Schwarz for the "outer-loop"

Xiao-Chuan Cai

Department of Computer Science University of Colorado Boulder

э

Happy 20th birthday PETSc

Thanks Bill, Barry, ... the whole PETSc team!

The pre-PETSc pre-MPI days

I feel like I have been using "PETSc" for 26 years – since 1989 at Yale

Bill's "tile" algorithms ... "tile" codes. There was a communication piece and a DD piece ...

Outline – Schwarz for the outer-loops

- Nonlinear solver loop
- Multi-physics loop
- Time integration loop
- Optimization loop
- Some final remarks

Differences between inner solve and outer loop

- Sophisticated parallel preconditioned Krylov subspace methods (such as Krylov-Schwarz or Krylov-MG) are often used for the inner solve
- In most existing approaches, the outer loops are handled sequentially (time integration, optimization, etc)
- Simple algorithms are often used for the outer loops (fixed-point iteration for electronic structures, GS iteration for optimization, etc)
- What we want are both or one of the following:
 - More parallelism for some of the outer loops
 - More robustness for the outer loop solver
- Can we include some of the outer loops inside the Schwarz domain to increase parallelism and robustness (only for large machines)?

Some old and new examples

A question asked in 1992-1994

To design a general purpose parallel nonlinear solver using three components: Schwarz, Newton, Krylov, (like the one in PETSc) which one should be used for the outer loop?

Choice#1 (Schwarz-Newton-Krylov algorithm):

- Schwarz loop
 - Newton loop
 - Krylov loop

Supporting paper: Cai and Dryja (1994)

Choice#2 (Newton-Krylov-Schwarz algorithm):

- Newton loop
 - Krylov loop
 - Schwarz loop

Supporting paper: Cai, Gropp, Keyes, Tidriri (1994)

Conclusion: Unless the problem is a simple elliptic equation, Schwarz should not be used for the "out-most" outer loop since it doesn't have a global view of the problem. Newton is a better choice

(日)

Use Schwarz to reduce the layer of outer loops

Consider a multi-physics problem: fluid-structure interaction

- Time loop
 - 3×3 block Gauss-Seidel loop
 - Solid loop
 - Fluid loop
 - Moving mesh loop

This can be reduced to

- Time loop
 - Krylov + monolithic Schwarz loop

This improves the robustness of the algorithm, increases the parallelism

A fully coupled fluid-structure interaction problem

$\left. ho_f rac{\partial u_f}{\partial t} \right _{\boldsymbol{X}_s} - abla \cdot \boldsymbol{\sigma}_f + ho_f \left[\left(u_f - rac{\partial d_m}{\partial t} ight) \cdot abla ight] u_f = ho_f \boldsymbol{f}_f$	in Ω_f^t ,
$\nabla \cdot u_f = 0$	in Ω_f^t ,
$u_f = v_f^d$	on $\Gamma_{f,d}^t$,
$\sigma_f n_f = g_f$	on $\Gamma_{f,n}^{\iota}$,
$- abla\cdot oldsymbol{\sigma}_m=0$	in Ω_f^0 ,
$d_m = 0$	on Γ_f^0 ,
$\partial^2 d$ ∂d	
$ ho_s rac{\partial u_s}{\partial t^2} + \eta_s rac{\partial u_s}{\partial t} - abla \cdot \Pi_s = ho_s f_s$	in Ω_s^0 ,
$d_s = 0$	on $\Gamma^0_{s,d}$,
$\Pi_s n_s = g_s$	on $\Gamma^0_{s,n}$,
∂d_s	Dt.
$u_f = \frac{1}{\partial t}$	on Γ_w^ι ,
$\sigma_s \hat{n}_s = -\sigma_f n_f$	on Γ_w^t ,
$d_m = d_s$	on Γ_w^0 .

