Schwarz for the “outer-loop”

Xiao-Chuan Cai

Department of Computer Science
University of Colorado Boulder

Happy 20th birthday PETSc

Thanks Bill, Barry, ... the whole PETSc team!

The pre-PETSc pre-MPI days

| feel like | have been using “PETSc” for 26
years — since 1989 at Yale

Bill's “tile” algorithms ... “tile” codes. There was
a communication piece and a DD piece ...

Outline — Schwarz for the outer-loops

 Nonlinear solver loop
 Multi-physics loop
« Time integration loop
+ Optimization loop

« Some final remarks

Differences between inner solve and outer loop

« Sophisticated parallel preconditioned Krylov subspace
methods (such as Krylov-Schwarz or Krylov-MG) are often
used for the inner solve

+ In most existing approaches, the outer loops are handled
sequentially (time integration, optimization, etc)

- Simple algorithms are often used for the outer loops
(fixed-point iteration for electronic structures, GS iteration
for optimization, etc)

- What we want are both or one of the following:
+ More parallelism for some of the outer loops
+ More robustness for the outer loop solver
« Can we include some of the outer loops inside the
Schwarz domain to increase parallelism and robustness
(only for large machines)?

Some old and new examples

A question asked in 1992-1994

To design a general purpose parallel nonlinear solver using
three components: Schwarz, Newton, Krylov, (like the one in
PETSc) which one should be used for the outer loop?

Choice#1 (Schwarz-Newton-Krylov algorithm):

« Schwarz loop
« Newton loop
* Krylov loop

Supporting paper: Cai and Dryja (1994)

Choice#2 (Newton-Krylov-Schwarz algorithm):

- Newton loop
* Krylov loop
» Schwarz loop

Supporting paper: Cai, Gropp, Keyes, Tidriri (1994)

Conclusion: Unless the problem is a simple elliptic equation,
Schwarz should not be used for the “out-most” outer loop since
it doesn’t have a global view of the problem. Newton is a better
choice

Use Schwarz to reduce the layer of outer loops

Consider a multi-physics problem: fluid-structure interaction

« Time loop
« 3 x 3 block Gauss-Seidel loop

» Solid loop
* Fluid loop
* Moving mesh loop

This can be reduced to

« Time loop
« Krylov + monolithic Schwarz loop

This improves the robustness of the algorithm, increases the
parallelism

A fully coupled fluid-structure interaction problem

duy ad,, Ot

’JfT|X, Vet [(”f*w) 'V} wr=eidy i
V-ufjﬂ in Q%,
up = v on Ff\d,
oimny =gy onl% .
-V Om = in Q?e,
dyp =0 on F[}‘

0%d od .
F’sT;Jﬂha—;*V'Hs:ﬂsfs in 0,
ds =0 on Fg.d‘
Mon,=g, on ngn,

ad,

= 3: on It
Oy = —ofny on I'f,,
d, =ds on Y.

A fully coupled fluid-structure interaction problem

,\i‘éeskﬁc 9

[

0002584

Table : The strong scalability results. A FSI problem with
280,806,789 unknowns is solved by a three-level monolithic Schwarz
method

np subsolve NI iter time(s) sp eff
4,096 ILUO) 2 3.8 539.64 1 100%
4,096 ILU(1) 2 45 616.16 1 100%
4,096 lLU2) 2 3 64582 1 100%
6,144 ILUO) 2 3.8 3683 147 98%
6,144 ILU(1) 2 3.8 403.12 1.5 100%
6,144 ILU2) 2 3 446.38 1.45 96%
8,192 ILUO) 2 3.8 286.51 1.88 94%
8,192 ILU(1l) 2 3 30723 2 100%
8,192 ILU2) 2 3 34680 1.86 93%
10,240 ILU(0) 2 42 24833 217 87%
10,240 ILU(1) 2 2.8 24395 25 100%
10,240 ILU(2) 2 3.8 31251 2.07 83%

Loop for time integration

In traditional parallel methods for solving time dependent
PDEs, the parallelism is obtained by partitioning the spatial
mesh, the time integration is handled sequentially

« When the number of time steps is large, there are lots of
sequential steps
When the number of processors is large, the sequential
time integration part is becoming a bottleneck

There are several attempts to develop parallel-in-time
algorithms such as multiple shooting, parareal (Lions,
Maday, Turinici 2001), etc.

