The
Portable Extensible Toolkit for Scientific Computing

Matthew Knepley

Computation Institute
University of Chicago

June, 2010
Short Course on Scientific Computing
GUCAS, Beijing, China

47\ RUSH UNIVERSITY
\l/ MEDICAL CENTER

M. Knepley () PETSCc GUCAS’10 1/318

Getting Started with PETSc
Outline

0 Getting Started with PETSc

@ What is PETSc?

@ Who uses and develops PETSc?
Stuff for Windows
@ How can | get PETSc?
@ How do | Configure PETSc?
@ How do | Build PETSc?
°
°

How do | run an example?
How do | get more help?

M. Knepley () PETSCc GUCAS’10 4/318

Getting Started with PETSc What is PETSc?

Outline

o Getting Started with PETSc
@ What is PETSc?

M. Knepley () PETSc GUCAS’10 5/318

Getting Started with PETSc What is PETSc?

Unit Objectives

e Introduce PETSc
e Download, Configure, Build, and Run an Example

e Empower students to learn more about PETSc

M. Knepley () PETSC GUCAS’10 6/318

Getting Started with PETSc What is PETSc?

What | Need From You

e Tell me if you do not understand

o Tell me if an example does not work

e Suggest better wording or figures

e Followup problems at petsc-maint@mcs.anl.gov

M. Knepley () PETSC GUCAS’10 7/318

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

Ask Questions!!!

e Helps me understand what you are missing
e Helps you clarify misunderstandings

e Helps others with the same question

M. Knepley () PETSC GUCAS’10 8/318

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley () PETSc GUCAS’10 9/318

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation
e Quickly answer questions

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley () PETSCc GUCAS’10 9/318

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation
e Quickly answer questions
e Help install

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley () PETSc GUCAS’10 9/318

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation

e Quickly answer questions

e Help install

e Guide design of large scale codes

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley () PETSc GUCAS’10 9/318

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

Tutorial Repositories

http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial
@ Very simple
@ Shows how to create your own project
@ Uses multiple languages

http://petsc.cs.iit.edu/petsc/tutorials/GUCAS10
@ Fairly complex
@ Shows how to use most PETSc features
@ Uses C and C++

M. Knepley () PETSC

GUCAS '10

10/318

http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial
http://petsc.cs.iit.edu/petsc/tutorials/GUCAS10

Getting Started with PETSc What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

LOOK Ir-.IE-Il.‘-'EI

We want to experiment with different
@ Models I]EB[IH[I[IEIIIHH
@ Discretizations
@ Solvers

@ Algorithms
@ which blur these boundaries

M. Knepley () PETSC GUCAS 10

11/318

http://amzn.com/0521602866

Getting Started with PETSc What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.

M. Knepley () PETSCc GUCAS’10 12/318

http://www.mcs.anl.gov/~bsmith

Getting Started with PETSc What is PETSc?

What is PETSc?

A freely available and supported research code
Download from http://www.mcs.anl.gov/petsc
Free for everyone, including industrial users

Hyperlinked manual, examples, and manual pages for all routines

Support via email: petsc-maint@mcs.anl.gov

°
°

@ Hundreds of tutorial-style examples

°

@ Usable from C, C++, Fortran 77/90, and Python

M. Knepley () PETSC GUCAS’10 13/318

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT5, BG/P, Earth Simulator, Sun Blade, SGI Altix
o Loosely coupled systems, such as networks of workstations
@ |IBM, Mac, Sun, PCs running Linux or Windows
@ PETSc History
o Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
@ SciDAC, MICS Program, INL Reactor Program
o National Science Foundation
@ CIG, CISE, Multidisciplinary Challenge Program

M. Knepley () PETSC GUCAS’10 13/318

Active Developers

Getting Started with PETSc What is PETSc?

Timeline

6 +Victor
5 +Matt Kris
+Hong
4 FKris
-Lois
3 +Satish
+Barry
2 il b
1
1991 1993 1995 1996 2000 2001 2003 2005

M. Knepley () PETSC GUCAS 10

14/318

Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media

M. Knepley () PETSC GUCAS’10 15/318

http://www-unix.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html#scalinglarge

Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media

@ PETSc has run on over 224,000 cores efficiently

@ UNIC on the IBM BG/P Intrepid at ANL
o PFLOTRAN on the Cray XT5 Jaguar at ORNL

M. Knepley () PETSc GUCAS’10 15/318

http://www-unix.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html#scalinglarge

Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media

@ PETSc has run on over 224,000 cores efficiently

@ UNIC on the IBM BG/P Intrepid at ANL
o PFLOTRAN on the Cray XT5 Jaguar at ORNL

@ PETSc applications have run at 3 Teraflops
o LANL PFLOTRAN code

M. Knepley () PETSc GUCAS’10 15/318

http://www-unix.mcs.anl.gov/petsc/petsc-as/publications/petscapps.html#scalinglarge

Getting Started with PETSc Who uses and develops PETSc?

