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Unit Objectives

• Introduce the

Portable Extensible Toolkit for Scientific Computation

• Retrieve, Configure, Build, and Run a PETSc Example

• Empower students to learn more about PETSc



What I Need From You

• Tell me if you do not understand

• Tell me if an example does not work

• Suggest better wording or figures

• Followup problems at petsc-maint@mcs.anl.gov

mailto:petsc-maint@mcs.anl.gov
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Developing parallel, nontrivial PDE solvers that deliver

high performance is still difficult and requires months

(or even years) of concentrated effort. PETSc is a toolkit

that can ease these difficulties and reduce the develop-

ment time, but it is not a black-box PDE solver, nor a

silver bullet.



What is PETSc?

• A freely available and supported research code

- Download from http://www.mcs.anl.gov/petsc

- Free for everyone, including industrial users

- Hyperlinked manual, examples, and manual pages for all routines

- Hundreds of tutorial-style examples

- Support via email: petsc-maint@mcs.anl.gov

- Usable from C, C++, Fortran 77/90, and soon Python

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov


What is PETSc?

• Portable to any parallel system supporting MPI, including:

- Tightly coupled systems

Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise

- Loosely coupled systems, such as networks of workstations

Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows

• PETSc History

- Begun September 1991

- Over 8,500 downloads since 1995 (version 2), currently 250 per month

• PETSc Funding and Support

- Department of Energy

SciDAC, MICS Program

- National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program



Not a “Traditional” Library

• Traditional libraries (e.g. Linpack) are used by an application souce code:
the application code creates data structures (for example arrays) fills them
up (for example assembling matrices) and then pass them to the library.

• Modern libraries (e.g. PETSc) are used with an application code: the appli-
cation source code works with the library creating the data strutures, filling
the data structures and solving.



Who Uses PETSc?

• Computational Scientists

- PyLith (TECTON), Underworld, Columbia group

• Algorithm Developers

- Iterative methods researchers

• Package Developers

- SLEPc, TAO, MagPar, StGermain



The PETSc Team

Bill Gropp Barry Smith Satish Balay

Dinesh Kaushik Kris Buschelman Matt Knepley

Hong Zhang Victor Eijkhout Lois McInnes



Downloading PETSc

• The latest tarball is on the PETSc site

- ftp://ftp.mcs.anl.gov/pub/petsc/petsc.tar.gz

- We no longer distribute patches (everything is in the distribution)

• There is a Debian package

• There is a FreeBSD Port

http://www.mcs.anl.gov/petsc/petsc-as/download
ftp://ftp.mcs.anl.gov/pub/petsc/petsc.tar.gz
http://lyre.mit.edu/~powell/petsc.html
http://www.freshports.org/math/petsc


Cloning PETSc

• The full development repository is open to the public

- bk://petsc.bkbits.net/petsc-dev

• Why is this better?

- You can clone to any release (or any specific ChangeSet)

- You can easily rollback changes (or releases)

- You can get fixes from us the same day

http://petsc.bkbits.net/petsc-dev


Unpacking PETSc

• Just clone development repository

- bk clone bk://petsc.bkbits.net/petsc-dev petsc-dev

- bk clone -r@Release-2.2.1 petsc-dev petsc-2.2.1

or

• Unpack the tarball

- tar xzf petsc.tar.gz



Exercise 1

Download and Unpack PETSc!



Configuring PETSc

• Set $PETSC DIR to the installtion root directory

• Run the configuration utility

- $PETSC DIR/config/configure.py

- $PETSC DIR/config/configure.py --help

- $PETSC DIR/config/configure.py --download-mpich

• There are many examples on the installation page

• Configuration files are placed in $PETSC DIR/bmake/$PETSC ARCH

- $PETSC ARCH has a default if not specified

http://www.mcs.anl.gov/petsc/petsc-as/documentation/installation.html


Configuring PETSc

• You can easily reconfigure with the same options

- ./bmake/$PETSC ARCH/configure.py

• Can maintain several different configurations

- ./config/configure.py -PETSC ARCH=linux-fast --with-debugging=0

• All configuration information is in configure.log

- ALWAYS send this file with bug reports



Automatic Downloads

• Starting in 2.2.1, some packages are automatically

- Downloaded

- Configured and Built (in $PETSC DIR/externalpackages)

- Installed in PETSc

• Currently works for

- PETSc documentation utilities (Sowing, lgrind, c2html)

- BLAS, LAPACK, BLACS, ScaLAPACK

- MPICH, LAM

- ParMetis, Chaco, Jostle, Party, Scotch

- MUMPS, Spooles, SuperLU, UMFPack

- Prometheus, HYPRE, ML, SPAI



Exercise 2

Configure the PETSc that you downloaded and unpacked.



Building PETSc

• Uses recursive make starting in cd $PETSC DIR

- make

- Check build when done with make test

• Complete log for each build in make log $PETSC ARCH

- ALWAYS send this with bug reports

• Can build multiple configurations

- PETSC ARCH=linux-fast make

- Libraries are in $PETSC DIR/lib/$PETSC ARCH/

• Can also build a subtree

- cd src/snes; make

- cd src/snes; make ACTION=libfast tree



Exercise 3

Build the PETSc that you configured.



Exercise 4

Reconfigure PETSc to use ParMetis.

1. ./bmake/linux-gnu/configure.py

-PETSC ARCH=linux-parmetis

-download-parmetis

2. PETSC ARCH=linux-parmetis make

3. PETSC ARCH=linux-parmetis make test



Running PETSc

• Try running PETSc examples first

- cd $PETSC DIR/src/snes/examples/tutorials

• Build examples using make targets

- make ex5

• Run examples using the make target

- make runex5

• Can also run using MPI directly

- mpirun ./ex5 -snes max it 5

- mpiexec ./ex5 -snes monitor



Using MPI

• The Message Passing Interface is:

- a library for parallel communication

- a system for launching parallel jobs (mpirun/mpiexec)

- a community standard

• Launching jobs is easy

- mpiexec -np 4 ./ex5

• You should never have to make MPI calls when using PETSc

- Almost never



MPI Concepts

• Communicator

- A context (or scope) for parallel communication (“Who can I talk to”)

- There are two defaults:

yourself (PETSC COMM SELF),

and everyone launched (PETSC COMM WORLD)

- Can create new communicators by splitting existing ones

- Every PETSc object has a communicator

• Point-to-point communication

- Happens between two processes (like in MatMult())

• Reduction or scan operations

- Happens among all processes (like in VecDot())



Alternative Memory Models

• Single process (address space) model

- OpenMP and threads in general

- Fortran 90/95 and compiler-discovered parallelism

- System manages memory and (usually) thread scheduling

- Named variables refer to the same storage

• Single name space model

- HPF

- Global Arrays

- Named variables refer to the coherent values (distribution is automatic)

• Distributed memory (shared nothing)

- Message passing

- Names variables in different processes are unrelated



Common Viewing Options

• Gives a text representation

-vec view

• Generally views subobjects too

-snes view

• Can visualize some objects

-mat view draw

• Alternative formats

-vec view binary, -vec view matlab, -vec view socket

• Sometimes provides extra information

-mat view info, -mat view info detailed



Common Monitoring Options

• Display the residual

-ksp monitor

• Can disable dynamically

-ksp cancelmonitors

• Does not display subsolvers

-snes monitor

• Can display graphically

-ksp xmonitor

• Can use the true residual

-ksp truemonitor

• Can display different subobjects

-snes vecmonitor, -snes vecmonitor update, -snes vecmonitor residual

-ksp gmres krylov monitor



• Can display the spectrum

-ksp singmonitor



Exercise 5

Run SNES Example 5 using come custom options.