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

A fully coupled fluid-structure interaction problem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Table : The strong scalability results. A FSI problem with280,806,789 unknowns is solved by a three-level monolithic Schwarzmethod

np	subsolve	NI	iter	time(s)	sp	eff
4,096	ILU(0)	2	3.8	539.64	1	100%
4,096	ILU(1)	2	4.5	616.16	1	100%
4,096	ILU(2)	2	3	645.82	1	100%
6,144	ILU(0)	2	3.8	368.3	1.47	98%
6,144	ILU(1)	2	3.8	403.12	1.5	100%
6,144	ILU(2)	2	3	446.38	1.45	96%
8,192	ILU(0)	2	3.8	286.51	1.88	94%
8,192	ILU(1)	2	3	307.23	2	100%
8,192	ILU(2)	2	3	346.80	1.86	93%
10,240	ILU(0)	2	4.2	248.33	2.17	87%
10,240	ILU(1)	2	2.8	243.95	2.5	100%
10,240	ILU(2)	2	3.8	312.51	2.07	83%

Loop for time integration

- In traditional parallel methods for solving time dependent PDEs, the parallelism is obtained by partitioning the spatial mesh, the time integration is handled sequentially
 - When the number of time steps is large, there are lots of sequential steps
- When the number of processors is large, the sequential time integration part is becoming a bottleneck
- There are several attempts to develop parallel-in-time algorithms such as multiple shooting, parareal (Lions, Maday, Turinici 2001), etc.

Consider a parabolic equation

$$\begin{cases} \frac{\partial u}{\partial t} + Lu &= f(x) & \text{in } D \times T \\ u(x,0) &= u^0(x) & \text{in } D \\ u(x,t) &= 0 & \text{on } \partial D \times T, \end{cases}$$

Let $L_h(\cdot)$ be the 5-point finite difference discretization. We have

$$\begin{cases} \frac{u_h^{k+1} - u_h^k}{\Delta t} + L_h(u_h^{k+1}) &= f_h^{k+1} \\ u_h^0 & \text{given} \end{cases}$$

We denote by $u_h^k = \{u_{i,j}^k\}$ the solution vector consisting of all nodal values at the k^{th} time level

Coupling space and time into a large linear system

Stacking *s* levels of solutions into a single vector, $U = (u_h^1, u_h^2, \dots, u_h^s)^T$, which satisfies the space-time system of equations, $A_s U = B$

$$\begin{pmatrix} L_h & & & \\ -I & L_h & & & \\ & \ddots & & & \\ & & -I & L_h & & \\ & & & \ddots & & \\ & & & -I & L_h \end{pmatrix} \begin{pmatrix} u_h^1 \\ u_h^2 \\ \vdots \\ u_h^k \\ \vdots \\ u_h^s \end{pmatrix} = \begin{pmatrix} u_h^0 + \Delta t \ f^1 \\ \Delta t \ f^2 \\ \vdots \\ \Delta t \ f^k \\ \vdots \\ \Delta t \ f^s \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへで

Space-time Schwarz

One-level additive Schwarz preconditioner

$$M_{one}^{-1} = M_1^{-1} + M_2^{-1} + \dots + M_N^{-1}$$

Two-level additive Schwarz preconditioner

$$M_{two}^{-1} = I_c^f M_c^{-1} (I_c^f)^T + M_{one}^{-1}$$

Two-level hybrid Schwarz preconditioner

$$M_{hyb}^{-1} = I_c^f M_c^{-1} (I_c^f)^T + M_{one}^{-1} \left(I - A_s I_c^f M_c^{-1} (I_c^f)^T \right)$$

Here M_c is a coarse preconditioner and I_c^f is a coarse to fine interpolation operator in space-time

Theory for space-time additive Schwarz

Let *s* be the window size, $U = (u^1, u^2, \cdots, u^s)^T$ and

$$A_{\tau,s}(U,V) = \tau \sum_{k=1}^{s} a(u^k, v^k) + \sum_{k=1}^{s} (u^k, v^k)$$

Let *P* be the two-level space time additive Schwarz operator, and if the overlap is large enough, then

$$egin{aligned} \mathsf{A}_{ au,oldsymbol{s}}(\mathsf{PU},\mathsf{PU})&\leq \mathsf{CA}_{ au,oldsymbol{s}}(U,U)\ \mathsf{A}_{ au,oldsymbol{s}}(U,\mathsf{PU})&\geq \mathsf{cA}_{ au,oldsymbol{s}}(U,U) \end{aligned}$$

Here *c* and *C* are independent of τ , *h*, *H*, *H_c* and *s*.