Outline

o Getting Started with PETSc

@ Who uses and develops PETSc?

M. Knepley () PETSc GUCAS’10 16/318

Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

e Computational Scientists

e PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEOQO,
Columbia), PFLOTRAN (DOE)

e Algorithm Developers
e lterative methods and Preconditioning researchers

e Package Developers
e SLEPc, TAO, Dealll, PETSc-FEM, MagPar, PetFMM, PetRBF

M. Knepley () PETSC GUCAS’10 17/318

Getting Started with PETSc Who uses and develops PETSc?

The PETSc Team

P o

Barry Sm|th Satish Balay

Jed Brown Matt Knépley Lisandro Dalcin

B
Hong Zhang Vlctor Eukhout Dmitry Karpeev

M. Knepley () PETSC GUCAS’10 18/318

Getting Started with PETSc Stuff for Windows

Outline

o Getting Started with PETSc

@ Stuff for Windows

M. Knepley () PETSc GUCAS’10 19/318

Getting Started with PETSc Stuff for Windows

Questions for Windows Users

@ Have you installed cygwin?
o Need python, make, and build-utils packages

@ Will you use the GNU compilers?

e If not, remove 1ink.exe
o If MS, check compilers from cmd window and use win32fe

@ Which MPI will you use?
@ You can use —with-mpi=0
o If MS, need to install MPICH2
e If GNU, can use —download-mpich

M. Knepley () PETSC GUCAS’10 20/318

http://www.cygwin.com
http://www.mcs.anl.gov/research/projects/mpich2

Getting Started with PETSc How can | get PETSc?

Outline

o Getting Started with PETSc

@ How can | get PETSc?

M. Knepley () PETSc GUCAS’10 21/318

Getting Started with PETSc How can | get PETSc?

Downloading PETSc

@ The latest tarball is on the PETSc site

o ftp://ftp.mcs.anl.gov/pub/petsc/petsc.tar.gz
e We no longer distribute patches (everything is in the distribution)

@ There is a Debian package
@ There is a FreeBSD Port
@ There is a Mercurial development repository

M. Knepley () PETSC GUCAS’10 22/318

http://www.mcs.anl.gov/petsc/petsc-as/download
ftp://ftp.mcs.anl.gov/pub/petsc/petsc.tar.gz
http://lyre.mit.edu/~powell/petsc.html
http://www.freshports.org/math/petsc
http://www.selenic.com/mercurial
http://mercurial.mcs.anl.gov/petsc/petsc-dev

Getting Started with PETSc How can | get PETSc?

Cloning PETSc

@ The full development repository is open to the public

e http://petsc.cs.iit.edu/petsc/petsc-dev
e http://petsc.cs.iit.edu/petsc/BuildSystem

@ Why is this better?

@ You can clone to any release (or any specific ChangeSet)
@ You can easily rollback changes (or releases)
@ You can get fixes from us the same day

@ We also make release repositories available

e http://petsc.cs.iit.edu/petsc/releases/petsc-3.1
e http://petsc.cs.iit.edu/petsc/releases/BuildSystem-3.1

M. Knepley () PETSC GUCAS’10 23/318

http://petsc.cs.iit.edu/petsc/petsc-dev
http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/releases/petsc-3.1
http://petsc.cs.iit.edu/petsc/releases/BuildSystem-3.1

Getting Started with PETSc How can | get PETSc?

Unpacking PETSc

@ Just clone development repository

@ hg clone http://petsc.cs.iit.edu/petsc/petsc—dev
petsc-dev
@ hg clone -rrelease-3.1 petsc-dev petsc-3.1

or

@ Unpack the tarball

@ tar xzf petsc.tar.gz

M. Knepley () PETSC GUCAS’10 24/318

Getting Started with PETSc How can | get PETSc?

Exercise 1

Download and Unpack PETSc!