1. cd $PETSC DIR/src/snes/examples/tutorials

2. make ex5

3. mpiexec ./ex5 -snes monitor -snes view

4. mpiexec ./ex5 -snes type tr -snes monitor -snes view

5. mpiexec ./ex5 -ksp monitor -snes monitor -snes view

6. mpiexec ./ex5 -pc type jacobi -ksp monitor -snes monitor -snes view

7. mpiexec ./ex5 -ksp type bicg -ksp monitor -snes monitor -snes view



Exercise 6

Create a new code based upon SNES Example 5.

1. Create a new directory

- mkdir -p /home/knepley/proj/newsim/src

2. Copy the source

- cp ex5.c /home/knepley/proj/newsim/src

3. Create a PETSc makefile

- Add a link target

${CLINKER} -o $@ $< ${PETSC SNES LIB}
${FLINKER} -o $@ $< ${PETSC FORTRAN LIB} ${PETSC SNES LIB}
- include ${PETSC DIR}/bmake/common/base

To get the project ready-made

C: bk clone bk://petsc.bkbits.net/tutorialExercise6-C newsim

F77: bk clone bk://petsc.bkbits.net/tutorialExercise6-F newsim



Getting More Help

• http://www.mcs.anl.gov/petsc

• Hyperlinked documentation

- Manual

- Manual pages for evey method

- HTML of all example code (linked to manual pages)

• FAQ

• Full support at petsc-maint@mcs.anl.gov

• High profile users

- David Keyes

- Rich Martineau

- Richard Katz

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/documentation
http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html
mailto:petsc-maint@mcs.anl.gov


Common PETSc Usage
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Correctness Debugging

• Automatic generation of tracebacks

• Detecting memory corruption and leaks

• Optional user-defined error handlers



Interacting with the Debugger

• Launch the debugger

-start in debugger [gdb,dbx,noxterm]

-on error attach debugger [gdb,dbx,noxterm]

• Attach the debugger only to some parallel processes

-debugger nodes 0,1

• Set the display (often necessary on a cluster)

-display khan.mcs.anl.gov:0.0



Debugging Tips

• Putting a breakpoint in PetscError() can catch errors as they are flagged

• PETSc tracks memory overwrites at the beginning and end of arrays

- The CHKMEMQ macro causes a check of all allocated memory

- Track memory overwrites by bracketing them with CHKMEMQ

• PETSc checks for leaked memory

- Use PetscMalloc() and PetscFree() for all allocation

- The -trmalloc option will print unfreed memory on PetscFinalize()



Exercise 1

Use the debugger to find a SEGV

Locate a memory overwrite using CHKMEMQ.

• Get the example

bk clone -r1.4 bk://petsc.bkbits.net/tutorialExercise1

• Build the example make

• Run it make run and watch the fireworks

• Run it under the debugger make debug and correct the error

• Build it and run again make ex1 run to catch the memory overwrite

• Correct the error, build it and run again make ex1 run



Performance Debugging

• PETSc has integrated profiling

- The option -log summary causes a report to be printed on PetscFinalize()

• PETSc allows user-defined events

- Events report time, calls, flops, communication, etc.

- Memory usage is tracked by object

• Profiling is separated into stages

- Event statistics are aggregated by stage



Using Stages and Events

• Use PetscLogStageRegister() to create a new stage

- Stages are identifier by an integer handle

• Use PetscLogStagePush/Pop() to manage stages

- Stages may be nested and will aggregate in a nested fashion

• Use PetscLogEventRegister() to create a new stage

- Events also have an associated class

• Use PetscLogEventBegin/End() to manage events

- Events may also be nested and will aggregate in a nested fashion

- Can use PetscLogFlops() to log user flops



Adding A Logging Stage

int stageNum;

ierr = PetscLogStageRegister(&stageNum, "name");CHKERRQ(ierr);

ierr = PetscLogStagePush(stageNum);CHKERRQ(ierr);

code to monitor

ierr = PetscLogStagePop();CHKERRQ(ierr);



Adding A Logging Event

static int USER EVENT;

ierr = PetscLogEventRegister(&USER EVENT, "name", CLASS COOKIE);CHKERRQ(ierr);

ierr = PetscLogEventBegin(USER EVENT,0,0,0,0);CHKERRQ(ierr);

code to monitor

ierr = PetscLogFlops(user event flops);CHKERRQ(ierr);

ierr = PetscLogEventEnd(USER EVENT,0,0,0,0);CHKERRQ(ierr);



Adding A Logging Class

• Cookie identifies a class uniquely

• Initialization must happen before any objects of this type are created

static int CLASS COOKIE;

ierr = PetscLogClassRegister(&CLASS COOKIE,"name");CHKERRQ(ierr);



Matrix Memory Preallocation

• PETSc sparse matrices are dynamic data structures

- can add additional nonzeros freely

• Dynamically adding many nonzeros

- requires additional memory allocations

- requires copies

- can kill performance

• Memory preallocation provides

- the freedom of dynamic data structures

- good performance



Efficient Matrix Creation

• Create matrix with MatCreate()

• Set type with MatSetType()

• Determine the number of nonzeros in each row

- loop over the grid for finite differences

- loop over the elements for finite elements

- need only local+ghost information

• Preallocate matrix

- MatSeqAIJSetPreallocation()

- MatMPIAIJSetPreallocation()



Indicating Expected Nonzeros

Sequential Sparse Matrices

MatSeqAIJPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row

nnz(i): expected number of nonzeros in row i

Sample Nonzero Pattern



ParallelSparseMatrix

• Each process locally owns a submatrix of contiguous global rows

• Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

• MatGetOwnershipRange(Mat A, int *start, int *end)

start: first locally owned row of global matrix

end-1: last locally owned row of global matrix



Indicating Expected Nonzeros

Parallel Sparse Matrices

MatMPIAIJPreallocation(Mat A, int dnz, int dnnz[], int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block

dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion

onnz(i): expected number of nonzeros in row i in the offdiagonal portion



Verifying Preallocation

• Use runtime option -log info

• Output:
[proc #] Matrix size: %d X %d; storage space: %d unneeded, %d used

[proc #] Number of mallocs during MatSetValues( ) is %d



Exercise 2

Return to Unit 1:Execise 6 and add more profiling.

