
1

Portable, Extensible Toolkit for

Scientific Computation

(PETSc)

Hong Zhang

Computer Science, Illinois Institute of Technology

Mathematics and Computer Science, Argonne National Laboratory

April, 2007 at the Center for Computation & Technology, LSU

2

Outline

• Overview of PETSc

• Linear solver interface: KSP

• Nonlinear solver interface: SNES

• Profiling, tracing and viewing of

computational objects

• Ongoing research and developments

1991 1993 1995 1996 2000 2001 2003 2006

Non-LANS
Team and Active Developers

Original Goals of PETSc

• Provide software for the scalable (parallel)

solution of algebraic systems arising from

partial differential equation simulations.

– Leverage inherited structure from the grid

and the PDEs.

– Eliminate the MPI from MPI programming!

– Provide wrappers for other decent solver

software.

5

Successfully transitioned from basic research

to common community tool

• Applications of PETSc

• Nano-simulations (20)

• Biology/Medical(28)

• Cardiology

• Imaging and Surgery

• Fusion (10)

• Geosciences (20)

• Environmental/Subsurface Flow (26)

• Computational Fluid Dynamics (49)

• Wave propagation and the Helmholz equation (12)

• Optimization (7)

• Other Application Areas (68)

• Software packages that use or interface to PETSc (30)

• Software engineering (30)

• Algorithm analysis and design (48)

6

Who Uses PETSc?

• Computational Scientists

– PyLith (TECTON), Underworld, Columbia group

• Algorithm Developers

– Iterative methods and Preconditioning researchers

• Package Developers

– SIPs, SLEPc, TAO, MagPar, StGermain, Dealll

7

The Role of PETSc

Developing parallel, nontrivial PDE solvers

that deliver high performance is still difficult

and requires months (or even years) of

concentrated effort.

PETSc is a tool that can ease these difficulties

and reduce the development time, but it is not

a black-box PDE solver, nor a silver bullet.

8

Features

• Many (parallel) vector/array operations

• Numerous (parallel) matrix formats and operations

• Numerous linear solvers

• Nonlinear solvers

• Limited ODE integrators

• Limited parallel grid/data management

• Common interface for most DOE solver software

9

Interfaced Packages
1. LU (Sequential)

• SuperLU (Demmel and Li, LBNL)

• ESSL (IBM)

• Matlab

• LUSOL (from MINOS - Michael Saunders, Stanford)

• LAPACK

• PLAPACK (van de Geijn, UT Austin)

• UMFPACK (Timothy A. Davis)

2. Parallel LU
• SuperLU_DIST (Demmel and Li, LBNL)

• SPOOLES (Ashcroft, Boeing, funded by ARPA)

• MUMPS (European)

• PLAPACK (van de Geijn, UT Austin)

3. Parallel Cholesky
• DSCPACK (Raghavan, Penn. State)

• SPOOLES (Ashcroft, Boeing, funded by ARPA)

• PLAPACK (van de Geijn, UT Austin)

10

Interfaced Packages

4. XYTlib – parallel direct solver (Fischer and Tufo, ANL)

5. SPAI – Sparse approximate inverse (parallel)

• Parasails (Chow, part of Hypre, LLNL)

• SPAI 3.0 (Grote/Barnard)

6. Algebraic multigrid
• Parallel BoomerAMG (part of Hypre, LLNL)

• ML (part of Trilinos, SNL)

7. Parallel ICC(0) – BlockSolve95 (Jones and Plassman, ANL)

8. Parallel ILU

• BlockSolve95 (Jones and Plassman, ANL)

• PILUT (part of Hypre, LLNL)

• EUCLID (Hysom – also part of Hypre, ODU/LLNL)

9. Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN)

11

Interfaced Packages

10. Parititioning

• Parmetis

• Chaco

• Jostle

• Party

• Scotch

11. ODE integrators

• Sundials (LLNL)

12. Eigenvalue solvers

• BLOPEX (developed by Andrew Knyazev)

12

Child Packages of PETSc

• SIPs - Shift-and-Invert Parallel Spectral
Transformations

• SLEPc - scalable eigenvalue/eigenvector solver
packages.

• TAO - scalable optimization algorithms

• veltisto (“optimum”)- for problems with
constraints which are time-independent pdes.