M. Knepley () PETSC GUCAS’10 25/318

Getting Started with PETSc How do | Configure PETSc?

Outline

o Getting Started with PETSc

@ How do | Configure PETSc?

M. Knepley () PETSc GUCAS’10 26/318

Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc

@ Set SPETSC_DIR to the installation root directory
@ Run the configuration utility
@ SPETSC_DIR/configure
@ SPETSC_DIR/configure -help
@ SPETSC_DIR/configure —-download-mpich
@ SPETSC_DIR/configure —-prefix=/usr
@ There are many examples on the installation page
@ Configuration files are in SPETSC_DIR/SPETSC_ARCH/conf

o Configure header is in SPETSC_DIR/SPETSC_ARCH/include
@ SPETSC_ARCH has a default if not specified

M. Knepley () PETSCc GUCAS’10 27/318

http://www.mcs.anl.gov/petsc/petsc-as/documentation/installation.html

Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc

@ You can easily reconfigure with the same options
@ ./S$SPETSC_ARCH/conf/reconfigure-$SPETSC_ARCH.py
@ Can maintain several different configurations
@ ./configure -PETSC_ARCH=linux-fast
-with-debugging=0
@ All configuration information is in the logfile

@ ./SPETSC_ARCH/conf/configure.log
o ALWAYS send this file with bug reports

M. Knepley () PETSc GUCAS’10 27/318

Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc for Unstructured Meshes

-with-clanguage=cxx

o

@ —with-shared -with-dynamic

@ -download-f-blas-lapack —download-mpich
o

—download-boost —download-fiat
—download—-generator

@ -download-triangle —download-tetgen

@ -download-chaco —-download-parmetis
—download-zoltan

@ —with-sieve

M. Knepley () PETSC GUCAS’10 28/318

Getting Started with PETSc How do | Configure PETSc?

Automatic Downloads

@ Starting in 2.2.1, some packages are automatically

e Downloaded
o Configured and Built (in $PETSC_DIR/externalpackages)
o Installed with PETSc
@ Currently works for
@ petscdpy
PETSc documentation utilities (Sowing, Igrind, c2html)
BLAS, LAPACK, BLACS, ScalLAPACK, PLAPACK
MPICH, MPE, LAM
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
BLOPEX, FFTW, SPRNG
Prometheus, HYPRE, ML, SPAI
Sundials
Triangle, TetGen
FIAT, FFC, Generator
Boost

M. Knepley () PETSC GUCAS’10 29/318

Getting Started with PETSc How do | Configure PETSc?

Exercise 2

Configure your downloaded PETSc.

M. Knepley () PETSC GUCAS’10 30/318

Getting Started with PETSc How do | Build PETSc?

Outline

o Getting Started with PETSc

@ How do | Build PETSc?

M. Knepley () PETSc GUCAS’10 31/318

Getting Started with PETSc How do | Build PETSc?

Building PETSc

@ Uses recursive make starting in cd $SPETSC_DIR

@ make
@ make install if you configured with ——prefix
@ Check build when done with make test

@ Complete log for each build is in logfile

@ ./$SPETSC_ARCH/conf/make.log
o ALWAYS send this with bug reports

@ Can build multiple configurations

@ PETSC_ARCH=linux-fast make
o Libraries are in $PETSC_DIR/$PETSC_ARCH/1lib/

@ Can also build a subtree

@ cd src/snes; make
@ cd src/snes; make ACTION=libfast tree

M. Knepley () PETSC GUCAS’10 32/318

Getting Started with PETSc How do | Build PETSc?

Exercise 3

Build your configured PETSc.

M. Knepley () PETSC GUCAS’10 33/318

Getting Started with PETSc How do | Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

o

linux—gnu—-c—-debug/conf/reconfigure-linux—gnu-c—-debug.py

@ -PETSC_ARCH=linux-parmetis
@ —download-parmetis

© PETSC_ARCH=linux-parmetis make
© PETSC_ARCH=linux-parmetis make test

M. Knepley () PETSC GUCAS’10 34/318

Getting Started with PETSc How do | run an example?

Outline

o Getting Started with PETSc

@ How do | run an example?

M. Knepley () PETSc GUCAS’10 35/318

Getting Started with PETSc How do | run an example?

Running PETSc

@ Try running PETSc examples first
@ cd S$PETSC_DIR/src/snes/examples/tutorials
@ Build examples using make targets
@ make ex5
@ Run examples using the make target
@ make runexb5
@ Can also run using MPI directly

@ mpirun ./ex5 —-snes_max_it 5
@ mpiexec ./ex5 —-snes_monitor

M. Knepley () PETSC GUCAS’10 36/318

Getting Started with PETSc How do | run an example?