• Run it make profile and look at the profiling report

• Add a new stage for setup

• Add a new event for FormInitialGuess() and log the flops

• Run it again make ex5 profile and look at the profiling report
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PETSc Structure



Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc



Levels of Abstraction

In Mathematical Software

• Application-specific interface

- Programmer manipulates objects associated with the application

• High-level mathematics interface

- Programmer manipulates mathematical objects

· Weak forms, boundary conditions, meshes

• Algorithmic and discrete mathematics interface

- Programmer manipulates mathematical objects

· Sparse matrices, nonlinear equations

- Programmer manipulates algorithmic objects

· Solvers

• Low-level computational kernels

- BLAS-type operations

· FFT



Object-Oriented Design

• Design based on operations you perform, not on the data in the object

• Example: A vector is

- not a 1d array of numbers

- an abstract object with addition and scalar multiplication defined

• The efficient use of the computer is an added difficulty



Symmetry Principle

Interfaces to mutable data must be symmetric.

• Creation and query interfaces are paired

• Fairness

“If you can do it, your users will want to do it”

• Openness

“If you can do it, your users will want to undo it”



Empiricism Principle

Interfaces must allow easy testing and comparison.

• Swapping different implementations

- “You will not be smart enough to pick the solver”

• Commonly violated in FE code

- Elements are hard coded

• Also avoid assuming structure outside of the interface

- Making continuous fields have certain discrete structure

- Temptation to put metadata in a different places



Experimentation is Essential!

Proof is not currrently enough to examine solvers

• N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsym-
metric matrix iterations?, SIAM J. Matrix Anal. Appl., 13, pp.778–795,
1992.

• Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos, Any Nonincreasing
Convergence Curve is Possible for GMRES, SIAM J. Matrix Anal. Appl.,
17 (3), pp.465–469, 1996.



The PETSc Programming Model

• Goals

- Portable, runs everywhere

- High performance

- Scalable parallelism

• Approach

- Distributed memory (“shared-nothing”)

- No special compiler

- Access to data on remote machines through MPI

- Hide within objects the details of the communication

- User orchestrates communication at a higher abstract level



Collectivity

• MPI communicators (MPI Comm) specify collectivity

- Processes involved in a computation

• Constructors are collective over a communicator

- VecCreate(MPI Comm comm, Vec *x)

- Use PETSC COMM WORLD for all processes and PETSC COMM SELF for one

• Some operations are collective, while others are not

- collective: VecNorm()

- not collective: VecGetLocalSize()

• Sequences of collective calls must be in the same order on each process



What is not in PETSc?

• Higher level representations of PDEs

- Unstructured mesh generation and manipulation

- Discretizations

- PETSc-CS and Sundance

• Load balancing

• Sophisticated visualization capabilities

- MayaVi

• Eigenvalues

- SLEPc

• Optimization and sensitivity

- TAO and Veltisto



Basic PetscObject Usage

Every object in PETSc supports a basic interface

Function Operation

Create() create the object

Get/SetName() name the object

Get/SetType() set the implementation type

Get/SetOptionsPrefix() set the prefix for all options

SetFromOptions() customize the object from command line options

SetUp() preform other initialization

View() view the object

Destroy() cleanup object allocation
Also, all objects support the -help option.



PETSc Integration
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Application Integration

• Be willing to experiment with algorithms

- No optimality without interplay between physics and algorithmics

• Adopt flexible, extensible programming

- Algorithms and data structures not hardwired

• Be willing to play with the real code

- Toy models are rarely helpful

• If possible, profile before upgrading or seeking help

- Automatic in PETSc



PETSc Integration

PETSc is a set a library interfaces

• We do not seize main()

• We do not control output

• We propagate errors from underlying packages

• We present the same interfaces in:

- C

- C++

- F77

- F90

- Python

See Gropp in SIAM, OO Methods for Interop SciEng, ’99



Integration Stages

• Version Control

- It is impossible to overemphasize

• Initialization

- Linking to PETSc

• Profiling

- Profile before changing

- Also incorporate command line processing

• Linear Algebra

- First PETSc data structures

• Solvers

- Very easy after linear algebra is integrated



Initialization

• Call PetscInitialize()

- Setup static data and services

- Setup MPI if it is not already

• Call PetscFinalize()

- Calculates logging summary

- Shutdown and release resources

• Checks compile and link



Profiling

• Use -log summary for a performance profile

- Event timing

- Event flops

- Memory usage

- MPI messages

• Call PetscLogStagePush() and PetscLogStagePop()

- User can add new stages

• Call PetscLogEventBegin() and PetscLogEventEnd()

- User can add new events



Command Line Processing

• Check for an option

- PetscOptionsHasName()

• Retrieve a value

- PetscOptionsGetInt(), PetscOptionsGetIntArray()

• Set a value

- PetscOptionsSetValue()

• Clear, alias, reject, etc.



Vector Algebra

What are PETSc vectors?

• Fundamental objects for storing field solutions, right-hand sides, etc.

• Each process locally owns a subvector of contiguous global data

How do I create vectors?

• VecCreate(MPI Comm, Vec *)

• VecSetSizes(Vec, int n, int N)

• VecSetType(Vec, VecType typeName)

• VecSetFromOptions(Vec)

- Can set the type at runtime



Vector Algebra

A PETSc Vec

• Has a direct interface to the values

• Supports all vector space operations

- VecDot(), VecNorm(), VecScale()

• Has unusual operations, e.g. VecSqrt(), VecWhichBetween()

• Communicates automatically during assembly

• Has customizable communication (scatters)



Creating a Vector

Vec x;

PetscInt N;

PetscErrorCode ierr;

ierr = PetscInitialize(&argc, &argv, PETSC NULL, PETSC NULL);CHKERRQ(ierr);

ierr = PetscOptionsGetInt(PETSC NULL, "-N", &N, PETSC NULL);CHKERRQ(ierr);

ierr = VecCreate(PETSC COMM WORLD, &x);CHKERRQ(ierr);

ierr = VecSetSizes(x, PETSC DECIDE, N);CHKERRQ(ierr);

ierr = VecSetType(x, "mpi");CHKERRQ(ierr);

ierr = VecSetFromOptions(x);CHKERRQ(ierr);

ierr = PetscFinalize();CHKERRQ(ierr);



Parallel Assembly

Vectors and Matrices

• Processes may set an arbitrary entry

• Entries need not be generated locally

- Local meaning the process on which they are stored

• PETSc automatically moves data if necessary

- Happens during the assembly phase



Vector Assembly

• A three step process

- Each process sets or adds values

- Begin communication to send values to the correct process

- Complete the communication

• VecSetValues(Vec v, int n, int rows[], PetscScalar values[], mode)

- mode is either INSERT VALUES or ADD VALUES

• Two phase assembly allows overlap of communication and computation

- VecAssemblyBegin(Vec v)

- VecAssemblyEnd(Vec v)



