Portable, Extensible Toolkit for

Scientific Computation
(PETSc)

Hong Zhang

Computer Science, Illinois Institute of Technology

Mathematics and Computer Science, Argonne National Laboratory

April, 2007 at the Center for Computation & Technology, LSU

Outline

Overview of PETSc
LLinear solver interface: KSP
Nonlinear solver interface: SNES

Profiling, tracing and viewing of
computational objects

Ongoing research and developments

Team and Active Developers
Non-LANS

1991 1993 1995 1996 2000 2001 2003 2006

Original Goals of PETSc

* Provide software for the scalable (parallel)
solution of algebraic systems arising from
partial differential equation simulations.

— Leverage inherited structure from the grid
and the PDEs.

— Eliminate the MPI from MPI programming!

— Provide wrappers for other decent solver
software.

Successtully transitioned from basic research

to common community tool

e Applications of PETSc

e Nano-simulations (20)

e Biology/Medical(28)

e Cardiology

e Imaging and Surgery

e Fusion (10)

e Geosciences (20)

e Environmental/Subsurface Flow (26)

e Computational Fluid Dynamics (49)

e Wave propagation and the Helmholz equation (12)
e Optimization (7)

e Other Application Areas (68)

e Software packages that use or interface to PETSc (30)
e Software engineering (30)

e Algorithm analysis and design (48)

Who Uses PETSc?

e Computational Scientists
— PyLith (TECTON), Underworld, Columbia group

e Algorithm Developers

— Iterative methods and Preconditioning researchers

e Package Developers
— SIPs, SLEPc, TAO, MagPar, StGermain, Dealll

The Role of PETSc

Developing parallel, nontrivial PDE solvers
that deliver high performance 1s still difficult
and requires months (or even years) of
concentrated effort.

PETSc 1s a tool that can ease these difficulties
and reduce the development time, but 1t 1s not
a black-box PDE solver, nor a silver bullet.

Features

Many (parallel) vector/array operations

Numerous (parallel) matrix formats and operations
Numerous linear solvers

Nonlinear solvers

Limited ODE integrators

Limited parallel grid/data management

Common interface for most DOE solver software

Intertaced Packages

1. LU (Sequential)
e SuperLU (Demmel and Li, LBNL)
e ESSL (IBM)
e Matlab
e LUSOL (from MINOS - Michael Saunders, Stanford)
« LAPACK
e PLAPACK (van de Geijn, UT Austin)
e UMFPACK (Timothy A. Davis)

2. Parallel LU
e SuperLU_DIST (Demmel and Li, LBNL)
e SPOOLES (Ashcroft, Boeing, funded by ARPA)
e MUMPS (European)
e PLAPACK (van de Geijn, UT Austin)

3. Parallel Cholesky
e DSCPACK (Raghavan, Penn. State)
e SPOOLES (Ashcroft, Boeing, funded by ARPA)
e PLAPACK (van de Geijn, UT Austin)

6.

7.
8.

0.

Intertaced Packages

XY Tlib — parallel direct solver (Fischer and Tufo, ANL)

SPAI — Sparse approximate inverse (parallel)
Parasails (Chow, part of Hypre, LLNL)
SPAI 3.0 (Grote/Barnard)

Algebraic multigrid
Parallel BoomerAMG (part of Hypre, LLLNL)
ML (part of Trilinos, SNL)
Parallel ICC(0) — BlockSolve95 (Jones and Plassman, ANL)

Parallel ILU
BlockSolve95 (Jones and Plassman, ANL)
PILUT (part of Hypre, LLNL)
EUCLID (Hysom — also part of Hypre, ODU/LLNL)

Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN)

10

Intertaced Packages

10. Parititioning
* Parmetis

e Chaco
« Jostle
 Party
« Scotch

11. ODE integrators
 Sundials (LLNL)

12. Eigenvalue solvers
* BLOPEX (developed by Andrew Knyazev)

11

Child Packages of PETSc

SIPs - Shift-and-Invert Parallel Spectral
Transformations

SLEPc - scalable eigenvalue/eigenvector solver
packages.