Using MPI

@ The Message Passing Interface is:

@ a library for parallel communication
e a system for launching parallel jobs (mpirun/mpiexec)
@ a community standard

@ Launching jobs is easy
@ mpiexec -n 4 ./ex5

@ You should never have to make MPI calls when using PETSc
o Almost never

M. Knepley () PETSC GUCAS’10 37/318

Getting Started with PETSc How do | run an example?

MPI1 Concepts

@ Communicator

@ A context (or scope) for parallel communication (“Who can | talk to”)
@ There are two defaults:

@ yourself (PETSC_COMM_SELF),
@ and everyone launched (PETSC_COMM_WORLD)

e Can create new communicators by splitting existing ones
o Every PETSc object has a communicator
o Set PETSC_COMM_WORLD to put all of PETSc in a subcomm

@ Point-to-point communication

e Happens between two processes (like in MatMult ())
@ Reduction or scan operations

e Happens among all processes (like in VecDot ())

M. Knepley () PETSC GUCAS’10 38/318

Getting Started with PETSc How do | run an example?

Alternative Memory Models

@ Single process (address space) model
o OpenMP and threads in general
e Fortran 90/95 and compiler-discovered parallelism
@ System manages memory and (usually) thread scheduling
o Named variables refer to the same storage
@ Single name space model
e HPF, UPC
o Global Arrays
o Titanium
e Variables refer to the coherent values (distribution is automatic)
@ Distributed memory (shared nothing)

e Message passing
o Names variables in different processes are unrelated

M. Knepley () PETSC GUCAS’10 39/318

Getting Started with PETSc How do | run an example?

Common Viewing Options

@ Gives a text representation
@ —-vec_view

@ Generally views subobjects too
@ —snes_view

@ Can visualize some objects
@ —mat_view_draw

@ Alternative formats

@ -vec_view_binary, -vec_view_matlab,
-vec_view_socket

@ Sometimes provides extra information

@ —mat_view_info, -mat_view_info_detailed

M. Knepley () PETSC GUCAS’10 40/318

Getting Started with PETSc How do | run an example?

Common Monitoring Options

@ Display the residual
@ -ksp_monitor, graphically ~ksp_monitor_draw
@ Can disable dynamically
® —ksp_monitors_cancel
@ Does not display subsolvers
@ —snes_monitor
@ Can use the true residual
@ —ksp_monitor_true_residual
@ Can display different subobjects
@ —-snes_monitor_residual, -—snes_monitor_solution,
—snes_monitor_solution_update
@ —-snes_monitor_range
@ —-ksp_gmres_krylov_monitor
@ Can display the spectrum

@ —-ksp_monitor_singular_value

M. Knepley () PETSC GUCAS’10 41/318

Getting Started with PETSc How do | run an example?

Exercise 5

Run SNES Example 5 using come custom options.

cd SPETSC_DIR/src/snes/examples/tutorials
make exb5
mpiexec ./ex5 —-snes_monitor -snes_view

mpiexec ./ex5 —-snes_type tr —-snes_monitor
—snes_view

mpiexec ./ex5 —-ksp_monitor —-snes_monitor
-snes_view

mpiexec ./ex5 -pc_type jacobi -ksp_monitor
—-snes_monitor —-snes_view

© 06 0 00060

mpiexec ./ex5 -ksp_type bicg -ksp_monitor
—-snes_monitor —-snes_view

M. Knepley () PETSC GUCAS’10 42/318

Getting Started with PETSc How do | run an example?

Exercise 6

Create a new code based upon SNES Example 5.

@ Create a new directory
@ mkdir -p /home/knepley/proj/newsim/src
© Copy the source
@ cp ex5.c /home/knepley/proj/newsim/src
o Add mystuff.c andmyStuff2.F
© Create a PETSc makefile
@ bin/ex5: src/ex5.0 src/myStuff.o src/myStuff2.o
° S{CLINKER} -o $@ $~ S{PETSC_SNES_LIB}
@ include ${PETSC_DIR}/conf/variables
@ include ${PETSC_DIR}/conf/rules

To get the project ready-made
hg clone
http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial

newsim
M. Knepley () PETSC GUCAS’10 43/318

Getting Started with PETSc How do | get more help?