All have PETSc’s style of programming

13

What Can We Handle?

• PETSc has run problem with 500 million unknowns

http://www.scconference.org/sc2004/schedule/pdfs/pap111.pdf

• PETSc has run on over 6,000 processors efficiently

ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z

• PETSc applications have run at 2 Teraflops
LANL PFLOTRAN code

• PETSc also runs on your laptop

• Only a handful of our users ever go over 64 processors

14

Computation and Communication Kernels

MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc Application Codes

Matrices, Vectors, Indices
Grid

Management

Linear Solvers

Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

PETSc StructurePETSc Structure

15

The PETSc Programming Model

• Distributed memory, “shared-nothing”

• Requires only a standard compiler

• Access to data on remote machines through MPI

• Hide within objects the details of the

communication

• User orchestrates communication at a higher

abstract level than direct MPI calls

PETSc StructurePETSc Structure

16

PETSc is only a Library

• PETSc is merely a set of library interfaces

– You write main()

– You control output

– You control the basic flow of the program

– We propagate the errors from underlying packages

– We present (largely) the same interfaces in

• C/C++

• F77/F90

See Gropp in SIAM, OO Methods for Interop SciEng, ‘99

IntegrationIntegration

17

PETSc codeUser code

Application

Initialization

Function

Evaluation

Jacobian

Evaluation

Post-

Processing

PC

PETSc

Main Routine

Linear Solvers (KSP)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control for PDE Solution

PETSc StructurePETSc Structure

18

Getting Started

PetscInitialize();

ObjCreate(MPI_comm,&obj);

ObjSetType(obj,);

ObjSetFromOptions(obj,);

ObjSolve(obj,);

ObjGetxxx(obj,);

ObjDestroy(obj);

PetscFinalize()

IntegrationIntegration

19

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other

Index Sets (IS)

Vectors (Vec)

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers (SNES)

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC

LU
(Sequential only) Others

Preconditioners (PC)

Euler
Backward

Euler
Pseudo Time

Stepping Other

Time Steppers (TS)

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods (KSP)

Matrices (Mat)

PETSc Numerical Components

Distributed Arrays(DA)

Matrix-free

20

Basic Linear Solver Code (C/C++)

KSP ksp; /* linear solver context */

Mat A; /* matrix */

Vec x, b; /* solution, RHS vectors */

int n, its; /* problem dimension, number of iterations */

MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);
MatSetFromOptions(A);
/* (code to assemble matrix not shown) */

VecCreate(PETSC_COMM_WORLD,&x);
VecSetSizes(x,PETSC_DECIDE, n);
VecSetFromOptions(x);

VecDuplicate(x,&b);
/* (code to assemble RHS vector not shown)*/

KSPCreate(PETSC_COMM_WORLD,&ksp);

KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);

KSPSetFromOptions(ksp);

KSPSolve(ksp,b,x);

KSPDestroy(ksp);

solvers:

linear

solvers:

linearbeginnerbeginner

Indicate whether the preconditioner

has the same nonzero pattern as the

matrix each time a system is solved.

This default works with all

preconditioners. Other values (e.g.,

SAME_NONZERO_PATTERN)

can be used for particular

preconditioners. Ignored when

solving only one system

21

PETSc

Application

Initialization
Evaluation of A and b

Post-

Processing

Solve

Ax = b PC

Linear Solvers (KSP)

PETSc codeUser code

Linear Solver Interface: KSP

Main Routine

solvers:

linear

solvers:

linearbeginnerbeginner

22

Example

~petsc/src/ksp/ksp/examples/tutorials/ex10.c

23

Linear Solvers in PETSc

• Conjugate Gradient

• GMRES

• CG-Squared

• Bi-CG-stab

• Transpose-free QMR

• etc.

• Block Jacobi

• Overlapping Additive

Schwarz

• ICC, ILU via BlockSolve95

• ILU(k), LU (direct solve,

sequential only)

• Arbitrary matrix

• etc.