One Way to Set the Elements of a Vector

ierr = VecGetSize(x, &N);CHKERRQ(ierr);

ierr = MPI Comm rank(PETSC COMM WORLD, &rank);CHKERRQ(ierr);

if (rank == 0) {
for(i = 0, val = 0.0; i < N; i++, val += 10.0) {

ierr = VecSetValues(x, 1, &i, &val, INSERT VALUES);CHKERRQ(ierr);

}
}
/* These two routines ensure that the data is distributed to the other processes */

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);



A Better Way to Set the Elements of a Vector

ierr = VecGetOwnershipRange(x, &low, &high);CHKERRQ(ierr);

for(i = low, val = low*10.0; i < high; i++, val += 10.0) {
ierr = VecSetValues(x, 1, &i, &val, INSERT VALUES);CHKERRQ(ierr);

}
/* These two routines ensure that the data is distributed to the other processes */

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);



Selected Vector Operations

Function Name Operation

VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x

VecAYPX(Vec y, PetscScalar a, Vec x) y = x + a ∗ y

VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x

VecScale(Vec x, PetscScalar a) x = a ∗ x

VecCopy(Vec y, Vec x) y = x

VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi

VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = maxri

VecShift(Vec x, PetscScalar r) xi = xi + r

VecAbs(Vec x) xi = |xi|

VecNorm(Vec x, NormType type, PetscReal *r) r = ||x||



Working With Local Vectors

It is sometimes more efficient to directly access local storage of a PETSc Vec.

• PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

• You must return the array to PETSc when you finish

VecRestoreArray(Vec, double *[])

• Allows PETSc to handle data structure conversions

- Commonly, these routines are inexpensive and do not involve a copy



VecGetArray in C

Vec v;

PetscScalar *array;

PetscInt n, i;

PetscErrorCode ierr;

ierr = VecGetArray(v, &array);CHKERRQ(ierr);

ierr = VecGetLocalSize(v, &n);CHKERRQ(ierr);

ierr = PetscSynchronizedPrintf(PETSC COMM WORLD,

"First element of local array is %f\n", array[0]);CHKERRQ(ierr);

ierr = PetscSynchronizedFlush(PETSC COMM WORLD);CHKERRQ(ierr);

for(i = 0; i < n; i++) {
array[i] += (PetscScalar) rank;

}
ierr = VecRestoreArray(v, &array);CHKERRQ(ierr);



VecGetArray in F77

#include "petsc.h"

#include "petscvec.h"

Vec v;

PetscScalar array(1)

PetscOffset offset

PetscInt n, i

PetscErrorCode ierr

call VecGetArray(v, array, offset, ierr)

call VecGetLocalSize(v, n, ierr)

do i=1,n

array(i+offset) = array(i+offset) + rank

end do

call VecRestoreArray(v, array, offset, ierr)



VecGetArray in F90

#include "petsc.h"

#include "petscvec.h"

Vec v;

PetscScalar pointer :: array(:)

PetscInt n, i

PetscErrorCode ierr

call VecGetArrayF90(v, array, ierr)

call VecGetLocalSize(v, n, ierr)

do i=1,n

array(i) = array(i) + rank

end do

call VecRestoreArrayF90(v, array, ierr)



Matrix Algebra

What are PETSc matrices?

• Fundamental objects for storing stiffness matrices and Jacobians

• Each process locally owns a contiguous set of rows

• Supports many data types

- AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.

• Supports structures for many packages

- MUMPS, Spooles, SuperLU, UMFPack, DSCPack



How do I create matrices?

• MatCreate(MPI Comm, Mat *)

• MatSetSizes(Mat, int m, int n, int M, int N)

• MatSetType(Mat, MatType typeName)

• MatSetFromOptions(Mat)

- Can set the type at runtime

• MatSetValues(Mat,...)

- MUST be used, but does automatic communication



Matrix Polymorphism

The PETSc Mat has a single user interface,

• Matrix assembly

- MatSetValues()

• Matrix-vector multiplication

- MatMult()

• Matrix viewing

- MatView()

but multiple underlying implementations.

• AIJ, Block AIJ, Symmetric Block AIJ,

• Dense

• Matrix-Free

• etc.

A matrix is defined by its interface, not by its data structure.



Matrix Assembly

• A three step process

- Each process sets or adds values

- Begin communication to send values to the correct process

- Complete the communication

• MatSetValues(Mat m, m, rows[], n, cols[], values[], mode)

- mode is either INSERT VALUES or ADD VALUES

- Logically dense block of values

• Two phase assembly allows overlap of communication and computation

- MatAssemblyBegin(Mat m, type)

- MatAssemblyEnd(Mat m, type)

- type is either MAT FLUSH ASSEMBLY or MAT FINAL ASSEMBLY



One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

values[0] = −1.0; values[1] = 2.0; values[2] = −1.0;

if (rank == 0) { /* Only one process creates matrix */

for(row = 0; row < N; row++) {
cols[0] = row−1; cols[1] = row; cols[2] = row+1;

if (row == 0) {
ierr = MatSetValues(A, 1, &row, 2, &cols[1], &values[1], INSERT VALUES);CHKERRQ(ierr);

} else if (row == N−1) {
ierr = MatSetValues(A, 1, &row, 2, cols, values, INSERT VALUES);CHKERRQ(ierr);

} else {
ierr = MatSetValues(A, 1, &row, 3, cols, values, INSERT VALUES);CHKERRQ(ierr);

}
}

}
ierr = MatAssemblyBegin(A, MAT FINAL ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A, MAT FINAL ASSEMBLY);CHKERRQ(ierr);



ParallelSparseMatrix

• Each process locally owns a submatrix of contiguous global rows

• Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

• MatGetOwnershipRange(Mat A, int *start, int *end)

start: first locally owned row of global matrix

end-1: last locally owned row of global matrix



A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

values[0] = −1.0; values[1] = 2.0; values[2] = −1.0;

for(row = start; row < end; row++) {
cols[0] = row−1; cols[1] = row; cols[2] = row+1;

if (row == 0) {
ierr = MatSetValues(A, 1, &row, 2, &cols[1], &values[1], INSERT VALUES);CHKERRQ(ierr);

} else if (row == N−1) {
ierr = MatSetValues(A, 1, &row, 2, cols, values, INSERT VALUES);CHKERRQ(ierr);

} else {
ierr = MatSetValues(A, 1, &row, 3, cols, values, INSERT VALUES);CHKERRQ(ierr);

}
}
ierr = MatAssemblyBegin(A, MAT FINAL ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A, MAT FINAL ASSEMBLY);CHKERRQ(ierr);



Why Are PETSc Matrices That Way?

• No one data structure is appropriate for all problems

- Blocked and diagonal formats provide significant performance benefits

- PETSc has many formats and makes it easy to add new data structures

• Matrix assembly is difficult enough without worrying about partitioning

- PETSc provides parallel assembly routines

- Achieving high performance still requires making most operations local

- However, programs can be incrementally developed.