Outline

o Getting Started with PETSc

@ How do | get more help?

M. Knepley () PETSc GUCAS’10 44/318

Getting Started with PETSc How do | get more help?

Getting More Help

@ http://www.mcs.anl.gov/petsc
@ Hyperlinked documentation

e Manual
e Manual pages for evey method
e HTML of all example code (linked to manual pages)

e FAQ
@ Full support at petsc-maint@mcs.anl.gov

@ High profile users

o David Keyes

e Marc Spiegelman
@ Richard Katz

e Brad Aagaard

o Lorena Barba

e Jed Brown

M. Knepley () PETSC GUCAS’10 45/318

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/documentation
http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html
mailto:petsc-maint@mcs.anl.gov

Parallel Computing in Brief
Outline

e Parallel Computing in Brief

M. Knepley () PETSC GUCAS’10 46/318

Parallel Computing in Brief

Scalability is not Efficiency

M. Knepley () PETSC GUCAS’10 47/318

Parallel Computing in Brief

Scalability is not Efficiency

Scalability is easy

M. Knepley () PETSCc GUCAS’10 47/318

Parallel Computing in Brief

Scalability is not Efficiency

Scalability is easy

Efficiency is hard

M. Knepley () PETSCc GUCAS’10 47/318

Parallel Computing in Brief
Scalability

Def: Computation, Communication, and Memory are
in O(N)

@ Can also demand O(P)

@ Watch out for hidden constants
@ 6N and 6000N are both scalable

M. Knepley () PETSC GUCAS’10 48/318

Parallel Computing in Brief

PDEs are scalable

M. Knepley () PETSCc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable

@ Computations are local

M. Knepley () PETSCc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable

@ Computations are local

@ Communication is nearest neighbor

M. Knepley () PETSCc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable unless you screw something up

M. Knepley () PETSc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable unless you screw something up

Mistakes:

M. Knepley () PETSc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat

M. Knepley () PETSc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat
@ Fully replicated data structures
e parallel data structures, e.g. DA

M. Knepley () PETSc GUCAS’10 49/318

Parallel Computing in Brief

PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat
@ Fully replicated data structures
e parallel data structures, e.g. DA
@ Referenced arbitrary unknowns

@ GlobalToLocalMapping
@ DA, Mesh, VecScatter

M. Knepley () PETSc GUCAS’10 49/318

Parallel Computing in Brief
Integral Equations

Integral equations can be scalable

M. Knepley () PETSC GUCAS’10 50/318

Parallel Computing in Brief
Integral Equations

Integral equations can be scalable

@ But, they couple all unknowns

M. Knepley () PETSCc GUCAS’10 50/318

Parallel Computing in Brief
Integral Equations

Integral equations can be scalable

@ But, they couple all unknowns

@ Need special algorithms
e Fast Fourier Transform

e Fast Multipole Method

o Fast Wavelet Transform

M. Knepley () PETSc GUCAS’10 50/318

Common PETSc Usage
Outline

e Common PETSc Usage
@ Principles and Design
@ Debugging PETSc
@ Profiling PETSc

M. Knepley () PETSCc GUCAS’10 51/318

Common PETSc Usage Principles and Design

Outline

e Common PETSc Usage
@ Principles and Design

M. Knepley () PETSC GUCAS’10 52/318

Common PETSc Usage Principles and Design

PETSc Structure

-

M. Knepley () PETSc GUCAS’10 53/318

Common PETSc Usage Principles and Design

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation

M. Knepley () PETSc GUCAS '10 54/318

y

Common PETSc Usage Principles and Design

Levels of Abstraction

In Mathematical Software

@ Application-specific interface
e Programmer manipulates objects associated with the application
@ High-level mathematics interface
e Programmer manipulates mathematical objects
@ Weak forms, boundary conditions, meshes
@ Algorithmic and discrete mathematics interface
e Programmer manipulates mathematical objects
@ Sparse matrices, nonlinear equations
e Programmer manipulates algorithmic objects
@ Solvers
@ Low-level computational kernels
o BLAS-type operations, FFT

M. Knepley () PETSC GUCAS’10 55/318

Common PETSc Usage Principles and Design

Object-Oriented Design

@ Design based on operations you perform,
e rather than the data in the object

@ Example: A vector is
e not a 1d array of numbers

@ an object allowing addition and scalar multiplication
@ The efficient use of the computer is an added difficulty
@ which often leads to code generation

M. Knepley () PETSC GUCAS’10 56/318

Common PETSc Usage Principles and Design

The PETSc Programming Model

@ Goals
o Portable, runs everywhere
e High performance
@ Scalable parallelism
@ Approach
o Distributed memory (“shared-nothing”)
e No special compiler
o Access to data on remote machines through MPI
o Hide within objects the details of the communication
e User orchestrates communication at a higher abstract level

M. Knepley () PETSC GUCAS’10 57/318

Common PETSc Usage Principles and Design

Symmetry Principle

Interfaces to mutable data must be symmetric.

