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XGC1 – Gyrokinetic particle-in-cell (PIC)  code 

!  Gyrokinetic particle-in-cell (PIC) code 
designed for simulating edge plasmas 
in tokamaks 

!  Solves 5D gyrokinetic equations via 
•  Ordinary differential equations for time 

advance of particles  

•  Maxwell’s equation on unstructured 
triangular physical space grid, solved 
using PETSc for electro-static/electro-
magnetic turbulence 

!  Multiscale physics (but full field) 
•  Micro-turbulence 

•  Background profile variation 

•  Neutral and atomic physics 
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XGC1 – extreme scale (SciDAC partnership program) 

!  Ions and electrons :  ~O(1010 – 1011) particles each 
!  Unstructured triangle mesh in 3D : ~O(106 – 107) mesh points  
!  Fully non-linear Coulomb collisions 
!  Designed for leading HPC: Titan(OLCF), Edison(NERSC), Mira(ALCF) 
•  Good performance scaling 
•  Utilizing GPUs  
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Outline 

!  5D Gyrokinetic Vlasov Equations (lots of hand waving) 
!  Poission Equation with adiabatic electrons 
!  I) (new) Gyrokinetic Poisson solver flux surface average 
!  II) (new) Hybrid kinetic-ion & fluid electron: implicit MHD 
!  Future directions XGC:  

•  better numerics – tightly couple time integrators in 
PETSc 

•  data centric processing for modern architectures 

Celebrating 20 Years with PETSc



5 

6D Vlasov equation: basically the whole world 

!  6D Vlasov-Maxwell system 

•  6D PDE (phase space: 3D real space, 3D v-space) 
•  F : Lorenz Force  " Maxwell equations  
•  Collisions and source term on RHS   
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!  Ring with gyroradius ignoring gyro-phase 
•  6D # 5D 

Gyrokinetics 

Ring with radius ρ
magnetic moment µ

Gyro Center Motion 
(Gyrokinetics) 

Real particle motion 
Lorentz Equation 

Point particle with
charge q
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XGC discretization 

!  Have somewhat complex 
geometry 

!  Extreme anisotropy from 
strong B field 

!  This has led to discretizations 
that split “perp” and “parallel” 
fields. 

!  Unstructured grids 
constructed with ODE solvers 
to make grid points follow field 
lines 
•  Complex and approximate 
•  Finite elements in perp plane 

!  Finite difference in parallel 
direction 

!  64-128 toroidal planes. 
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5D Gyrokinetic Equations - Electrostatic 

Gyrokinetic Poisson Equation

  

€ 

f = f (
! 
X ,u||,u⊥); X :  guide center position
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5D Gyrokinetic Equations: simplified 

!  Particle motions (ODEs) 

€ 

˙ x = v|| + vD

˙ v || = E|| + µ∇B

€ 

x :  3D space coordinates
v|| :  Parallel velocity to magnetic field
B : Magnetic field strength
E|| :  Parallel electric field 
µ :  magnetic moment
ne

0 :  electron density with zero potential
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Adiabatic Electron Response 

!  Electron density near Boltzmann F magnetic field 
line: 
•  Parallel motion is dominating: v||/vD > 104  
•  Travel time is shorter than wave time scale 

!  Delta F method: f = f0 + δf  

!x = v|| + vD
Dominant motion

Small drift

Electron guiding center 
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!  Gyrokinetic Poisson Equation with adiabatic electrons 
•  Old method, MG useful 

!  Real electrons 
•  Need multigrid 
•  Stable production solver 

!  Two new solvers under development 
1.  Flux surface electron equilibrium model (FSA) 
-  More accurate electron model, electro-static 

2.  Hybrid kinetic ions + fluid electrons  
-  Faster in theory: implicit MHD, skip fast Alvene wave 
-  Electro-magnetic 

•  Future: fully kinetic electrons & ions; electro-magnetic 

Poisson solvers in  XGC1 
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I. Perturbative calculation of electron density   