Consider a parabolic equation

% +Lu = f(x) in DxT
u(x,0)0 = u’(x) in D
ux,t) = 0 on ODxT,

Let Lx(-) be the 5-point finite difference discretization. We have

SRk

h h K41y kot
N, +Lh(Uh) = fh

u® given

h

We denote by uk = {uf‘j} the solution vector consisting of all
nodal values at the k™ time level

Coupling space and time into a large linear system

Stacking s levels of solutions into a single vector,

U=(u},u2, -, u$)T, which satisfies the space-time system of
equations, A;U = B
Ly, ul ud + At f1
—1 Lh U% At f2
~1 Ly uk At fk
I L, us At fS

Space-time Schwarz

One-level additive Schwarz preconditioner
Mops = M 4+ My 4o+ M
Two-level additive Schwarz preconditioner

M*‘I

two = lé ,wc_1 (I();)T + Mo_n16
Two-level hybrid Schwarz preconditioner
Moty = 1M (1) + Moo (1= As 1M ()T

Here M, is a coarse preconditioner and /% is a coarse to fine
interpolation operator in space-time

Theory for space-time additive Schwarz

Let s be the window size, U = (u', u?,--- ,uS)T and

S

A (U, V) =7 f: a(uk, vi) + > (UK v

k=1 k=1

Let P be the two-level space time additive Schwarz operator,
and if the overlap is large enough, then

A, s(PU, PU) < CA..s(U, U)

A;s(U, PU) > cA: s(U, U)

Here c and C are independent of 7, h, H, H; and s.

Table : The number of iterations for the two-level hybrid
preconditioning with different mesh size, overlapping size, and

number of processors. The coarse mesh is 32 x 32

_ _ number of processors
mesh-window size | overlap
128 | 256 | 512 | 1024
249 x 249 x 8 4 468 | 4.72 | 4.70 | 4.69
373 x 373 x 16 6 583 | 5.87 | 5.90 | 5.96
497 x 497 x 32 8 562 | 549 | 558 | 5.54

Table : Computing time (sec) per window size and number of

iterations

window size
497 x 497
4 8 16 32 64
iter 444 | 3.64 | 438 | 554 | 6.65
time/window size 79 64 80 126 167

Time dependent optimization problems

Application areas: parabolic optimization problems, inverse
problems, fluid control problems, etc
Current approach:

« Optimization loop (sequential)
- Solve a forward-in-time simulation problem
* Loop in time (sequential)
- Loop in space (parallel)
* End loop in time
- Solve a backward-in-time simulation problem
* Loop in time (sequential)
- Loop in space (parallel)
* End loop in time

- Solve objective equation
« End optimization loop

Observations and proposals

There are two sequential loops inside the sequential loop
— the total number of sequential steps is the product

The optimization loop is essentially a 3 x 3 (nonlinear)
Gauss-Seidel — slow and some sometimes difficult to
converge —> many iterations

On small machines, only parallelize the inner loop(s) and
use Gauss-Seidel type methods for the outer loop

On large machines, parallelize some of the outer loop(s)
and replace Gauss-Seidel by Krylov-Schwarz

A time dependent inverse problem

Consider a time dependent convection-diffusion equation

((?9? =V-(ax)VC) - V- (v(x)C) + f(x,t), 0<t<T,xeQ

C(x,t) =p(x,t), xelq

oC
a(x)a—n =q(x,t), xel
C(x,0) = Cp(x), xe€Q

where Q € R%,and 9Q =1 T2

Goal: Compute f(x, t) with certain measured values of C

PDE-constrained optimization problem

« We formulate the inverse problem as an output
least-squares problem:

MingJ(f) / / A(x — C<(x, 1))? dxdt + Ns(f)

where A(X) is the data range indicator function, A(x) = 1
or A(X) = 372 3(x — X))
+ Nj(f) denotes the Tikhonov regularization terms

)
@/ /|ft(x,t |2dxdt+/ /|fo|2dxdt
0 Q

Here 1 and 3, are regularization parameters

KKT system

We use the optimize-then-discretize (OTD) approach, by
introducing a corresponding Lagrange multiplier G € W'P(Q)
and the following Lagrange functional:

J(C.1,G) = / /A — C(x, t))2dxat
- Ny(f) + (G, L(C,)

where L(C, f) denotes the convection-diffusion operator.
We compute the first-order optimality condition; i.e. the KKT
system by taking the directional derivative of 7 as follows:

jG(Ca f7 G)V =
Jc(C,f,G)w =
Ji(C,f,G)g =0

Multiplying a test function, and integrating by part, we obtain
the weak form of the KKT system as follows:

E,V
—(f(X, t)? V) - <q7 W>r2 =0

(80 >+(aVC,Vv)+(V-(vC),v)

(7 A(Cx.)~ O (x,0).) ~ (G w)

+(@(X)VG, Vw) + (V - (v(x)w), G) = 0

B1(fr, gt) + B2(VF,Vg) — (G,9) =0

Space-time Schwarz

Time overlap "Termina" time

Time /@ij
N L
Space —— o. :‘// boundary

overlap 1 ij
/':. O L

Spatial —|

boundary /
“Initial" time Space

boundary of &,

Two-level space-time preconditioning

- We introduce /f} as a linear interpolation operator from the
coarse grid to the fine grid, and the restriction operator l,*,’
satisfying /! = (1)7

« We revise the preconditioner as a multiplicative type
two-level Schwarz one:

y =M b x
t;vjjflevelx =y+ M,_a;(X — Fny)

where F;, denotes the KKT matrix on the fine grid

« For the coarse solver, we use the one-level space-time
additive Schwarz preconditioner with LU factorization as
the subdomain solve

Numerical examples

Example 1: Two Gaussian source inversion (with 1%, 5% and
10% measurement noise)

Example 2: Four Gaussian source inversion

Example 3: Eight Gaussian source inversion

The centers of the peaks move along the following blue and red
curves respectively

Figure * The two source moving traces in 3D Q

o,
o
o7
0,
o
o
o
i
03
I
028
a5
s

Figure = Ex1: The source reconstruction at three moments t = 10,/39, 20/39, 30/39 with 14 x 14 x 14
(bottom) sensors and 1% data noise, the results are comparable with the exact source distribution (top)

We add some noise to the data e = 5% and ¢ = 10% and show
the reconstruction results

b

T—
"E’EBEEEEEE‘:: <‘ ~

[__SRe Bane |
£o288288288"2

Figure = Ex1: The source reconstruction at noise level e = 5% (top) and e = 10% (bottom)

u]
o)
1l
n
it

DA

REBE <

RECRRIERETEVRNEY <

s8bkoRee-Rras”|

Figure : ex2: The source reconstruction with N ((H'-H") regularization (top) and N (f) (H'-L?)
B B
regularization (bottom) at three moments t = 10,/39, 20/39, 30/39

«0>» «Fr» «E» «

DA

We still use a space mesh 49 x 49 x 49 and time step 49,
DOF = 1.73 x 107, the ILU level and the overlap size on the
fine and coarse grid are both set to be 0 and 1 respectively. We
test with different number of processors for Example 1

np | level | its Time(sec)
128 1 346 200.664
2 83 47.812
256 1 343 127.035
2 82 24.744
512 1 343 69.482
2 82 16.461
1024 1 351 41.821
2 85 10.132

With the same settings, we test with different number of
processors for Example 2

np | level | its Time(sec)
128 1 365 214.815
2 85 47.072
256 1 363 152.334
2 87 26.424
512 1 363 95.707
2 101 19.453
1024 1 393 58.785
2 100 11.352

With the same settings, we test with different number of
processors for Example 3

np | level | its Time(sec)
128 1 405 238.712
2 93 57.244
256 1 408 145.213
2 90 36.307
512 1 400 101.343
2 100 18.611
1024 1 433 59.534
2 104 15.815

A comparison with a traditional reduced space
method and a space-time reduced space method,
for a 2D problem

np n; ng xn, Solver Time(sec)
64 40 40 x 40 Fs 12.064
RS(1) 418.580
RS(2) 195.484
128 80 80 x 80 Fs 15.525
RS(1) 682,794
RS(2) 00528
256 160 80 x 80 F3 23.736
RS(1) 994.962
RS(2) 200543
512 320 160 x 160 Fs 136.717
RS(1) 7240.881
RS(2) 1004.886

Concluding remarks

Moving some of the outer loops to the inside solver

- increases the memory requirement
- decreases the total compute time

- increases the level of parallelism

« increases the robustness

Schwarz is capable of handling the added difficulties
All examples are implemented using PETSc
Some papers are available at

www.colorado.edu/cs/users/cai