@ Creation and query interfaces are paired
@ “No get without a set”
@ Fairness
e “If you can do it, your users will want to do it”
@ Openness
e “If you can do it, your users will want to undo it”

M. Knepley () PETSC GUCAS’10 57/318

Common PETSc Usage Principles and Design

Empiricism Principle

Interfaces must allow easy testing and comparison.

@ Swapping different implementations
e “You will not be smart enough to pick the solver”
@ Commonly violated in FE code
e Elements are hard coded
@ Also avoid assuming structure outside of the interface

e Making continuous fields have discrete structure
e Temptation to put metadata in a different places

M. Knepley () PETSC GUCAS’10 57/318

Common PETSc Usage Principles and Design

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.

M. Knepley () PETSC GUCAS’10 58/318

Common PETSc Usage Principles and Design

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
e Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec %*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VvecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process

M. Knepley () PETSC GUCAS’10 59/318

Common PETSc Usage Principles and Design

What is not in PETSc?

° U I I . I ulati
@ In 3.0, we have Mesh objects

@ Discretizations
e Dealll
e In 3.0, we have an interface to FIAT

@ Higher level representations of PDEs
e FENICS (FFC/Syfi) and Sundance

@ Load balancing
o Interface to Zoltan

@ Sophisticated visualization capabilities
o Interface to MayaVi2 through VTK

@ Eigenvalues
e SLEPcand SIP

@ Optimization and sensitivity
e TAO and Veltisto

M. Knepley () PETSC GUCAS’10 60/318

Common PETSc Usage Principles and Design

Basic PetscObject Usage

Every object in PETSc supports a basic interface

Function | Operation
Create () | create the object
Get/SetName () | name the object
Get/SetType () | setthe implementation type
Get/SetOptionsPrefix () | set the prefix for all options
SetFromOptions () | customize object from the command lin
SetUp () | preform other initialization
View () | view the object
Destroy () | cleanup object allocation

Also, all objects support the —help option.

M. Knepley () PETSC GUCAS’10 61/318

Common PETSc Usage Debugging PETSc

Outline

e Common PETSc Usage

@ Debugging PETSc

M. Knepley () PETSC GUCAS’10 62/318

Common PETSc Usage Debugging PETSc

Correctness Debugging

e Automatic generation of tracebacks
e Detecting memory corruption and leaks

e Optional user-defined error handlers

M. Knepley () PETSC GUCAS’10 63/318

Common PETSc Usage Debugging PETSc

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ -on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —display khan.mcs.anl.gov:0.0

M. Knepley () PETSC GUCAS’10 64/318

Common PETSc Usage Debugging PETSc

Debugging Tips

@ Put a breakpoint in PetscError () to catch errors as they occur
@ PETSc tracks memory overwrites at both ends of arrays

e The CHKMEMQ macro causes a check of all allocated memory
e Track memory overwrites by bracketing them with CHKMEMQ

@ PETSc checks for leaked memory

@ Use PetscMalloc () and PetscFree () for all allocation
@ Print unfreed memory on PetscFinalize () with -malloc_dump

@ Simply the best tool today is valgrind

e It checks memory access, cache performance, memory usage, etc.
(]
@ Need -trace-children=yes when running under MPI

M. Knepley () PETSC GUCAS’10 65/318

http://www.valgrind.org

Common PETSc Usage Debugging PETSc

Exercise 7

Use the debugger to find a SEGV

Locate a memory overwrite using CHKMEMQ.