Krylov Methods (KSP) Preconditioners (PC)

solvers:

linear

solvers:

linearbeginnerbeginner

24

Customization Options

• Command Line Interface

– Applies same rule to all queries via a database

– Enables the user to have complete control at

runtime, with no extra coding

• Procedural Interface

– Provides a great deal of control on a usage-by-

usage basis inside a single code

– Gives full flexibility inside an application
solvers:

linear

solvers:

linearbeginnerbeginner

25

• -ksp_type [cg,gmres,bcgs,tfqmr,…]
• -pc_type [lu,ilu,jacobi,sor,asm,…]

• -ksp_max_it <max_iters>

• -ksp_gmres_restart <restart>
• -pc_asm_overlap <overlap>

• -pc_asm_type [basic,restrict,interpolate,none]

• etc ...

Setting Solver Options at Runtime

solvers:

linear

solvers:

linearbeginnerbeginner

1

intermediateintermediate

2

1

2

26

Linear Solvers: Monitoring

Convergence
• -ksp_monitor - Prints preconditioned residual norm

• -ksp_xmonitor - Plots preconditioned residual norm

• -ksp_truemonitor - Prints true residual norm || b-Ax ||

• -ksp_xtruemonitor - Plots true residual norm || b-Ax ||

• User-defined monitors, using callbacks

solvers:

linear

solvers:

linear
beginnerbeginner

1

intermediateintermediate

2

advancedadvanced

3

1

2

3

27

Recursion: Specifying Solvers for

Schwarz Preconditioner Blocks

• Specify KSP solvers and options with “-sub” prefix,

e.g.,

– Full or incomplete factorization

-sub_pc_type lu

-sub_pc_type ilu -sub_pc_ilu_levels <levels>

– Can also use inner Krylov iterations, e.g.,

-sub_ksp_type gmres -sub_ksp_rtol <rtol>

-sub_ksp_max_it <maxit>

solvers: linear:

preconditioners

solvers: linear:

preconditionersbeginnerbeginner

28

PETSc Programming Aids

• Correctness Debugging

– Automatic generation of tracebacks

– Detecting memory corruption and leaks

– Optional user-defined error handlers

• Performance Profiling

– Integrated profiling using -log_summary

– Profiling by stages of an application

– User-defined events

IntegrationIntegration

29

Debugging

• -start_in_debugger [gdb,dbx,noxterm]

• -on_error_attach_debugger [gdb,dbx,noxterm]

• -on_error_abort

• -debugger_nodes 0,1

• -display machinename:0.0

Support for parallel debugging

When debugging, it is often useful to place

a breakpoint in the function PetscError().

debugging and errorsdebugging and errors

30

Profiling

• Integrated monitoring of

– time

– floating-point performance

– memory usage

– communication

• Active if PETSc was configured with

--with-debugging=1 (default)

– Can also profile application code segments

• Print summary data with option: -log_summary

• Print redundant information from PETSc routines: -info [infofile]

• Print the trace of the functions called: -log_trace [logfile]

profiling and

performance tuning

profiling and

performance tuning

31

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,

support the general solution of F(u) = 0

User provides:

– Code to evaluate F(u)

– Code to evaluate Jacobian of F(u) (optional)
• or use sparse finite difference approximation

• or use automatic differentiation

– AD support via collaboration with P. Hovland and B. Norris

– Coming in next PETSc release via automated interface to
ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff)

solvers:

nonlinear

solvers:

nonlinear

32

SNES: Review of Basic Usage

• SNESCreate() - Create SNES context

• SNESSetFunction() - Set function eval. routine

• SNESSetJacobian() - Set Jacobian eval. routine

• SNESSetFromOptions() - Set runtime solver options
for [SNES,SLES, KSP,PC]

• SNESSolve() - Run nonlinear solver

• SNESView() - View solver options
actually used at runtime
(alternative: -snes_view)

• SNESDestroy() - Destroy solver

solvers:

nonlinear

solvers:

nonlinear

33

Finite Difference Jacobian Computation

• Compute and explicitly store Jacobian via 1st-order FD

– Dense: -snes_fd, SNESDefaultComputeJacobian()

– Sparse via colorings: MatFDColoringCreate(),
SNESDefaultComputeJacobianColor()

• Matrix-free Newton-Krylov via 1st-order FD, no
preconditioning unless specifically set by user

– -snes_mf

• Matrix-free Newton-Krylov via 1st-order FD, user-
defined preconditioning matrix

– -snes_mf_operator
solvers:

nonlinear

solvers:

nonlinear

34

Uniform access to all linear and

nonlinear solvers

• -ksp_type [cg,gmres,bcgs,tfqmr,…]

