Simplifying Multiphysics Through
Application Composition

Derek Gaston

Idaho National Laboratory
MIT Computational Reactor Physics Group

Cody Permann, Derek Gaston, David Andrs,

John Peterson, Andrew Slaughter, Dmitry Karpeyey,
Rich Martineau

DRY

Don’'t Repeat Yourself!

Local Application

* Application of DRY within one application is obvious:
e Functions
» Object-oriented design
* Macros
* efc.
* DRY for really common activities?
 Libraries
* Native Language Support (i.e. threading support in C++11)

 What about leveraging multiple applications across research
groups and disciplines?

* Head in the sand?
* Development of “coupling” codes?

Finite-Element Reactor Fuel Simulation

Application Heat
redtiy Conduct.
Physics b Physics
hodules Mammoth SR
: : (Reactor Simulator)
MOOSE oly Mesh
Time Nonlinear Sparse Dense Message
Intearation Solvers Linear Alg. Linear Alg. Passing
liboMesh
PETSc
BLAS LAPACK

MPI

Modularity is Key

Software engineers tell us that data should only be accessed through
strict interfaces with code having good separation of responsibilities.

e Allows for “decoupling” of code
* Leads to more reuse and less bugs
They’ve never coded FEM!

 Shape functions, DoFs, Elements, QPs, Material Properties, Analytic
Functions, Global Integrals, Transferred Data and More are needed in
FEM assembly.

« Makes computational science codes brittle and hard to reuse
A consistent set of “modules” are needed that carry out common actions

These modules should be separated by interfaces

Actions

Auxiliary
Kernels

Auxiliary
Variables

BCs
Constraints
Dampers
DGKernels

DiracKernels

Executioners

Functions

GeomSearch

ICs

Indicators

Kernels

Markers

Materials

Mesh

MeshModfiers
MooseApps
MultiApps
Outputs
Oversampling
Postprocessors
Preconditioners
Predictors

Restart

MOOSE “Systems”

Splits

Timelntegrators

TimeSteppers
Transfers
UserObjects

Variables

Systems (cont.)

» Systems break apart responsibility

* No direct communication between Systems
e Everything flows through MOOSE interfaces

e Objects can be mixed and matched to achieve simulation goals
* They “operate in a vacuum”
* Incoming data can be changed dynamically

e Outputs can be manipulated (e.g. multiplication by r for cylindrical
coordinates)

- Objects from one Application are no different than those from another.

- An object, by itself, can be lifted from one Application and used by
another.

“endatoyonvection ' Kertiéel
Kernel(rika?-CEla ot Qs N
_pressure_gradient(coupledGradient(fdarcyspressures)),
_pressure_var(coupled("darcy_pressure")),

V-u=20
_permeability(getMaterialProperty<Real>(fpermeability®)),
_porosity(getMaterialProperty<Real>("porosity")),
_viscosity(getMaterialProperty<Real>("viscosijty")),
densﬂy(getMatenaIProperty<Real>ﬁ»:c:enS|ty I
_heat_capacity(getMaterialProperty eal>("h<ﬁPt c?pamty"))

{

} OT g

Real C - Ceu - VT —V - kVI =0
DarcyConvection::computeQpResidual()

{

RealVectorValue superficial_velocity = _porosity[_qp]*-(_permeability[_qgp]/
_viscosity[_gp])*_pressure_gradient[_qpl];

return _heat_capacity[_qgp] * superficial_velocity * _grad_u[_qp] * _test[_i][_ap];
}

Application

eE Fluid Flow S0lig
Conduction Mechanics

Burnup Cross Sections

Kernels
Reaction

Network
AuxKernels UserObjects
Velocity Velocity

Dirichlet \'JQ MSE Steady
BoundaryConditions

- - —

Porosity

J

Executioners

Flux Transient

Vacuum

O N (O I\

[Application

Conduction

Porosity

Velocity

Dirichlet

Neumann

Chemlca| Phase-field - - -
Reactions

Kernels

BoundaryConditions Executioners

Chemical
Database

Crystal
Orientation

Velocity

Steady

Transient

Adaptive

(Application

Heat Chemical Phase-field
Conduction Reactions

Chemical

B Ip
urnt (ﬁ Database
_ -) Crystal
Porosity Orientation

AuxKernels UserObjects

e MOOSE

BoundaryConditions Executioners .
ansient

Velocity Velocity

Dirichlet

Neumann

Robin Adaptive

(Application

Heat
Conduction

Burnup

Porosit

Dirichlet

Flux

Vacuum

Solid
Mechanics

Cross Sections

Reaction
Network

Aw UserObjects
Velocity

o MOOSE -

undaryConditions Executioners .
Transient

Adaptive

DRYP

Don’t Repeat Your Physics!

Application Composition

Enables reusable Applications

Two methods within the MOOSE System:

Static Registration:

* One Application links the other in

* Pros: “Make cascade”, seamless

* Cons: Inflexible

Dynamic Registration:

* At runtime an Application can pull in objects from another application
* Pros: Extremely flexible

