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Motivation

A central question in scientific computing

How can we compute multiple solutions of PDEs?
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A central question for my talk

Why should we compute multiple solutions of PDEs?

Answer #1

Prediction.
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A central question for my talk

Why should we compute multiple solutions of PDEs?

F

F

A PDE with two unknown solutions.
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

F

F

Start from some initial guess.
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A central question for my talk

Why should we compute multiple solutions of PDEs?

F

F

F

We converge to one solution, our prediction.
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

F

FF

But nature has chosen another (unknown) solution!
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

The AIAA/NASA high lift prediction test case (Kamenetskiy et al., 2013).
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

We have encountered unexpected multiple solutions in both
simple and complex configurations in computational fluid
dynamics (CFD); this phenomenon is both extremely important
and not well understood. It has serious implications for the use
of CFD as a predictive tool.

xxxxxxxxxxxxxxxxxxxxx— Venkat Venkatakrishnan
xxxxxxxxxxxxxxxxxxxxxxx Computational Aerodynamic Optimization
xxxxxxxxxxxxxxxxxxxxxxx Boeing Research & Technology
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

Answer #2

Optimisation.
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Why should we compute multiple solutions of PDEs?
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By solving ∇J = 0, we can find a superset of the minima.
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

Answer #3

Applications.
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

J(u)

Scalable tracing of bifurcation diagrams.
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Motivation

A central question for my talk

Why should we compute multiple solutions of PDEs?

πpost(m)

Multimodal Bayesian inference.
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Deflation
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Deflation

The core idea

Deflation

Given

I a Fréchet differentiable residual F : V →W

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

I r̃ ∈ V , r̃ 6= r

construct a new nonlinear problem G : V → Z such that:

I (Preservation of solutions.) F(r̃) = 0 ⇐⇒ G(r̃) = 0.

I (Deflation property.) Newton’s method applied to G will never
converge to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
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Deflation

The core idea

Deflation

Given

I a Fréchet differentiable residual F : V →W

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

I r̃ ∈ V , r̃ 6= r

construct a new nonlinear problem G : V → Z such that:

I (Preservation of solutions.) F(r̃) = 0 ⇐⇒ G(r̃) = 0.

I (Deflation property.) Along any sequence converging to r, ||G||Z is
bounded away from 0.

Find more solutions, starting from the same initial guess.
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Deflation

Finding many solutions from the same guess

F

F

F

Starting setup
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Deflation

Finding many solutions from the same guess

F

F

F

F

Step I: Newton from initial guess
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Step II: deflate solution found
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Deflation

Finding many solutions from the same guess
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Step III: termination on nonconvergence
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)
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A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

For r ∈ V, u ∈ V \ {r}, let M(u; r) be an invertible linear operator.

M(u; r) : W → Z is a deflation operator if for any sequence ui
U−→ r

lim inf
i→∞

||M(ui; r)F(ui)||Z > 0.
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Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

For r ∈ V, u ∈ V \ {r}, let M(u; r) be an invertible linear operator.

M(u; r) : W → Z is a deflation operator if for any sequence ui
U−→ r

lim inf
i→∞

||M(ui; r)F(ui)||Z > 0.

Theorem (F., Birkisson, Funke 2014)

The following are deflation operators.

M(u; r) =
I

||u− r||

p
+ αI.
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Deflation

Prior work

Wilkinson (1963)

Deflation for polynomials, rounding error analysis

Brown and Gearhart (1971)

Generalisation to f : Rn → Rn

Levy and Gomez (1985)

Used deflation in the “tunnelling” method for global optimisation

This work

Generalisation to Banach spaces, shifting, applications, preconditioning
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Section 3

Analysis
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Analysis

Newton–Krylov

A Newton step

P−1
F JF (ui)δui = −P−1

F F (ui)

A deflated Newton step

P−1
G JG(ui)δui = −P−1

G G(ui)

A problem

JG is dense.
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Analysis

Preconditioning

Theorem (F., Birkisson, Funke, 2014).

Construct a PG such that

‖P−1
G JG − I‖ ≤ s(· · · )‖P−1

F JF − I‖

with s(· · · ) well-behaved away from previous solutions.

But ..

Good preconditioners don’t need to control ‖P−1
F JF − I‖.
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Analysis

Block-triangular factorisations

For example, if

JF =

[
A BT

C 0

]
then

P−1
F JF =

[
A−1 0

0 (CA−1BT )−1

] [
A BT

C 0

]

has three distinct eigenvalues (Murphy, Golub, Wathen, 2000).
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Analysis

A new bound

New theorem (F., 2015)

Suppose P−1
F JF is diagonalisable. Then P−1

G JG can be solved in no more
than twice as many Krylov iterations as P−1

F JF .

Theorem (F., 2015)

Let A be diagonalisable and B be rank-one. Then A+B has at most
twice as many distinct eigenvalues as A.

Theorem (F., 2015)

Let A be symmetric and B be nondefective rank-one. Then all but one of
the eigenvalues of A+B are interlaced with those of A.
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Analysis

Eigenvalues after deflation
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Applications

Section 4

Applications
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Applications Nonlinear PDEs

The Yamabe problem

Application: differential geometry (Erway & Holst, 2011).

The Yamabe equation

−8∇2u− 1

10
u+

1

r3
u5 = 0 in Ω,

u = 1 on ∂Ω.