• -pc_type [lu,ilu,jacobi,sor,asm,…]
• -snes_type [ls,…]

• -snes_line_search <line search method>

• -sles_ls <parameters>
• -snes_convergence <tolerance>

• etc...

solvers:

nonlinear

solvers:

nonlinear

1

2

35

Parallel Data Layout and Ghost Values

• Structured

– DA objects

• Unstructured

– VecScatter objects

• Geometric data

• Data structure creation

• Ghost point updates

• Local numerical computation

Mesh Types Usage Concepts

Managing field data layout and required ghost values
is the key to high performance of most PDE-based
parallel programs.

data layoutdata layoutimportant conceptsimportant concepts

36

Ghost Values

Local node Ghost node

data layoutdata layout

Ghost values: To evaluate a local function f(x) , each process

requires its local portion of the vector x as well as its ghost values –

or bordering portions of x that are owned by neighboring processes.

37

Communication and Physical

Discretization

data layoutdata layout

Communication

Data Structure

Creation

Ghost Point

Data Structures

Ghost Point

Updates

Local

Numerical

Computation
Geometric

Data

DA

AO
DACreate() DAGlobalToLocal()

Loops over

I,J,K

indices

stencil

[implicit]

VecScatter

AOVecScatterCreate() VecScatter() Loops over

entities

elements

edges

vertices

unstructured meshes

structured meshes 1

2

38

DA: Parallel Data Layout and
Ghost Values for Structured Meshes

• Local and global indices

• Local and global vectors

• DA creation

• Ghost point updates

• Viewing

data layout:

distributed arrays

data layout:

distributed arrays

39

Global and Local Representations

Local node

Ghost node

0 1 2 3 4

5 9

data layout:

distributed arrays

data layout:

distributed arrays

Global: each process stores a unique

local set of vertices (and each vertex

is owned by exactly one process)

Local: each process stores a unique

local set of vertices as well as ghost

nodes from neighboring processes

40
data layout:

distributed arrays

data layout:

distributed arrays

Logically Regular Meshes

• DA - Distributed Array: object containing information about
vector layout across the processes and communication of
ghost values

• Form a DA

– DACreate1d(….,DA *)

– DACreate2d(….,DA *)

– DACreate3d(….,DA *)

• Create the corresponding PETSc vectors

– DACreateGlobalVector(DA, Vec *) or

– DACreateLocalVector(DA, Vec *)

• Update ghostpoints (scatter global vector into local parts,
including ghost points)

– DAGlobalToLocalBegin(DA, …)

– DAGlobalToLocalEnd(DA,…)

41

Distributed Arrays

Proc 10

Proc 0 Proc 1

Proc 10

Proc 0 Proc 1

Box-type

stencil

Star-type

stencil

data layout:

distributed arrays

data layout:

distributed arrays

Data layout and ghost values

42

Sample Nonlinear Application:
Driven Cavity Problem

Solution Components

velocity: u velocity: v

temperature: Tvorticity: ζ

Application code author: D. E. Keyes

• Velocity-vorticity
formulation

• Flow driven by lid
and/or bouyancy

• Logically regular grid,
parallelized with DAs

• Finite difference
discretization

• source code:

solvers:

nonlinear

solvers:

nonlinear

petsc/src/snes/examples/tutorials/ex19.c

43

Ongoing Research and Developments

• Framework for multi-model algebraic system

~petsc-dev/src/snes/examples/tutorials/ex31.c, ex32.c

• Framework for unstructured meshes and functions
defined over them

• Bypassing the sparse matrix memory bandwidth
bottleneck
– Large number of processors (nproc =1k, 10k,…)

– Peta-scale performance

• More TS methods

• …

44

• Newton-multigrid provides

– good nonlinear solver

– easy utilization of software libraries

– low computational efficiency

• Multigrid-Newton provides

– good nonlinear solver

– lower memory usage

– potential for high computational efficiency

– requires “code generation/in-lining”

Bypassing the sparse matrix memory

bandwidth bottleneck:

45

How will we solve numerical applications

in 20 years?

• Not with the algorithms we use today?

• Not with the software (development) we use

today?

46

References

• http://www.mcs.anl.gov/petsc