TAO - scalable optimization algorithms

veltisto (“optimum”)- for problems with
constraints which are time-independent pdes.

All have PETSc’s style of programming

12

What Can We Handle?

« PETSc has run problem with 500 million unknowns
http://www.scconference.org/sc2004/schedule/pdfs/pap111.pdf

e PETSc has run on over 6,000 processors efficiently
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z

 PETSc applications have run at 2 Teraflops
LANL PFLOTRAN code

 PETSc also runs on your laptop

e Only a handful of our users ever go over 64 processors

13

Structure of PETSc

PETSc Structure I

The PETSc Programming Model

e Distributed memory, “shared-nothing”
e Requires only a standard compiler

e Access to data on remote machines through MPI

e Hide within objects the details of the
communication

e User orchestrates communication at a higher
abstract level than direct MPI calls

PETSc Structure I

PETSc 1s only a Library

 PETSc 1s merely a set of library interfaces
— You write main()
— You control output
— You control the basic flow of the program
— We propagate the errors from underlying packages
— We present (largely) the same interfaces in
o C/C++
e F77/F90

See Gropp in SIAM, OO Methods for Interop SciEng, ‘99

Integration I

Flow of Control for PDE Solution

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

PC

‘ User code ’ PETSc code

PETSc Structure I

Getting Started

PetscInitialize();
ObjCreate(MPI_comm,&obyj);
ObjSetType(obj,);
ObjSetFromOptions(oby,);

ObjSolve(obj,);
ObjGetxxx(obj,);

ObjDestroy(obj);
PetscFinalize()

Integration

PETSc Numerical Components

Nonlinear Solvers (SNES) Time Steppers (T5)
Newton-based Methods :
Other Euler Baéléiz?rd Psgtlei%g:; “l" Other
Line Search | Trust Region
Krylov Subspace Methods (KSP)
GMRES CG CGS | Bi-CG-STAB | TFQMR | Richardson | Chebychev | Other
Preconditioners (PC)
Additive Block . LU
Schwartz Jacobi Jacobi ILU ICC (Sequential only) Others
Matrices (Mat)
Compressed | Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Matrix-free Other
(ALJ) (BAL)) (BDIAG)
Distributed Arrays(DA) Index Sets (IS)
Indices Block Indices Stride Other

Vectors (Vec)

19

Basic Linear Solver Code (C/C++)

KSP ksp; /* linear solver context */

Mat A; [* matrix */

Vec X, b; [* solution, RHS vectors */

int n, its; [* problem dimension, number of iterations */

MatCreate(PETSC_CQMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);
MatSetFromOptions(A);

[* (code to assemble matrix not shown) */

VecCreate(PETSC_COMM_WORLD,&x); Indicate whether the preconditioner
VecSetSizes(x,PETSC_DECIDE, n); has the same nonzero pattern as the
VecSetFromOptions(x); matrix each time a system is solved.
VecDuplicate(x,&b); This default works with all
/* (code to assemble RHS vector not shown)*/ preconditioners. Other values (e.g.,
SAME_NONZERO_PATTERN)
KSPCreate(PETSC_COMM_WORLD,&ksp); can be used for particular
KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_RATTERN); preconditioners. Ignored when
KSPSetFromOptions(ksp); solving only one system
KSPSolve(ksp,b,x);

KSPDestroy(ksp);

solvers:
beginner I linear

Linear Solver Interface: KSP

B D e
Linear Solvers (KSP)

PC

’ User code <> PETSc code

solvers:
beginner I linear

Example

~petsc/src/ksp/ksp/examples/tutorials/ex10.c

22

LLinear Solvers in PETSc

Krvylov Methods (KSP) Preconditioners (PC)

e Conjugate Gradient * Block Jacobi

e GMRES e Overlapping Additive
Schwarz

* CG-Squared + ICC, ILU via BlockSolve9s5

* Bi-CG-stab e ILU(k), LU (direct solve,

e Transpose-free QMR sequential only)

e Arbitrary matrix
* clcC.

