
Schwarz for the “outer-loop”

Xiao-Chuan Cai

Department of Computer Science
University of Colorado Boulder

Happy 20th birthday PETSc

Thanks Bill, Barry, ... the whole PETSc team!

The pre-PETSc pre-MPI days

I feel like I have been using “PETSc” for 26
years – since 1989 at Yale

Bill’s “tile” algorithms ... “tile” codes. There was
a communication piece and a DD piece ...

Outline – Schwarz for the outer-loops

• Nonlinear solver loop

• Multi-physics loop
• Time integration loop

• Optimization loop
• Some final remarks

Differences between inner solve and outer loop
• Sophisticated parallel preconditioned Krylov subspace

methods (such as Krylov-Schwarz or Krylov-MG) are often
used for the inner solve

• In most existing approaches, the outer loops are handled
sequentially (time integration, optimization, etc)

• Simple algorithms are often used for the outer loops
(fixed-point iteration for electronic structures, GS iteration
for optimization, etc)

• What we want are both or one of the following:
• More parallelism for some of the outer loops
• More robustness for the outer loop solver

• Can we include some of the outer loops inside the
Schwarz domain to increase parallelism and robustness
(only for large machines)?

Some old and new examples

A question asked in 1992-1994

To design a general purpose parallel nonlinear solver using
three components: Schwarz, Newton, Krylov, (like the one in
PETSc) which one should be used for the outer loop?

Choice#1 (Schwarz-Newton-Krylov algorithm):
• Schwarz loop

• Newton loop
• Krylov loop

Supporting paper: Cai and Dryja (1994)

Choice#2 (Newton-Krylov-Schwarz algorithm):
• Newton loop

• Krylov loop
• Schwarz loop

Supporting paper: Cai, Gropp, Keyes, Tidriri (1994)

Conclusion: Unless the problem is a simple elliptic equation,
Schwarz should not be used for the “out-most” outer loop since
it doesn’t have a global view of the problem. Newton is a better
choice

Use Schwarz to reduce the layer of outer loops

Consider a multi-physics problem: fluid-structure interaction

• Time loop
• 3× 3 block Gauss-Seidel loop

• Solid loop
• Fluid loop
• Moving mesh loop

This can be reduced to

• Time loop
• Krylov + monolithic Schwarz loop

This improves the robustness of the algorithm, increases the
parallelism

A fully coupled fluid-structure interaction problem

A fully coupled fluid-structure interaction problem

Table : The strong scalability results. A FSI problem with
280,806,789 unknowns is solved by a three-level monolithic Schwarz
method

np subsolve NI iter time(s) sp eff
4,096 ILU(0) 2 3.8 539.64 1 100%
4,096 ILU(1) 2 4.5 616.16 1 100%
4,096 ILU(2) 2 3 645.82 1 100%
6,144 ILU(0) 2 3.8 368.3 1.47 98%
6,144 ILU(1) 2 3.8 403.12 1.5 100%
6,144 ILU(2) 2 3 446.38 1.45 96%
8,192 ILU(0) 2 3.8 286.51 1.88 94%
8,192 ILU(1) 2 3 307.23 2 100%
8,192 ILU(2) 2 3 346.80 1.86 93%
10,240 ILU(0) 2 4.2 248.33 2.17 87%
10,240 ILU(1) 2 2.8 243.95 2.5 100%
10,240 ILU(2) 2 3.8 312.51 2.07 83%

Loop for time integration

• In traditional parallel methods for solving time dependent
PDEs, the parallelism is obtained by partitioning the spatial
mesh, the time integration is handled sequentially

• When the number of time steps is large, there are lots of
sequential steps

• When the number of processors is large, the sequential
time integration part is becoming a bottleneck

• There are several attempts to develop parallel-in-time
algorithms such as multiple shooting, parareal (Lions,
Maday, Turinici 2001), etc.