Discretisation: P1 finite elements.
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Applications Nonlinear PDEs

Yamabe: solutions

Solutions found using deflation from u = 1

and negation.
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Applications Nonlinear PDEs

Yamabe: preconditioner performance

# of deflations average Krylov iterations per solve

0 15.2
1 17.1
2 15.1
3 16.9
4 11.2
5 12.4
6 10.9
7 15.5
8 13.9

Good preconditioner performance up to ∼2 billion dofs.
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Applications Continuation

Tracing bifurcation diagrams (classical)

J(u)

Starting solution
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Tracing bifurcation diagrams (classical)

J(u)

Step I: continuation
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Tracing bifurcation diagrams (classical)

J(u)

Step II: continuation
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Applications Continuation

Tracing bifurcation diagrams (classical)

J(u)

Step III: identify bifurcation point (tricky)
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Applications Continuation

Tracing bifurcation diagrams (classical)

J(u)

Step IV: compute eigenvectors (expensive) and switch (tricky)
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Applications Continuation

Tracing bifurcation diagrams (classical)

J(u)

Step V: continuation on branches
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Applications Continuation

Tracing bifurcation diagrams (deflation)

J(u)

Starting solution
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Applications Continuation

Tracing bifurcation diagrams (deflation)

J(u)

Step I: continuation
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Step III: deflate
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Applications Continuation

Tracing bifurcation diagrams (deflation)

J(u)

Step III+: solve deflated problem
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Applications Continuation

Tracing bifurcation diagrams (deflation)

J(u)

Step IV: continuation on branches
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Applications Continuation

Tracing bifurcation diagrams (deflation)

J(u)

Step IV: continuation on branches
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Applications Continuation

Hyperelastic buckling

Application: buckling of a column under loading.

Compressible neo-Hookean hyperelasticity

Define the potential energy

Π =

∫
Ω
ψ(u) dx−

∫
Ω
B · u dx−

∫
∂Ω
T · u ds.

Then
Π′(u; v) = 0 ∀ v ∈ V,

u0 = 0 on x = 0,

u0 = −load on x = L,

u1 = 0 on x = L.

Discretisation: [P1]2 finite elements.
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Applications Continuation

Hyperelastic buckling: some solutions

7/13 solutions of the problem for load = 0.3.
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Applications Continuation

Hyperelastic buckling: bifurcation diagram
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0.2

0.1
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0.3

0.4
u

1
(c

en
tr

e)
Bifurcation diagram for hyperelastic buckling of a column
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Applications Optimisation

Deflation vs. global optimisation

Global optimisation techniques

Computes global minima for problems of small dimension (∼ 10).

Deflation + local optimisation

Computes some minima for problems of arbitrary dimension.
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Applications Equality constraints

Equality-constrained optimisation problems

Multiple solutions of optimality conditions ↔ multiple candidate optima

PDE-constrained optimisation problem

minimise
y∈H1

0 , u∈L2

1

2

∫
Ω

(y − yA)2

(y − yB)2

+
β

2

∫
Ω
u2

subject to −∇2y = u in Ω.
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Equality-constrained optimisation problems

Multiple solutions of optimality conditions ↔ multiple candidate optima

PDE-constrained optimisation problem

minimise
y∈H1

0 , u∈L2

1

2

∫
Ω

(y − yA)2(y − yB)2 +
β

2

∫
Ω
u2

subject to −∇2y = u in Ω.

Karush–Kuhn–Tucker optimality conditions

∇L = 0.

Discretisation: [P1]3 finite elements.
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Applications Equality constraints

Equality-constrained optimisation problems

Multiple solutions of optimality conditions ↔ multiple candidate optima

2 minima of 7 stationary points, found from (y, u, λ) = (0, 0, 0).
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Applications Inequality constraints

Complementarity problems

Complementarity problems arise with inequality constraints.

Canonical complementarity problem in Rn

Given a residual F : Rn → Rn, a lower bound l ∈ Rn
∞ and an upper bound

u ∈ Rn
∞, find x ∈ Rn such that exactly one of the conditions

li < xi < ui and Fi(x) = 0;

li = xi and Fi(x) > 0;

xi = ui and Fi(x) < 0;

holds for each i.

Theorem (F., Croci, 2015)

Deflation also applies to complementarity problems.
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Applications Inequality constraints

Topology optimisation constrained by the Stokes equations

What is the best pipe that connects inflow to outflow?
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Applications Inequality constraints

Stokes: governing PDE

We wish to minimise the dissipated power in the fluid

J =
1

2

∫
Ω
α(ρ)u · u+

1

2
µ

∫
Ω
∇u : ∇u

subject to the Stokes equations with a permeability term:

α(ρ)u− µ∇2u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = b on δΩ,

ρ(x) ∈ [0, 1] a.e. in Ω,∫
Ω
ρ ≤ V.

Configuration and nonuniqueness: Borrvall and Petersson (2003).

Discretisation: [P2]2–P1.
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Applications Inequality constraints

Stokes: bifurcation diagram
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Bifurcation diagram for Stokes topology optimisation
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Applications Inequality constraints

Stokes: two solutions
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Applications Inequality constraints

Stokes:
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Conclusion

Conclusions

I Multiple solutions of PDEs are ubiquitous and important.

I Deflation is a useful technique for computing them.

I Deflation and continuation are natural complements.

I There are interesting applications in:

I nonlinear PDEs,
I tracing bifurcation diagrams,
I multimodal Bayesian inference,
I and large-scale optimisation with constraints.
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