuses that on subsequent calls – good if all FFTs
are the same size; disaster if they alternate between
two sizes (not a hypothetical case L).

9

Comments on
Five Ways to Fail

• Still true 20 years later
♦ Improvement in some areas, little in

others
♦ Compilers are much better, but still

far from optimal (and vectorization
just makes the situation worse)

♦ Slavish object oriented design has
become a chronic problem in
computer science (see the ACA
website disaster)

10

Five Ways to (improve the
chances that you) Succeed

1.  Respond to questions and bug reports
2.  Provide documentation and examples
3.  Pay attention to performance

♦ And know what good performance is; don’t
assume that you and your compiler will
provide it because you followed some rules

4.  Don’t confuse orthogonality of concepts
with orthogonality of interface

5.  Pay attention to the learning curve
♦ Tutorials, “bring your own code” workshops,

books

11

Four Issues to Remember in
Building Components

•  Portability
♦  Pick a standard an enforce it. For C/C++, that is one of

the ISO standards, not extensions (such as GNU), no
matter how useful

♦  Exception: If there is a significant impact on
functionality or performance, and there is a fallback,
make the use of extensions possible. Atomic memory
operations are one such example; some vectorization
extensions are another

•  Avoidance of Global State
♦  Harder than it sounds, and unavoidable for some (I/O

to stderr, for example)
•  Interoperability and Composibility
•  Documentation, Examples, and Support

♦  See above

12

Ten Mistakes Still Being
Made

1.  Ignorance of standards
2.  Requirement to be the master
3.  Printing error messages and/or exiting from

the program
4.  Makefiles for a particular system
5.  No (or very poor) documentation
6.  No testing
7.  No examples
8.  Name space pollution
9.  Algorithm-oriented library
10. Requiring that all processors/cores/what have

you be used

13

Ten Mistakes Still Being
Made

•  Ignorance of standards
♦ Compounded by sloppiness about version

(C99? C11? Fortran 2008? Fortran 2008 +
unofficial but “blessed” extension for MPI?)

♦ No excuse; most compilers do a good if not
perfect job at flagging invalid statements

•  Requirement to be the master (i.e., in
charge)
♦ There can only be one master. If you insist

on being it, you better be prepared to do
everything

14

Ten Mistakes Still Being
Made

• Printing error messages and/or
exiting from the program
♦ Nice as an option, fatal as a

requirement
• Makefiles for a particular system

♦ How can this still be happening?
♦ Icky build systems are no excuse.

Live with it

15

Ten Mistakes Still Being
Made

•  No (or very poor) documentation
♦ Documentation and examples are essential

•  This is like writing a paper. Producing software without
documenting it is like proving a theorem without
writing the paper explaining the result. You won’t and
should not get any credit without the documentation.

♦ Automatic tools do not solve this. I’ve seen
doxygen generated so-called documentation
that was nearly useless (or maybe worse
than useless because it pretended to be
useful). That’s not doxygen’s fault – it’s the
fault of the developers for trying to avoid
writing documentation.

16

Ten Mistakes Still Being
Made

• No testing
♦ Like makefiles, how can we not have

learned? But still true far too often.
Everyone should require that
software, including all open source
software, publish at least their
coverage analysis, on a line-by-line
basis.

• No examples
♦ Really? And the equivalent of “hello

world” doesn’t count

17

Ten Mistakes Still Being
Made

•  Name space pollution
♦  Unix sets a terrible example here. Do not make the

same mistake
•  True story. Scientist wrote code involving binding

energies, and used “bind” as a routine name. But bind
is an obscure but critical network function in Unix (man
section 2), causing strange failures in the parallel
program.

♦  Modern languages addressing this, but middleware
developers still often sloppy

•  You can use nm to look at the symbols in your library.
Everything you define should be easily identified and
the namespace easily described. This check can (and
has been automated). Everyone should insist that a
report listing all global symbols be published.

18

Ten Mistakes Still Being
Made

•  Algorithm-oriented library
♦  Remember: Algorithms + Data Structures =

Programs, and many modern problems require
nontrivial data structures

♦  The library will need to fit into a larger context. How
hard have you made that on the user by making it
easy for the library developer?

•  Requiring that all processors/cores/what have
you be used
♦  Still a problem with some parallel programming

models (though most are trying to define teams)
♦  Still open problem: Negotiating resources between

components or programming systems

19

Common Themes

•  Much can be done with automation
♦ Compiler to check standard
♦ Symbol name checks
♦ Coverage analysis to check test coverage
♦ Code style conformance

•  All styles are compromises. Don’t argue about
the style, just pick one and use it.

♦ Documentation generation to handle
mechanics of docs
•  But documentation, like code, still needs to be

written (and rewarded)
♦ Autotuning and code generation tools for

performance

20

Common Themes

• Much can be done by insisting on
openness
♦ More than just open source code
♦ Publication of code quality

measurements, details of testing,
code style conformance and symbol
name checks

♦ Open buglists, issues
♦ “xfail” in tests must be reported

• I.e., 10 tests would have failed if we had
been honest enough to run them

21

Conclusion

• Writing good software is hard
• Let other people do it as much as

possible
•  If you do it, take pride in it

♦ Use tools to help you do it better
♦ Exploit the community to get

feedback, ideas, embarrassment
♦ Writing the code is the easy part

• Testing, documentation, tutorials,
papers, collaborations, …