• Matrix decomposition in contiguous chunks is simple

- Makes interoperation with other codes easier

- For other ordering, PETSc provides “Application Orderings” (AO)



Solvers

• Explicit:

- Field variables are updated using local neighbor information

• Semi-implicit:

- Some subsets of variables are updated with global solves

- Others with direct local updates

• Implicit:

- Most or all variables are updated in a single global solve



Linear Solvers

Krylov Methods

• Using PETSc linear algebra, just add:

- KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)

- KSPSolve(KSP ksp, Vec b, Vec x)

• Can access subobjects

- KSPGetPC(KSP ksp, PC *pc)

• Preconditioners must obey PETSc interface

- Basically just the KSP interface

• Can change solver dynamically from the command line, -ksp type



Nonlinear Solvers

Newton Methods

• Using PETSc linear algebra, just add:

- SNESSetFunction(SNES snes, Vec r, residualFunc, void *ctx)

- SNESSetJacobian(SNES snes, Mat A, Mat M, jacFunc, void *ctx)

- SNESSolve(SNES snes, Vec b, Vec x)

• Can access subobjects

- SNESGetKSP(SNES snes, KSP *ksp)

• Can customize subobjects from the cmd line

- Set the subdomain preconditioner to ILU with -sub pc type ilu



Basic Solver Usage

We will illustrate basic solver usage with SNES.

• Use SNESSetFromOptions() so that that everything is set dynamically

- Use -snes type to set the type or take the default

• Override the tolerances

- Use -snes rtol and -snes atol

• View the solver to make sure you have the one you expect

- Use -snes view

• For debugging, monitor the residual decrease

- Use -snes monitor

- Use -ksp monitor to see the underlying linear solver



3rd Party Solvers in PETSc

1. Sequential LU

- ILUDT (SPARSEKIT2, Yousef Saad, U of MN)

- EUCLID & PILUT (Hypre, David Hysom, LLNL)

- ESSL (IBM)

- SuperLU (Jim Demmel and Sherry Li, LBNL)

- Matlab

- UMFPACK (Tim Davis, U. of Florida)

- LUSOL (MINOS, Michael Saunders, Stanford)

2. Parallel LU

- MUMPS (Patrick Amestoy, IRIT)

- SPOOLES (Cleve Ashcroft, Boeing)

- SuperLU Dist (Jim Demmel and Sherry Li, LBNL)

3. Parallel Cholesky

- DSCPACK (Padma Raghavan, Penn. State)

4. XYTlib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)



3rd Party Preconditioners in PETSc

1. Parallel ICC

- BlockSolve95 (Mark Jones and Paul Plassman, ANL)

2. Parallel ILU

- BlockSolve95 (Mark Jones and Paul Plassman, ANL)

3. Parallel Sparse Approximate Inverse

- Parasails (Hypre, Edmund Chow, LLNL)

- SPAI 3.0 (Marcus Grote and Barnard, NYU)

4. Sequential Algebraic Multigrid

- RAMG (John Ruge and Klaus Steuben, GMD)

- SAMG (Klaus Steuben, GMD)

5. Parallel Algebraic Multigrid

- Prometheus (Mark Adams, PPPL)

- BoomerAMG (Hypre, LLNL)

- ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)



Higher Level Abstractions

The PETSc DA class is a topology interface.

• Structured grid interface

- Fixed simple topology

• Supports stencils, communication, reordering

- No idea of operators

• Nice for simple finite differences

The PETSc DM class is a hierarchy interface.

• Supports multigrid

- DMMG combines it with the MG preconditioner

• Abstracts the logic of multilevel methods
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SNESCallbacks

The SNES interface is based upon callback functions

• SNESSetFunction()

• SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F (x), the solver calls the
user’s function inside the application. The user function get application state
through the ctx variable. PETSc never sees application data.



SNES Function

The user provided function which calculates the nonlinear residual has signature

PetscErrorCode (*func)(SNES snes, Vec x, Vec r, void *ctx)

x: The current solution

r: The residual

ctx: The user context passed to SNESSetFunction()

- Use this to pass application information, e.g. physical constants



SNES Jacobian

The user provided function which calculates the Jacobian has signature

PetscErrorCode (*func)(SNES snes, Vec x, Mat *J, Mat *M,

MatStructure *flag, void *ctx)

x: The current solution

J: The Jacobian

M: The Jacobian preconditioning matrix (possibly J itself)

ctx: The user context passed to SNESSetFunction()

- Use this to pass application information, e.g. physical constants

• Possible MatrStructure values are:

- SAME NONZERO PATTERN, DIFFERENT NONZERO PATTERN, . . .

Alternatively, you can use

• a builtin sparse finite difference approximation

• automatic differentiation

- AD support via ADIC/ADIFOR (P. Hovland and B. Norris from ANL)



SNES Variants

• Line search strategies

• Trust region approaches

• Pseudo-transient continuation

• Matrix-free variants



Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD

• Dense

- Activated by -snes fd

- Computed by SNESDefaultComputeJacobian()

• Sparse via colorings

- Coloring is created by MatFDColoringCreate()

- Computed by SNESDefaultComputeJacobianColor()

Can also use Matrix-free Newton-Krylov via 1st-order FD

• Activated by -snes mf without preconditioning

• Activated by -snes mf operator with user-defined preconditioning

- Uses preconditioning matrix from SNESSetJacobian()



SNES Example: Driven Cavity

• Velocity-vorticity formulation

• Flow driven by lid and/or bouyancy

• Logically regular grid

- Parallelized with DA

• Finite difference discretization

• Authored by David Keyes

$PETCS DIR/src/snes/examples/tutorials/ex19.c



Driven Cavity Application Context

typedef struct {
/*—– basic application data —–*/

double lid velocity; /* Velocity of the lid */

double prandtl, grashof; /* Prandtl and Grashof numbers */

int mx, my; /* Grid points in x and y */

int mc; /* Degrees of freedom per node */

PetscTruth draw contours; /* Flag for drawing contours */

/*—– parallel data —–*/

MPI Comm comm; /* Communicator */

DA da; /* Distributed array */

Vec localX, localF; /* Local ghosted solution and residual */

} AppCtx;

$PETCS DIR/src/snes/examples/tutorials/ex19.c



Driven Cavity Residual Evaluation

DrivenCavityFunction(SNES snes, Vec X, Vec F, void *ptr)

{
AppCtx *user = (AppCtx *) ptr;

int istart, iend, jstart, jend; /* local starting and ending grid points */

PetscScalar *f; /* local vector data */

PetscReal grashof = user−>grashof;

PetscReal prandtl = user−>prandtl;

PetscErrorCode ierr;

/* Not Shown: Code to communicate nonlocal ghost point data (scatters) */

ierr = VecGetArray(F, &f); CHKERRQ(ierr);

/* Not Shown: Code to compute local function components */

ierr = VecRestoreArray(F, &f); CHKERRQ(ierr);

return 0;

}

$PETCS DIR/src/snes/examples/tutorials/ex19.c



Better Driven Cavity Residual Evaluation

PetscErrorCode DrivenCavityFuncLocal(DALocalInfo *info,Field **x,Field **f,void *ctx)

{
/* Not Shown: Handle boundaries */

/* Compute over the interior points */

for(j = info−>ys; j < info−>xs+info−>xm; j++) {
for(i = info−>xs; i < info−>ys+info−>ym; i++) {

/* Not Shown: convective coefficients for upwinding */

/* U velocity */

u = x[j][i].u;

uxx = (2.0*u − x[j][i−1].u − x[j][i+1].u)*hydhx;

uyy = (2.0*u − x[j−1][i].u − x[j+1][i].u)*hxdhy;

f[j][i].u = uxx + uyy − .5*(x[j+1][i].omega−x[j−1][i].omega)*hx;

/* Not Shown: V velocity, Omega, Temperature */

}
}

}

$PETCS DIR/src/snes/examples/tutorials/ex19.c



What is a DA?