* Cons: Build system doesn’t see links

MOOSE-App Makefile

Use the MOOSE submodule if it exists and MOOSE DIR is not set

MOOSE_SUBMODULE := $(CURDIR)/moose

ifneq ($(wildcard $(MOOSE_SUBMODULE)/framework/Makefile),)
MOOSE_DIR ?= $(MOOSE_SUBMODULE)

else
MOOSE_DIR ?= $(shell dirname "pwd)/moose

endif

framework

FRAMEWORK _DIR := $(MOOSE_DIR)/framework
include $(FRAMEWORK DIR)/build.mk

include $(FRAMEWORK DIR)/moose.mk

HURHHBHRBHAHRBHRHHBH R HBHRHHBHAHHE MODULES AH#HHHAHHBHAHHBHAHHBHABHAHRBHBHHBHBHH
ALL_ MODULES := vyes

include $(MOOSE_DIR)/modules/modules.mk

HHHRBHHBHHRBHHBHH R HH B HH R B HH B HH R B HH B HH R B HH B HH R HH R B HH R B H BB HH B HH R B H BB HH BB HHRHH BB

dep apps

APPLICATION_DIR = $(CURDIR)

APPLICATION_NAME = frog

BUILD EXEC = yes

DEP_APPS = $(shell $(FRAMEWORK DIR)/scripts/find _dep_apps.py $(APPLICATION_ NAME))

include $(FRAMEWORK DIR)/app.mk

Static Registration

Use the MOOSE submodule if it exists and MOOSE DIR is not set

MOOSE_SUBMODULE := $(CURDIR)/moose

ifneq ($(wildcard $(MOOSE_SUBMODULE)/framework/Makefile),)
MOOSE_DIR ?= $(MOOSE_SUBMODULE)

else
MOOSE_DIR ?= $(shell dirname "pwd)/moose

endif

framework

FRAMEWORK _DIR := $(MOOSE_DIR)/framework
include $(FRAMEWORK DIR)/build.mk

include $(FRAMEWORK DIR)/moose.mk

HEHBHBRHBHBRHB R RHHRB BB RH R REHRET MODULES #AHHBHBHHBHBRHBHBBHBHBBHBRBBHBRUBHIH
ALL_ MODULES := yes

include $(MOOSE _DIR)/modules/modules.mk
RHHHBHHBHHRBHHBHHRBHH B HH R B HH B HH R B HH B HH R B HH B HH R B HH B HH R B H R B HH R B H R B HH R HH R BHHRHHBHY

dep apps

BISON_DIR ?= $(CURDIR)/bison

APPLICATION DIR = $(BISON_DIR)

APPLICATION NAME = bison

include $(FRAMEWORK_DIR)/app.mk

APPLICATION DIR = $(CURDIR)

APPLICATION_ NAME = frog

BUILD EXEC = yes

DEP_APPS = $(shell $(FRAMEWORK DIR)/scripts/find_dep apps.py $(APPLICATION_NAME))

include $(FRAMEWORK DIR)/app.mk

Static Registration (cont.)

void
FrogApp: :registerObjects(Factory & factory)
{

BisonApp: :registerObjects(factory);

* All objects from the other application now available
 “make” will result in building all dependent applications

e Seamless for users

Dynamic Registration

* First: Add to the MOOSE_LIBRARY_PATH...
export MOOSE LIBRARY_PATH=$MOOSE_ LIBRARY_PATH:$HOME/projects/bison/lib

* Next: Add input file syntax to pull objects from the other Application

[Problem]

register objects from = 'BisonApp'

object names = 'CladMat FuelMat FissionHeating'
[]

* Note: The build system will NOT build dependent Apps

MultiApps

« Sometimes you want to reuse an entire
application:

Master
 Multiscale (in space or time) / \
e Loose coupling MultiApp 1 MultiApp 2
« Different meshes / \ /41\
Sub-a Sub-a Sub-a
« MultiApps allow you to run multiple = = -
MOOSE-based applications I I
simultaneously in Parallel MultiApp 3 MultiApp 4

e Transfers move data between the Main
App and SubApps

Sub-a Sub-a Sub-app § Sub-app
3-1 3-2 4-1 4-2

A “MooseApp” Is an object just like any
other in MOOSE

e Static or Dynamic registration allows
Immediate access to running another
MOOSE-based Application as a SubApp

Gaston, Derek R., et al. "Physics-based multiscale coupling for full core nuclear reactor simulation." Annals of Nuclear Energy (2015).

Mammoth Setup

[MultiApps] Neutronics Pipe Network
[./bison] MultiApp MultiApp
type = TransientMultiApp
app_type = BisonApp
positions file = positions RattleS,ake
input files = bison.1
output in_position = true
catch_up = true
max_catch _up steps = 32
Eau/A
[./relap]
type = TransientMultiApp

app_type = Relap/App
execute_on = timestep

RELAP-7

positions = '0 0 O

input files = relap-/.1

max_prc?cs_per_app = 4 Fuel Microstructure CRUD MultiApp
max_failures = 1000 MultiApp

sub_cycling = true
steady state tol = le-6
detect steady state = true
[257]
L]

Gaston, Derek R., et al. "Physics-based multiscale coupling for full core nuclear reactor simulation." Annals of Nuclear Energy (2015).

-4

MAMBA-BDM
p

>
-—
L
—
(an
o
-
{an
—
~

-
—
=
=

MARMOT
MARMOT
MARMOT

M MOOSE . Time = 0.1 Days m

RattleSyake RELAP-7 BISON

daho Natonal Loborclory

Finding Apps

« With all MOOSE-based Applications also being
libraries: how do we keep track of them?

idaholab / stork

Summary

Advances in computational science have lead to more code reuse over time:
 MPI, PETSc, libMesh, MOOSE and MANY others...

Data dependencies inherent to computational science can limit Application
reusability

Separating capabilities into modules with communication through interfaces
can decouple scientific code

Application composition can enable DRYP
« Static registration allows for seamless integration
 Dynamic registration is more flexible

By simplifying Application composition new areas of multiphysics can be
explored using MultiApps

Final Take Away: Software architecture can turn application developers into
unwitting library developers!