@ Get the example
@ hg clone -rl
http://petsc.cs.iit.edu/petsc/SimpleTutorial

@ Build the example make
@ Run it and watch the fireworks

@ mpiexec -n 2 ./bin/ex5 -use_coords
@ Run it under the debugger and correct the error

@ mpiexec -n 2 ./bin/ex5 -use_coords
—-start_in_debugger -display :0.0
@ hg update -r2

@ Build it and run again smoothly

M. Knepley () PETSC GUCAS 10

66/318

Common PETSc Usage Profiling PETSc

Outline

e Common PETSc Usage

@ Profiling PETSc

M. Knepley () PETSC GUCAS’10 67/318

Common PETSc Usage Profiling PETSc

Performance Debugging

@ PETSc has integrated profiling
@ Option —-1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage

M. Knepley () PETSC GUCAS’10 68/318

Common PETSc Usage Profiling PETSc

Using Stages and Events

@ Use PetsclLogStageRegister () to create a new stage
e Stages are identifier by an integer handle
@ Use PetsclLogStagePush/Pop () to manage stages
e Stages may be nested, but will not aggregate in a nested fashion
@ Use PetsclLogEventRegister () to create a new stage
e Events also have an associated class
@ Use PetscLogEventBegin/End () to manage events

e Events may also be nested and will aggregate in a nested fashion
e Canuse PetscLogFlops () to log user flops

M. Knepley () PETSC GUCAS’10 69/318

Common PETSc Usage Profiling PETSc

Adding A Logging Stage

int stageNum;

PetsclLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

Code to Monitor

PetscLogStagePop () ;

M. Knepley () PETSC GUCAS’10 70/318

Common PETSc Usage Profiling PETSc

Adding A Logging Event

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID)
PetscLogEventBegin (USER_EVENT,0,0,0,0);

Code to Monitor

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT,0,0,0,0);

M. Knepley () PETSC GUCAS 10

4

71/318

Common PETSc Usage Profiling PETSc

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type

M. Knepley () PETSC GUCAS’10 72/318

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

@ PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
Dynamically adding many nonzeros
e requires additional memory allocations
@ requires copies
e can kill performance
Memory preallocation provides
o the freedom of dynamic data structures
@ good performance
Easiest solution is to replicate the assembly code
@ Remove computation, but preserve the indexing code
o Store set of columns for each row
Call preallocation rourines for all datatypes

@ MatSegAIJSetPreallocation ()
@ MatMPIAIJSetPreallocation ()
@ Only the relevant data will be used

M. Knepley () PETSC GUCAS’10 73/318

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Sequential Sparse Matrices

MatSegAIJPreallocation(Mat A, int nz, int nnz[])
nz: expected number of nonzeros in any row
nz(i): expected number of nonzeros in row i

.\.,

M. Knepley () PETSC GUCAS’10 73/318

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

ParallelSparseMatrix

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

. diagonal blocks

. offdiagonal blocks

proc 0

proc 1
proc 2

proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A, int =*start,int =xend)
start: first locally owned row of global matrix

GUCAS '10 73/318

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Parallel Sparse Matrices

MatMPIAIJPreallocation (Mat A, int dnz, int dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
nz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
nz(i): expected number of nonzeros in row i in the offdiagonal portion

M. Knepley () PETSC GUCAS’10 73/318

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Verifying Preallocation

@ Use runtime option —info
@ Output:

[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used

[proc #] Number of mallocs during MatSetValues()
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unneeded, 250 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize: PETSc successfully ended!

M. Knepley () PETSC GUCAS’10 73/318

Common PETSc Usage Profiling PETSc

Exercise 8

Return to Execise 7 and add more profiling.

@ Update to the next revision
@ hg update -r3
@ Build, run, and look at the profiling report

@ make ex5
@ ./bin/ex5 -use_coords —-log_summary

@ Add a new stage for setup
@ Add a new event for FormInitialGuess () and log the flops
@ Build it again and look at the profiling report

M. Knepley () PETSC GUCAS’10 74/318

PETSc Integration
Outline

e PETSc Integration
@ Initial Operations
@ Vector Algebra
@ Matrix Algebra
@ Algebraic Solvers
@ More Abstractions

M. Knepley () PETSC GUCAS’10 75/318

PETSc Integration Initial Operations

Outline

© PETSc Integration
@ Initial Operations

M. Knepley () PETSCc GUCAS’10 76/318

PETSc Integration Initial Operations

Application Integration

@ Be willing to experiment with algorithms
o No optimality without interplay between physics and algorithmics
@ Adopt flexible, extensible programming
o Algorithms and data structures not hardwired
@ Be willing to play with the real code
o Toy models are rarely helpful
@ If possible, profile before integration
e Automatic in PETSc