DA is a topology interface that handles parallel data layout on structured grids

• Handles local and global indices

- DAGetGlobalIndices() and DAGetAO()

• Provides local and global vectors

- DAGetGlobalVector() and DAGetLocalVector()

• Handles ghost values coherence

- DAGetGlobalToLocal() and DAGetLocalToGlobal()



Creating a DA

DACreate1d(comm, DAPeriodicType wrap, M, dof, s, lm[], DA *inra)

wrap: Specifies periodicity

- DA NONPERIODIC or DA XPERIODIC

M: Number of grid points in x-direction

dof: Degrees of freedom per node

s: The stencil width

lm: Alternative array of local sizes

- Use PETSC NULL for the default



Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, lm[], ln[], DA *inra)

wrap: Specifies periodicity

- DA NONPERIODIC, DA XPERIODIC, DA YPERIODIC, or DA XYPERIODIC

type: Specifies stencil

- DA STENCIL BOX or DA STENCIL STAR

M/N: Number of grid points in x/y-direction

m/n: Number of processes in x/y-direction

dof: Degrees of freedom per node

s: The stencil width

lm/n: Alternative array of local sizes

- Use PETSC NULL for the default



Ghost Values

To evaluate a local function f(x), each process requires

• its local portion of the vector x

• its ghost values, bordering portions of x owned by neighboring processes



DA Global Numberings

Proc 2 Proc 3

25 26 27 28 29

20 21 22 23 24

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

Proc 0 Proc 1

Natural numbering

Proc 2 Proc 3

21 22 23 28 29

18 19 20 26 27

15 16 17 24 25

6 7 8 13 14

3 4 5 11 12

0 1 2 9 10

Proc 0 Proc 1

PETSc numbering



DA Global vs. Local Numbering

• Global: Each vertex belongs to a unique process and has a unique id

• Local: Numbering includes ghost vertices from neighboring processes

Proc 2 Proc 3

X X X X X

X X X X X

12 13 14 15 X

8 9 10 11 X

4 5 6 7 X

0 1 2 3 X

Proc 0 Proc 1

Local numbering

Proc 2 Proc 3

21 22 23 28 29

18 19 20 26 27

15 16 17 24 25

6 7 8 13 14

3 4 5 11 12

0 1 2 9 10

Proc 0 Proc 1

Global numbering



DA Vectors

• The DA object contains only layout (topology) information

- All field data is contained in PETSc Vecs

• Global vectors are parallel

- Each process stores a unique local portion

- DACreateGlobalVector(DA da, Vec *gvec)

• Local vectors are sequential (and usually temporary)

- Each process stores its local portion plus ghost values

- DACreateLocalVector(DA da, Vec *lvec)

- includes ghost values!



Updating Ghosts

Two-step process enables overlapping computation and communication

• DAGlobalToLocalBegin(da, gvec, mode, lvec)

- gvec provides the data

- mode is either INSERT VALUES or ADD VALUES

- lvec holds the local and ghost values

• DAGlobalToLocal End(da, gvec, mode, lvec)

- Finishes the communication

The process can be reversed with DALocalToGlobal().



DA Local Function

The user provided function which calculates the nonlinear residual in 2D has
signature

PetscErrorCode (*lfunc)(DALocalInfo *info, PetscScalar **x,

PetscScalar **r, void *ctx)

info: All layout and numbering information

x: The current solution

- Notice that it is a multidimensional array

r: The residual

ctx: The user context passed to DASetLocalFunction()

The local DA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)



DA Local Jacobian

The user provided function which calculates the nonlinear residual in 2D has
signature

PetscErrorCode (*lfunc)(DALocalInfo *info, PetscScalar **x, Mat J,

void *ctx)

info: All layout and numbering information

x: The current solution

J: The Jacobian

ctx: The user context passed to DASetLocalFunction()

The local DA function is activated by calling

SNESSetJacobian(snes, J, J, SNESDAComputeJacobian, ctx)



DA Stencils

Both the box stencil and star stencil are available.



Setting Values for Finite Differences

PETSc provides

MatSetValuesStencil(Mat A, m, MatStencil idxm[], n, MatStencil

idxn[], values[], mode)

• Each row or column is actually a MatStencil

- This specifies grid coordinates and a component if necessary

- Can imagine for unstructured grids, they are vertices

• The values are the same logically dense block in rows and columns



Mapping Between Global Numberings

• Natural global numbering

- Convenient for visualization, boundary conditions, etc.

• Convert between global numbering schemes using AO

- DAGetAO(DA da, AO *ao)

• Handled automatically by some utilities (e.g., VecView()) for DA vectors



DA Example: Bratu

• Create SNES and DA

• Use DASetLocalFunction() and DASetLocalJacobian() to set user call-
backs

- Use DAGetMatrix() to get DA matrix for SNES

• Use SNESDAFormFunction() and SNESDAComputeJacobian() for SNES call-
back

- Could also use FormFunctionMatlab()

- Could also use SNESDefaultComputeJacobian()

$PETCS DIR/src/snes/examples/tutorials/ex5.c



DA Example: Bratu

PetscErrorCode LocalFunc(DALocalInfo *info, PetscScalar **x, PetscScalar **f, void *ctx)

{
for(j = info−>ys; j < info−>ys + info−>ym; j++) {

for(i = info−>xs; i < info−>xs + info−>xm; i++) {
if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {

f[j][i] = x[j][i];

} else {
u = x[j][i];

u xx = −(x[j][i+1] − 2.0*u + x[j][i−1])*(hy/hx);

u yy = −(x[j+1][i] − 2.0*u + x[j−1][i])*(hx/hy);

f[j][i] = u xx + u yy − hx*hy*lambda*PetscExpScalar(u);

}
}

}
}

$PETCS DIR/src/snes/examples/tutorials/ex5.c



DA Example: Bratu

int LocalJac(DALocalInfo *info, PetscScalar **x, Mat jac, void *ctx)

{
for(j = info−>ys; j < info−>ys + info−>ym; j++) {

for(i = info−>xs; i < info−>xs + info−>xm; i++) {
row.j = j; row.i = i;

if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {
v[0] = 1.0;

ierr = MatSetValuesStencil(jac, 1, &row, 1, &row, v, INSERT VALUES);CHKERRQ(ierr);