!  Maxwell distribution on flux surface, particles for δf 
•  f0 is of form, with K kinetic energy): 
•  <> flux surface average (FSA) 

!  XGC1 calculates perturbation from Boltzmann density (i.e. adiabatic electron 
response) along field line, which equilibrate to flux surface 

!                   is potential variation along field line/surface   
!  Poisson equation: 

!  Poisson equation with linearization of exponential: € 
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FSA accurate solver 

!  Add auxiliary variable for <Φ> 
•  FieldSplit  

!  Create linearization for preconditioner matrix 
•  Linearizing about phi=0 

!  Use matrix free operator for nonlinear version of solver  
•  Preconditioned by linearized matrix 

!  Use PETSc FieldSplit and MatNest object  
!  Problem: <Φ> is global 

•  small number ~ O(102) and linear  
!  Approach:  compute explicit Schur compliment 

•  Block factorization preconditioner, non-iterative 
•  Total solve time ~2 x Laplacian solve time 
•  But large setup cost that needs amortizing 
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Old Iterative solver vs Field Split 

Solution from iterative solver 
after 10,000 iteration: 384 sec

Solution from field split solver:
0.086 sec
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2. Hybrid fluid (MHD) electrons & kinetic ions 
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!  Second branch (EM), less expensive, no kinetic electrons 
!  Evolve electron density with fluid formulations (cheaper) 
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Hybrid fluid (MHD) electrons & kinetic ions 
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!  TS with IMEX solve (some slow terms moved to RHS) 
!  2 auxiliary equations (for potential and current) 

•  Verify w/ reduced prob: fast wave & slow growth mode 
•  Fully implicit 
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!  XGC is 10+ years old & established as flagship extreme 
scale Tokamak code 

!  Numeric's & software engineering need attention 
!  PIC processing for shift to data movement centric costs 
!  Started to develop PETScified XGC code – XGC2 

•  XGC1 physics and basic numerical methods (PIC) 
•  Streaming processing with loop fusion 
•  Built on new hybrid structured/unstructured grid/

discretization solvers (Toby Isaac, tomorrow) 

Future directions for XGC: numeric's & processing 
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!  Particles with 
basic Tokamak 
dynamics 

!  FE solver grid 
decoupled 
from particle 
decomposition 

!  Pericles with 
red particle 
near outside 
flux surface 
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!  Tightly couple time integrators in PETSc (IMEX) 
•  Long term: need to put all code in PETSc 

!  Sketch of simple PIC, electro-static, one species 

Future directions for XGC – use modern solvers 
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!  Distributed field – XGC redundantly stores fields! 
•  With about 10,000 particles/cell this is doable 

!  Think of PIC processing from the ground up 
!  Algorithm, use RK2 and at each stage 

•  For all particles, deposit charge for Poisson solve 
•  For all particles, deposit current for Ampere's law solve 
•  For all particles, deposit density on velocity space grid for collision operator 
•  Solve Poisson for potential 
•  Solve Ampere's equation for magnetic potential 
•  Solve collision operator 
•  For all particles, push 
•  For all particles, collect diagnostics 

Use PETSc semi-structured solvers, etc. & fuse loops 
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!  Stream particles (not cached) 
!  Use new “forest of octree” mesh and solvers in PETSc 

•  Fast ultra scalable solver & Good data locality for grid operations 
!  Fuse particle processing loops 
!  Sketch of algorithm (using RK2): 

•  Create particles, deposit charge 
•  For each time step, for each RK stage irk=1:2 

-  Solve for potential 
-  For all particles i particle-list: 

-  p = particle-list[i]; get E field at p.x (average on gyro radius); Push p;  
-  If irk==2 

»  If (p is still local)  
»  particle-list[i] = p      // write back  
»  Deposit charge of p 

»  Else: put in send-list; remove from particle-list 
-  Else: Deposit charge of p           // saves a copy of particles (big win) 

-  If irk==2: 
-  Send send-list 
-  For each particle p received: add to particle-list; deposit charge of p 

Directions being explored to modernize XGC 
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Thank you 
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