Table : The number of iterations for the two-level hybrid preconditioning with different mesh size, overlapping size, and number of processors. The coarse mesh is 32×32

mesh-window size	overlap	number of processors			
		128	256	512	1024
$249 \times 249 \times 8$	4	4.68	4.72	4.70	4.69
$373\times373\times16$	6	5.83	5.87	5.90	5.96
$497 \times 497 \times 32$	8	5.62	5.49	5.58	5.54

Table : Computing time (sec) per window size and number of iterations

497 × 497	window size				
	4	8	16	32	64
iter	4.44	3.64	4.38	5.54	6.65
time/window size	79	64	80	126	167

Time dependent optimization problems

Application areas: parabolic optimization problems, inverse problems, fluid control problems, etc Current approach:

- Optimization loop (sequential)
 - Solve a forward-in-time simulation problem
 - Loop in time (sequential)
 - Loop in space (parallel)
 - End loop in time
 - Solve a backward-in-time simulation problem

- Loop in time (sequential)
 - Loop in space (parallel)
- End loop in time
- Solve objective equation
- End optimization loop

Observations and proposals

- There are two sequential loops inside the sequential loop
 → the total number of sequential steps is the product
- The optimization loop is essentially a 3 × 3 (nonlinear) Gauss-Seidel → slow and some sometimes difficult to converge → many iterations
- On small machines, only parallelize the inner loop(s) and use Gauss-Seidel type methods for the outer loop
- On large machines, parallelize some of the outer loop(s) and replace Gauss-Seidel by Krylov-Schwarz

A time dependent inverse problem

Consider a time dependent convection-diffusion equation

$$\begin{cases} \frac{\partial C}{\partial t} = \nabla \cdot (\mathbf{a}(\mathbf{x})\nabla C) - \nabla \cdot (\mathbf{v}(\mathbf{x})C) + f(\mathbf{x}, t), & 0 < t < T, \ \mathbf{x} \in \Omega \\ C(\mathbf{x}, t) = p(\mathbf{x}, t), & \mathbf{x} \in \Gamma_1 \\ \mathbf{a}(\mathbf{x})\frac{\partial C}{\partial \mathbf{n}} = q(\mathbf{x}, t), & \mathbf{x} \in \Gamma_2 \\ C(\mathbf{x}, 0) = C_0(\mathbf{x}), & \mathbf{x} \in \Omega \end{cases}$$

where $\Omega \in \mathbf{R}^3$, and $\partial \Omega = \Gamma_1 \bigcup \Gamma_2$

Goal: Compute $f(\mathbf{x}, t)$ with certain measured values of C

PDE-constrained optimization problem

• We formulate the inverse problem as an output least-squares problem:

$$\operatorname{Min}_{\mathbf{f}} J(\mathbf{f}) = \frac{1}{2} \int_0^T \int_{\Omega} A(\mathbf{x}) (C(\mathbf{x},t) - C^{\epsilon}(\mathbf{x},t))^2 \, d\mathbf{x} dt + N_{\beta}(f)$$

where $A(\mathbf{x})$ is the data range indicator function, $A(\mathbf{x}) = 1$ or $A(\mathbf{x}) = \sum_{i=1}^{N_s} \delta(\mathbf{x} - \mathbf{x}_i)$

• $N_{\beta}(\mathbf{f})$ denotes the Tikhonov regularization terms

$$N_{\beta}(f) = \frac{\beta_1}{2} \int_0^T \int_{\Omega} |f_t(\mathbf{x}, t)|^2 d\mathbf{x} dt + \frac{\beta_2}{2} \int_0^T \int_{\Omega} |\nabla_{\mathbf{x}} f|^2 d\mathbf{x} dt$$

Here β_1 and β_2 are regularization parameters

KKT system

We use the optimize-then-discretize (OTD) approach, by introducing a corresponding Lagrange multiplier $G \in W^{1,p}(\Omega)$ and the following Lagrange functional:

$$\mathcal{J}(C, f, G) = \frac{1}{2} \int_0^T \int_\Omega A(\mathbf{x}) (C(\mathbf{x}, t) - C^{\epsilon}(\mathbf{x}, t))^2 d\mathbf{x} dt + N_{\beta}(f) + (G, L(C, f))$$

where L(C, f) denotes the convection-diffusion operator. We compute the first-order optimality condition; i.e. the KKT system by taking the directional derivative of \mathcal{J} as follows:

$$\left\{egin{aligned} \mathcal{J}_G(C,f,G) v &= 0 \ \mathcal{J}_C(C,f,G) w &= 0 \ \mathcal{J}_f(C,f,G) g &= 0 \end{aligned}
ight.$$