Consider a parabolic equation
∂u
∂t

+ Lu = f (x) in D × T

u(x ,0) = u0(x) in D
u(x , t) = 0 on ∂D × T ,

Let Lh(·) be the 5-point finite difference discretization. We have
uk+1

h − uk
h

∆t
+ Lh(uk+1

h) = f k+1
h

u0
h given

We denote by uk
h = {uk

i,j} the solution vector consisting of all
nodal values at the k th time level

Coupling space and time into a large linear system

Stacking s levels of solutions into a single vector,
U = (u1

h ,u
2
h , · · · ,u

s
h)T , which satisfies the space-time system of

equations, AsU = B

Lh
−I Lh

. . .
−I Lh

. . .
−I Lh

u1
h

u2
h
...

uk
h
...

us
h

=

u0
h + ∆t f 1

∆t f 2

...
∆t f k

...
∆t f s

Space-time Schwarz

One-level additive Schwarz preconditioner

M−1
one = M−1

1 + M−1
2 + · · ·+ M−1

N

Two-level additive Schwarz preconditioner

M−1
two = I f

c M−1
c (I f

c)T + M−1
one

Two-level hybrid Schwarz preconditioner

M−1
hyb = I f

c M−1
c (I f

c)T + M−1
one

(
I− As I f

c M−1
c (I f

c)T
)

Here Mc is a coarse preconditioner and I f
c is a coarse to fine

interpolation operator in space-time

Theory for space-time additive Schwarz

Let s be the window size, U = (u1,u2, · · · ,us)T and

Aτ,s(U,V) = τ

s∑
k=1

a(uk , vk) +
s∑

k=1

(uk , vk)

Let P be the two-level space time additive Schwarz operator,
and if the overlap is large enough, then

Aτ,s(PU,PU) ≤ CAτ,s(U,U)

Aτ,s(U,PU) ≥ cAτ,s(U,U)

Here c and C are independent of τ,h,H,Hc and s.

Table : The number of iterations for the two-level hybrid
preconditioning with different mesh size, overlapping size, and
number of processors. The coarse mesh is 32× 32

mesh-window size overlap
number of processors

128 256 512 1024
249× 249× 8 4 4.68 4.72 4.70 4.69
373× 373× 16 6 5.83 5.87 5.90 5.96
497× 497× 32 8 5.62 5.49 5.58 5.54

Table : Computing time (sec) per window size and number of
iterations

497 × 497
window size

4 8 16 32 64
iter 4.44 3.64 4.38 5.54 6.65

time/window size 79 64 80 126 167

Time dependent optimization problems

Application areas: parabolic optimization problems, inverse
problems, fluid control problems, etc
Current approach:

• Optimization loop (sequential)
• Solve a forward-in-time simulation problem

• Loop in time (sequential)
- Loop in space (parallel)

• End loop in time
• Solve a backward-in-time simulation problem

• Loop in time (sequential)
- Loop in space (parallel)

• End loop in time
• Solve objective equation

• End optimization loop

Observations and proposals

• There are two sequential loops inside the sequential loop
−→ the total number of sequential steps is the product

• The optimization loop is essentially a 3× 3 (nonlinear)
Gauss-Seidel −→ slow and some sometimes difficult to
converge −→ many iterations

• On small machines, only parallelize the inner loop(s) and
use Gauss-Seidel type methods for the outer loop

• On large machines, parallelize some of the outer loop(s)
and replace Gauss-Seidel by Krylov-Schwarz

A time dependent inverse problem

Consider a time dependent convection-diffusion equation

∂C
∂t

= ∇ · (a(x)∇C)−∇ · (v(x)C) + f (x, t), 0 < t < T , x ∈ Ω

C(x, t) = p(x, t), x ∈ Γ1

a(x)
∂C
∂n

= q(x, t), x ∈ Γ2

C(x,0) = C0(x), x ∈ Ω

where Ω ∈ R3, and ∂Ω = Γ1
⋃

Γ2

Goal: Compute f (x, t) with certain measured values of C

PDE-constrained optimization problem

• We formulate the inverse problem as an output
least-squares problem:

MinfJ(f) =
1
2

∫ T

0

∫
Ω

A(x)(C(x, t)− Cε(x, t))2 dxdt + Nβ(f)

where A(x) is the data range indicator function, A(x) = 1
or A(x) =

∑Ns
i=1 δ(x− xi)

• Nβ(f) denotes the Tikhonov regularization terms

Nβ(f) =
β1

2

∫ T

0

∫
Ω
|ft (x, t)|2dxdt +

β2

2

∫ T

0

∫
Ω
|∇xf |2dxdt

Here β1 and β2 are regularization parameters

KKT system
We use the optimize-then-discretize (OTD) approach, by
introducing a corresponding Lagrange multiplier G ∈W 1,p(Ω)
and the following Lagrange functional:

J (C, f ,G) =
1
2

∫ T

0

∫
Ω

A(x)(C(x, t)− Cε(x, t))2dxdt

+ Nβ(f) + (G,L(C, f))

where L(C, f) denotes the convection-diffusion operator.
We compute the first-order optimality condition; i.e. the KKT
system by taking the directional derivative of J as follows:

JG(C, f ,G)v = 0
JC(C, f ,G)w = 0
Jf (C, f ,G)g = 0

Multiplying a test function, and integrating by part, we obtain
the weak form of the KKT system as follows:

(
∂C
∂t
, v
)

+ (a∇C,∇v) + (∇ · (vC), v)

−(f (x, t), v)− 〈q,w〉Γ2 = 0

(χ[T−γ,T]A(x)(C(x, t)− Cε(x, t)),w)−
(
∂G
∂t
,w
)

+(a(x)∇G,∇w) + (∇ · (v(x)w),G) = 0

β1(ft ,gt) + β2(∇f ,∇g)− (G,g) = 0

Space-time Schwarz

Time overlap

Space
overlap

Spatial
boundary

Space

Time Θ’
ij

Θ’
ij

Spatial
boundaryΘ

ij

"Terminal" time
boundary of

Θ’
ij

"Initial" time
boundary of

Two-level space-time preconditioning

• We introduce Ih
H as a linear interpolation operator from the

coarse grid to the fine grid, and the restriction operator IH
h

satisfying IH
h = (Ih

H)T

• We revise the preconditioner as a multiplicative type
two-level Schwarz one:{

y = Ih
HM−1

H IH
h x

M−1
two−levelx = y + M−1

ras (x − Fhy)

where Fh denotes the KKT matrix on the fine grid
• For the coarse solver, we use the one-level space-time

additive Schwarz preconditioner with LU factorization as
the subdomain solve

Numerical examples

Example 1: Two Gaussian source inversion (with 1%, 5% and
10% measurement noise)
Example 2: Four Gaussian source inversion
Example 3: Eight Gaussian source inversion
The centers of the peaks move along the following blue and red
curves respectively

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xy

t
t=0

t=0

Figure : The two source moving traces in 3D Ω

Figure : Ex1: The source reconstruction at three moments t = 10/39, 20/39, 30/39 with 14 × 14 × 14
(bottom) sensors and 1% data noise, the results are comparable with the exact source distribution (top)

We add some noise to the data ε = 5% and ε = 10% and show
the reconstruction results

Figure : Ex1: The source reconstruction at noise level ε = 5% (top) and ε = 10% (bottom)

Figure : Ex2: The source reconstruction with Nβ (f) (H1-H1) regularization (top) and Ñβ (f) (H1-L2)
regularization (bottom) at three moments t = 10/39, 20/39, 30/39

We still use a space mesh 49× 49× 49 and time step 49,
DOF = 1.73× 107, the ILU level and the overlap size on the
fine and coarse grid are both set to be 0 and 1 respectively. We
test with different number of processors for Example 1

np level its Time(sec)
128 1 346 200.664

2 83 47.812
256 1 343 127.035

2 82 24.744
512 1 343 69.482

2 82 16.461
1024 1 351 41.821

2 85 10.132

With the same settings, we test with different number of
processors for Example 2

np level its Time(sec)
128 1 365 214.815

2 85 47.072
256 1 363 152.334

2 87 26.424
512 1 363 95.707

2 101 19.453
1024 1 393 58.785

2 100 11.352

With the same settings, we test with different number of
processors for Example 3

np level its Time(sec)
128 1 405 238.712

2 93 57.244
256 1 408 145.213

2 90 36.307
512 1 400 101.343

2 100 18.611
1024 1 433 59.534

2 104 15.815

A comparison with a traditional reduced space
method and a space-time reduced space method,

for a 2D problem

Concluding remarks

• Moving some of the outer loops to the inside solver
• increases the memory requirement
• decreases the total compute time
• increases the level of parallelism
• increases the robustness

• Schwarz is capable of handling the added difficulties
• All examples are implemented using PETSc
• Some papers are available at

www .colorado.edu/cs/users/cai