* ctcC.

solvers:
beginner I linear

Customization Options

e Command Line Interface
— Applies same rule to all queries via a database

— Enables the user to have complete control at
runtime, with no extra coding

 Procedural Interface

— Provides a great deal of control on a usage-by-
usage basis 1nside a single code

— Gaives full flexibility inside an application
solvers:

beginner I linear I

Setting Solver Options at Runtime

 -ksp_type [cg,gmres,bcgs,tgmr,...]
e -pc_type [lu,ilu,jacobi,sor,asm,...] /AN

-ksp_max_it <max_iters> (2
-ksp_gmres_restart <restart>

-pc_asm_overlap <overlap>

-pc_asm_type [basic,restrict,interpolate,none]

etc ...

A @ solvers:
beginner | intermediate I linear

Linear Solvers: Monitoring

Convergence
e -ksp_monitor - Prints preconditioned residual norm A
e -ksp_xmonitor - Plots preconditioned residual norm
e -ksp_truemonitor - Prints true residual norm Il b-Ax |l @
e -ksp_xtruemonitor - Plots true residual norm Il b-Ax |
e User-defined monitors, using callbacks \3/

A @ @ solvers:
beginner | intermediate | advanced I linear

Recursion: Specitying Solvers for
Schwarz Preconditioner Blocks

e Specify KSP solvers and options with “-sub” prefix,
e.g.,
— Full or incomplete factorization
-sub_pc_type lu
-sub_pc_type ilu -sub_pc_ilu_levels <levels>
— Can also use inner Krylov iterations, e.g.,

-sub_ksp_type gmres -sub_ksp_rtol <rtol>
-sub_ksp_max_it <maxit>

. solvers: linear:
beginner preconditioners

PETSc Programming Aids

e Correctness Debugging
— Automatic generation of tracebacks
— Detecting memory corruption and leaks
— Optional user-defined error handlers

e Performance Profiling
— Integrated profiling using -log_summary
— Profiling by stages of an application

— User-defined events

Integration I

Debugging

Support for parallel debugging

-start_in_debugger [gdb,dbx,noxterm]
-on_error_attach_debugger [gdb,dbx,noxterm]
-on_error_abort

-debugger_nodes 0,1

-display machinename:0.0

When debugging, it 1s often useful to place
a breakpoint in the function PetscError().

debugging and errors I

Profiling

Integrated monitoring of
— time
— floating-point performance
— memory usage
— communication
Active if PETSc was configured with
--with-debugging=1 (default)
— Can also profile application code segments
Print summary data with option: -log_summary
Print redundant information from PETSc routines: -info [infofile]
Print the trace of the functions called: -log_trace [logfile]

profiling and
performance tuning

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,
support the general solution of F(u) = 0

User provides:
— Code to evaluate F(u)

— Code to evaluate Jacobian of F(u) (optional)

 or use sparse finite difference approximation

 or use automatic differentiation
— AD support via collaboration with P. Hovland and B. Norris

solvers:
nonlinear

— Coming in next PETSc release via automated interface to
ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff)

SNES: Review of Basic Usage

SNESCreate() - Create SNES context
SNESSetFunction() - Set function eval. routine
SNESSetJacobian() - Set Jacobian eval. routine
SNESSetFromOptions() - Set runtime solver options
for [SNES,SLES, KSP,PC]
SNESSolve() - Run nonlinear solver
SNESView() - View solver options

actually used at runtime
(alternative: -SNes_view)

SNESDestroy() - Destroy solver
solvers: I
nonlinear

Finite Ditference Jacobian Computation

e Compute and explicitly store Jacobian via 1%%-order FD
— Dense: -snes_fd, SNESDefaultComputeJacobian()

— Sparse via colorings: MatFDColoringCreate),
SNESDefaultComputeJacobianColor()

e Matrix-free Newton-Krylov via 18t-order FD, no
preconditioning unless specifically set by user

— -snes_mf
 Matrix-free Newton-Krylov via 18%-order FD, user-

defined preconditioning matrix

— -snes_mf_operator
solvers:
nonlinear

Uniform access to all linear and
nonlinear solvers

e -ksp_type [cg,gmres,bcgs,tigmr,...]
o -pc_type [lu,ilu,jacobi,sor,asm,...] A\
e -snes_typels,...]