} else {
v[0] = −(hx/hy); col[0].j = j−1; col[0].i = i;

v[1] = −(hy/hx); col[1].j = j; col[1].i = i−1;

v[2] = 2.0*(hy/hx+hx/hy) − hx*hy*lambda*PetscExpScalar(x[j][i]);

v[3] = −(hy/hx); col[3].j = j; col[3].i = i+1;

v[4] = −(hx/hy); col[4].j = j+1; col[4].i = i;

ierr = MatSetValuesStencil(jac, 1, &row, 5, col, v, INSERT VALUES);CHKERRQ(ierr);

} } } }

$PETCS DIR/src/snes/examples/tutorials/ex5.c
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Problem Domain

ρ=1

ρ=100



Problem Statement

Inhomogeneous Laplacian in 2D. Modeled by the partial differential equation

∇ · (ρ∇u) = f on Ω = [0, 1]× [0, 1],

with forcing function

f(x, y) = e−(1−x)2/νe−(1−y)2/ν ,

with Dirichlet boundary conditions

u = f(x, y) on ∂Ω,

or homogeneous Neumman boundary conditions

n̂ · ∇u = 0 on ∂Ω.



Revision 1.1

For the initial try, we modify a common PETSc DMMG skeleton:

• Use a simple FD 5-point stencil discretization

• Use a structured grid (DA)

• Use a hierarchical method (DMMG)

• Only implement Dirichlet BC (simple masking)



Revision 1.2

Now utilize some more PETSc features:

• Add UserContext structure to hold ν and the BC type

- Need to set the context at each DM level

• Add Neumann BC using a MatNullSpace

- Used to project onto the orthogonal complement

- KSPSetNullSpace()

• Set parameters from the command line

- PetscOptionsBegin(), PetscOptionsEnd()

- PetscOptionsScalar(), PetscOptionsString()

- By hand, PetscOptionsGetScalar(), PetscOptionsGetString()

• Fixed scaling for anisotropic grids



Revision 1.6

Barry fixed the example to converge nicely:

• Set nullspace on all DM levels

- Actually set in the smoother (KSP)

- Same idea as the user context

- Now completely handled by DMMGSetNullSpace()

• Remove the null space component of the rhs

- MatNullSpaceRemove()

- Usually handled by the model

• Add a shift to the coarse grid LU for Neumann BC

- System is singular so augment with the identity

- One extra step if coarse solve is redundant

• Fix weighting for center point of Neumann condition

- Depends on the number of missing points

• Also use PetscOptionsElist() to set BC

- Can provide a nice listbox using the GUI



DMMG Grids

The use specifies the coarse grid, and then DMMG successively refines it.

• In our problem, we being with a 3× 3 grid

- We LU factor a 9× 9 matrix

• By level 10, we have a 1025× 1025 grid

- Our final solution has 1,050,625 unknowns

• Set the initial grid using -da grid x and -da grid y

• Set the number of levels using -dmmg nlevels



Mesh Independence

The iteration number should be independent of the mesh size, or the number of
levels.

Levels Unknowns KSP Iterations

2 25 2

4 289 2

6 4225 3

8 66049 2

10 1050625 2

We have used Dirichlet BC above



Viewing the DA

• -da view outputs an ascii description

• -da view draw display the grid

- First the grid itself is drawn

- Global variable numbers are then provided

- Finally ghost variable numbers are shown for error checking

• -vec view draw draws a contour plot for DA vectors

- The contour grid can be shown with -draw contour grid



Forcing Function

The rhs of our linear system drives the solution:



Dirichlet Solution



Neumann Solution



Multigrid Options

• Choose V-cycle or W-cycle using -pc mg cycles

• Can set the iteration method using -pc mg type

- MULTIPLICATIVE, ADDITIVE, FULL, KASKADE

• Choose the number of steps in both the up and down smoothers

- -pc mg smoothup, -pc mg smoothdown

• The coarse problem has prefix mg coarse

- -mg coarse pc type, -mg coarse ksp maxit

• Each level k has prefix mg levels k

- -mg levels 1 ksp type, -mg levels 2 pc ilu fill

• Can automatically form coarse operators with the Galerkin process (-pc mg galerkin)

- DMMG provides these automatically by interpolation
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Extending Configure

• See python/PETSc/packages/*.py for examples

• Add module with class Configure derived from config.base.Configure

- Can also derive from PETSc.package.Package

- Implement configure() and configureHelp()

• Customize PETSc through the make system

- addDefine()

- addTypedef(), addPrototype()

- addMakeMacro(), addMakeRule()

- Deprecated addSubstitution()



Layering over PETSc

• SLEPc, TAO, and MagPar

- Infrastructure and applications

• Use PETSc object structure

- Dynamic dispatch

• Use dynamic linking facilities

- Runtime type selection

• Use debugging and profiling tools

- Memory management, runtime type checking



Linking to PETSc

• Nothing but the libraries

- User can custom link

• Using only PETSc build variables

- Include bmake/common/variables

• Also use PETSc build rules

- Include bmake/common/base

• Also makes available 3rd party packages



Adding an Implementation

• See src/ksp/pc/impls/jacobi/jacobi.c

• Implement the interface methods

- For Jacobi, PCSetUp(), PCApply(),...

• Define a constructor

- Allocate and initialize the class structure

- Fill in the function table

- Must have C linkage

• Register the constructor

- See src/ksp/ksp/interface/dlregis.c

- Maps a string (class name) to the constructor

- Usually uses PetscFListAdd()



Adding a New Wrapper

• See src/ts/impls/implicit/pvode/petscpvode.c

• Just like an Implementation

- Methods dispatch to 3rd party software

• Need to alter local makefile

- Add a requirespackage line

- Add include variable to CPPFLAGS

• Usually requires configure additions



Adding a New Subtype

• See src/mat/impls/aij/seq/umfpack/umfpack.c

• Have to virtualize methods by hand

• Define a constructor

- Change type name first to correct name

- Call MatSetType() for base type

- Replace (and save) overidden methods

- Construct any specific data

• Must also define a conversion to the base type

- Only called in destructor right now



Adding a New Type

• See src/ksp/ksp/kspimpl.h

• Define a methods structure (interface)

- A list of function pointers

• Define a type structure

- First member is PETSCHEADER(struct Ops)

- Possibly other data members common to the type

- A void *data for implementation structures



Adding a New Type

• See src/ksp/ksp/interface/dlregis.c

• Define a package initializer (PetscDLLibraryRegister)

- Called when the DLL is loaded

• Also called from generic create if linking statically

- Registers classes and events (see below)

- Registers any default implementation constructors

- Setup any info or summary exclusions



Adding a New Type

• See src/ksp/ksp/interface/itcreate.c

• Define a generic create

- Call package initializer if linking statically

- Call PetscHeaderCreate()

- Initialize any default data members

• Define a setType() method

- Call the destructor of any current implementation

- Call the constructor of the given implementation

- Set the type name



Adding a New Type

Things Swept Under The Rug

• Need setFromOptions() which allows implementation selection at runtime

• Have to manage the database of registered constructors

• View and destroy functions handled a little funny due to historical reasons
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What Will PETSc Become?