Multiplying a test function, and integrating by part, we obtain the weak form of the KKT system as follows:

$$\begin{cases} \left(\frac{\partial C}{\partial t}, v\right) + (a\nabla C, \nabla v) + (\nabla \cdot (\mathbf{v}C), v) \\ -(f(\mathbf{x}, t), v) - \langle q, w \rangle_{\Gamma_2} = 0 \\ (\chi_{[T-\gamma, T]}A(\mathbf{x})(C(\mathbf{x}, t) - C^{\epsilon}(\mathbf{x}, t)), w) - \left(\frac{\partial G}{\partial t}, w\right) \\ +(a(\mathbf{x})\nabla G, \nabla w) + (\nabla \cdot (\mathbf{v}(\mathbf{x})w), G) = 0 \\ \beta_1(f_t, g_t) + \beta_2(\nabla f, \nabla g) - (G, g) = 0 \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

Space-time Schwarz

◆□ > ◆□ > ◆豆 > ◆豆 > ● □ ● ● ● ●

Two-level space-time preconditioning

- We introduce I_{H}^{h} as a linear interpolation operator from the coarse grid to the fine grid, and the restriction operator I_{h}^{H} satisfying $I_{h}^{H} = (I_{H}^{h})^{T}$
- We revise the preconditioner as a multiplicative type two-level Schwarz one:

$$\begin{cases} y = I_H^h M_H^{-1} I_h^H x \\ M_{two-level}^{-1} x = y + M_{ras}^{-1} (x - F_h y) \end{cases}$$

where F_h denotes the KKT matrix on the fine grid

 For the coarse solver, we use the one-level space-time additive Schwarz preconditioner with LU factorization as the subdomain solve

Numerical examples

Example 1: Two Gaussian source inversion (with 1%, 5% and 10% measurement noise) Example 2: Four Gaussian source inversion Example 3: Eight Gaussian source inversion The centers of the peaks move along the following blue and red curves respectively

Figure : Ex1: The source reconstruction at three moments t = 10/39, 20/39, 30/39 with $14 \times 14 \times 14$ (bottom) sensors and 1% data noise, the results are comparable with the exact source distribution (top)

We add some noise to the data $\epsilon = 5\%$ and $\epsilon = 10\%$ and show the reconstruction results

Figure : Ex1: The source reconstruction at noise level $\epsilon = 5\%$ (top) and $\epsilon = 10\%$ (bottom)

Figure : Ex2: The source reconstruction with $N_{\beta}(f)$ (H^1 - H^1) regularization (top) and $\tilde{N}_{\beta}(f)$ (H^1 - L^2) regularization (bottom) at three moments t = 10/39, 20/39, 30/39

э

590

We still use a space mesh $49 \times 49 \times 49$ and time step 49, $DOF = 1.73 \times 10^7$, the ILU level and the overlap size on the fine and coarse grid are both set to be 0 and 1 respectively. We test with different number of processors for Example 1

np	level	its	Time(sec)
128	1	346	200.664
	2	83	47.812
256	1	343	127.035
	2	82	24.744
512	1	343	69.482
	2	82	16.461
1024	1	351	41.821
	2	85	10.132

With the same settings, we test with different number of processors for Example 2

np	level	its	Time(sec)
128	1	365	214.815
	2	85	47.072
256	1	363	152.334
	2	87	26.424
512	1	363	95.707
	2	101	19.453
1024	1	393	58.785
	2	100	11.352

With the same settings, we test with different number of processors for Example 3

np	level	its	Time(sec)
128	1	405	238.712
	2	93	57.244
256	1	408	145.213
	2	90	36.307
512	1	400	101.343
	2	100	18.611
1024	1	433	59.534
	2	104	15.815

A comparison with a traditional reduced space method and a space-time reduced space method, for a 2D problem

np	n_t	$n_x imes n_y$	Solver	Time(sec)
64	40	40×40	\mathbf{FS}	12.064
			RS(1)	418.580
			RS(2)	125.484
128	80	80×80	\mathbf{FS}	15.525
			RS(1)	682.794
			RS(2)	99.528
256	160	80×80	FS	23.736
			RS(1)	994.962
			RS(2)	200.543
512	320	160×160	FS	136.717
			RS(1)	7240.881
			RS(2)	1094.886

Concluding remarks

- Moving some of the outer loops to the inside solver
 - · increases the memory requirement
 - · decreases the total compute time
 - increases the level of parallelism
 - increases the robustness
- Schwarz is capable of handling the added difficulties
- All examples are implemented using PETSc
- Some papers are available at

www.colorado.edu/cs/users/cai

(日) (同) (三) (三)