-snes_line_search <line search method>

-sles_Is <parameters>)
-snes_convergence <tolerance>

etc...

solvers:
nonlinear

Parallel Data Layout and Ghost Values

Managing field data layout and required ghost values
is the key to high performance of most PDE-based
parallel programs.

Mesh Types Usage Concepts
e Structured e Geometric data
— DA objects e Data structure creation
* Unstructured * Ghost point updates
— VecScatter objects .

Local numerical computation

important concepts I data layout I

Ghost Values

@® Local node O Ghost node

Ghost values: To evaluate a local function f{x), each process
requires its local portion of the vector x as well as its ghost values —
or bordering portions of x that are owned by neighboring processes.

data layout I

Communication and Physical

Discretization
Communication Local
Geometric Data Structure Ghost Point Ghost Point Numerwfll
Data Creation Data Structures ~ Updates Computation
stencil DACreate() bA DAGlobalToLocal() Loops over

[implicit] AO LLJ,K

— indices

structured meshes /\

elements ‘ b VecScatter oo o
edges VecScatterCreate() AQ VecScatter() p
i | entities
vertices

unstructured meshes 2)

data layout I

DA: Parallel Data Layout and
Ghost Values for Structured Meshes

e Local and global indices

e Local and global vectors

e DA creation
e Ghost point updates

e Viewing

data layout:
distributed arrays

Global and Local Representations

@ I.ocal node
O Ghost node

- 5 9
E \J \J \J
v 0 1 2 3 4
Global: each process stores a unique Local: each process stores a unique
local set of vertices (and each vertex local set of vertices as well as ghost
1s owned by exactly one process) nodes from neighboring processes

data layout:
distributed arrays

Logically Regular Meshes

DA - Distributed Array: object containing information about
vector layout across the processes and communication of
ghost values

Form a DA

— DACreateld(....,.DA)
— DACreate2d(....,.DA ")
— DACreate3d(....,.DA ¥

Create the corresponding PETSc vectors
— DACreateGlobalVector(DA, Vec *) or
— DACreateLocalVector(DA, Vec *)

Update ghostpoints (scatter global vector into local parts,

including ghost points)
data layout:
distributed arrays

— DAGlobalToLocalBegin(DA, ...)
— DAGIlobalToLocalEnd(DA,...)

Distributed Arrays

Data layout and ghost values

Box-type . . Star-type
stencil stencil

data layout:
distributed arrays

Sample Nonlinear Application:
Driven Cavity Problem

Velocity-vorticity Solution Components
formulation

Flow driven by lid D D
and/or bouyancy

LOgically regular gl’id, velocity: u velocity: v

parallelized with DAs
Finite difference
discretization

SOUrce COd@I vorticity: Q temperature: T

petsc/src/snes/examples/tutorials/ex19.c

Application code author: D. E. Keyes solvgrs: I
nonlinear

Ongoing Research and Developments

Framework for multi-model algebraic system

~petsc-dev/src/snes/examples/tutorials/ex31.c, ex32.c

Framework for unstructured meshes and functions
defined over them

Bypassing the sparse matrix memory bandwidth
bottleneck

— Large number of processors (nproc =1k, 10k,...)
— Peta-scale performance

More TS methods

43

Bypassing the sparse matrix memory

bandwidth bottleneck:

® Newton-multigrid provides

good nonlinear solver
easy utilization of software libraries

low computational efficiency

® Multigrid-Newton provides

good nonlinear solver
lower memory usage
potential for high computational efficiency

requires ‘“‘code generation/in-lining”

44

How will we solve numerical applications
in 20 years?

® Not with the algorithms we use today?
* Not with the software (development) we use
today?

45

References

e http://www.mcs.anl.gov/petsc

46