PETSc has been, and will continue to be:

• a set of libraries,

• intended for solving PDEs in parallel,

• which present an object-oriented interface to the user.



What is New?

New classes and tools will be added to the existing PETSc framework:

• Unstructured mesh generation, refinement, and coarsening

• A high-level language for specification of weak forms (with FFC)

• Automatic generation of arbitrary finite element routines (with FIAT)

• Platform independent, system for configure, build, and distribution

• Bindings in multiple languages (C, F77, Python, Matlab, Mathematica)

http://www.fenics.org/ffc
http://www.fenics.org/fiat
http://sidl.bkbis.net/BuildSystem
http://www.mcs.anl.gov/petsc-cs/ase


PETSc Parts

To make the new functionality easier for users to understand, PETSc will be
divided conceptually into two parts:

• PETSc-AS will contain the components related to algebraic solvers, which
is the current PETSc distribution.

• PETSc-CS will contain the support for continuum problems phrased in
weak form. These modules will make use of the PETSc-AS modules in our
implementation, but this is not strictly necessary.

However, the framework will remain integrated:

• Single release version, version control, and build system

• Each module is self-contained (install only what is necessary)



Mesh Capabilities

• 2D Delaunay generation and refinement

- Triangle

• 3D Delaunay generation and refinement

- TetGen

• 3D Delaunay generation, coarsening, and refinement

- Allows quadratic Bezier elements

- TUMBLE

http://www-2.cs.cmu.edu/~quake/triangle.html
http://tetgen.berlios.de
http://cs.cmu.edu/~sangria


Mesh Incidence

The interface is based upon a fibre bundle model which has a natural Grothendick
topology. We have two equivalent ways of looking at a mesh, starting with the
set of all mesh elements, meaning vertice, edges, faces, and cells. The first defines
the mesh is a symmetric incidence relation over the elements:

e′ ∈ ∂e dim(e) > dim(e′)

eRe′ ⇔ e ∈ ∂e′ dim(e) < dim(e′)

∂e ∩ ∂e′ 6= ∅ dim(e′) = dim(e) ∧ dim(∂e ∩ ∂e′) = dim(e)− 1

from which all connectivity information can be deduced. Combined with this we
allow vector indexing by element

VecSetValues([e1, e5], [1.0, 0.0, 4.0, 3.0, 1.0, 0.0])

ftp://ftp.mcs.anl.gov/pub/petsc/mesh/meshDriver.pdf


Mesh Covering

TO APPEAR SOON

Equivalently, we may define a topology based upon covering, which contains the
same information as incidence. This formulation has the nice theoretical conse-
quence, that the contravariant functor for element covering is field restriction,
corresponding exactly to our element indexing.



A Language for Weak Forms

In collaboration with

• Anders Logg of TTI

• Rob Kirby of University of Chicago

we have developed a small language for weak forms, based directly on an AST
representation. The Fenics Form Compiler (FFC) processes each form alge-
braically, allowing some simplification and optimization, before passing it on to
the integration generation routines.



Input Language

We have a simple text language for input, incorporating:

• Arithmetic, +, -, *, /, ,̂ () abs(x)

• Coordinate functions, cos(x) exp(x)

• Continuum fields (known and unknown)

• Dual pairing, 〈 , 〉

• Matrix operations, trans(u) det(u) vec(u)

• Differential operators, grad(u) div(u) curl(u)



What is an AST?

A tree structure encoding the syntatic information in an expression. We may
then associate semantic information with individual nodes or the tree itself. For
example, our Expression Trees represent arithmetic expressions, so that:

• Leaves represent variables or constants

• Internal nodes represent operations on the leaves

Here is an example tree representing 1− x− y
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More General Expressions

We allow more general expression than arithmetic in order to incorporate matrix
algebra and weak form expressions

Here is another tree representing
〈
∇t, 1

2

(
∇u +∇uT

)〉
〈 , 〉
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Examples

• Poisson Equation

<grad t, grad u> - <t, 2*y*(2-y) + 2*x*(2-x)>

• Vector Poisson Equation

<grad vec t, grad vec u> - <vec t, {4, 2*y*(2-y) + 2*x*(2-x)}>

• Linear Elasticity

<grad vec t, (grad vec u) + trans (grad vec u)> - <vec t, {6, 6}>

• Stokes Equation

<grad t, grad u> - <t, grad p> + <q, div u>

- <vec t, {4, -4}> + <q, 0>



FIAT Integration

In order to generate a quadrature routines, we need:

• A differential form to integrate

• An element (usually a family and degree) using FIAT

• A quadrature rule

We then produce

• A C integration routines

• A Python module wrapper

• Optional Ferari optimized routines

• Optional element assembly loop



BuildSystem

• Pure Python and freely available

• Currently handles configure and build

- needs install and distribution

• Handles generated code through ASE

- can uses md5, timestamp, diff, etc.

• Handles shared libraries for many architectures

- Linux, Mac OSX, Windows

http://sidl.bkbits.net/BuildSystem


Language Bindings

• Use the same code generation tools as the FE generation

- ASE

• Each generator is just an AST Visitor

- can be specified dynamically on the command line

• Custom bindings are easily handled

- override methods from an existing generator

• New languages can be implemented dynamically

- Uses SIDL model



With PETSc, we want less of this



With PETSc, we want less of this

dhx = (PetscReal)(info−>mx−1); dhy = (PetscReal)(info−>my−1);

hx = 1.0/dhx; hy = 1.0/dhy;

hxdhy = hx*dhy; hydhx = hy*dhx;

vx = x[j][i].u; avx = PetscAbsScalar(vx);

vxp = .5*(vx+avx); vxm = .5*(vx−avx);

vy = x[j][i].v; avy = PetscAbsScalar(vy);

vyp = .5*(vy+avy); vym = .5*(vy−avy);

f[j][i].omega = uxx + uyy +

(vxp*(u − x[j][i−1].omega) +

vxm*(x[j][i+1].omega − u)) * hy +

(vyp*(u − x[j−1][i].omega) +

vym*(x[j+1][i].omega − u)) * hx −
0.5 * grashof * (x[j][i+1].temp − x[j][i−1].temp) * hy;



and more of this,



and more of this,

∂ρfφ

∂t
+ ∇· [ρfφv] = Γ (1)

∂ρs(1− φ)
∂t

+ ∇· [ρs(1− φ)V] = −Γ (2)

−
kφ

µ
[∇P − ρfg] = φ (v−V) (3)

∇·
[
η(∇V + ∇VT )

]
+ ∇ [(ζ − 2η/3)∇·V] + ρ̄g = ∇P (4)

T

cP

(
ρsαv̄ · g− ∆S

ρ̄
Γ
)

+ κ∇2T + H =
Dv̄T

Dt
(5)



so we can enjoy more of this.



so we can enjoy more of this.