M. Knepley () PETSC GUCAS’10 77/318

PETSc Integration Initial Operations

PETSc Integration

PETSc is a set a library interfaces
@ We do not seize main ()
@ We do not control output
@ We propagate errors from underlying packages
@ We present the same interfaces in:
o C
o C++
o F77

e F90
e Python

See Gropp in SIAM, OO Methods for Interop SciEng, '99

M. Knepley () PETSC GUCAS’10 78/318

PETSc Integration Initial Operations

Integration Stages

Version Control

e ltis impossible to overemphasize
Initialization

e Linking to PETSc
Profiling

e Profile before changing

@ Also incorporate command line processing

Linear Algebra
o First PETSc data structures
Solvers
o Very easy after linear algebra is integrated

M. Knepley () PETSC GUCAS’10 79/318

PETSc Integration Initial Operations

Initialization

@ Call petscInitialize ()

o Setup static data and services
e Setup MPI if it is not already

@ Call petscFinalize ()

o Calculates logging summary
e Shutdown and release resources

@ Checks compile and link

M. Knepley () PETSC GUCAS’10 80/318

PETSc Integration Initial Operations

Profiling

@ Use -1og_summary for a performance profile
e Event timing

Event flops
e Memory usage
e MPI messages

@ Call petscLogStagePush () and PetscLogStagePop ()
e User can add new stages

@ Call petscLogEventBegin () and PetscLogEventEnd ()
o User can add new events

M. Knepley () PETSC GUCAS’10 81/318

PETSc Integration Initial Operations

Command Line Processing

Check for an option
@ PetscOptionsHasName ()
Retrieve a value
@ PetscOptionsGetInt (), PetscOptionsGetIntArray ()
Set a value
@ PetscOptionsSetValue ()
Check for unused options
@ -options_left
Clear, alias, reject, etc.
Modern form uses

@ PetscOptionsBegin (), PetscOptionsEnd ()
@ PetscOptionsInt (),PetscOptionsReal ()
o Integrates with —help

M. Knepley () PETSC GUCAS’10 82/318

PETSc Integration Vector Algebra

Outline

e PETSc Integration

@ Vector Algebra

M. Knepley () PETSCc GUCAS’10 83/318

PETSc Integration Vector Algebra

Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing field solutions, right-hand
sides, etc.

@ Each process locally owns a subvector of contiguous global data
How do | create vectors?

@ VecCreate (MPI_Comm, Vec x)

@ VecSetSizes (Vec, int n, int N)

@ VecSetType (Vec, VecType typeName)
@ VecSetFromOptions (Vec)
o Can set the type at runtime

M. Knepley () PETSC GUCAS’10 84/318

PETSc Integration Vector Algebra

Vector Algebra

A PETSc Vec

@ Has a direct interface to the values

@ Supports all vector space operations
@ VecDot (), VecNorm (), VecScale()

@ Has unusual operations, e.g. VecsSqgrt (), VecWhichBetween ()
@ Communicates automatically during assembly
@ Has customizable communication (scatters)

M. Knepley () PETSC GUCAS’10 84/318

PETSc Integration Vector Algebra

Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

e Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase

M. Knepley () PETSC GUCAS’10 85/318

PETSc Integration Vector Algebra

Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ VecSetValues (Vec v, int n, int rows][],
PetscScalar values|[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
@ Two phase assembly allows overlap of communication and
computation
@ VecAssemblyBegin (Vec V)
@ VecAssemblyEnd (Vec v)

M. Knepley () PETSC GUCAS’10 86/318

PETSc Integration Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i =0, val = 0.0; i < N; i++, wval += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);

}

/+ These routines ensure that the data i1s distributed
to the other processes x/

VecAssemblyBegin (x) ;

VecAssemblyEnd (x) ;

M. Knepley () PETSC GUCAS’10 87/318

PETSc Integration Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low,
for(i = low,val = low*10.0; 1
{

VecSetValues(x, 1, &i, &val,

}

&high);

< high; i++,val +=

INSERT_VALUES) ;

10.0)

/* These routines ensure that the data is distributed

to the other processes */
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

M. Knepley () PETSc

GUCAS '10

88/318

PETSc Integration Vector Algebra

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=x+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y +axx
VecScale(Vec x, PetscScalar a) X=axx
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) W = X * Y
VecMax(Vec x, Petscint *idx, PetscScalar *r) r = maxf;
VecShift(Vec x, PetscScalar r) Xi=Xj+r
VecAbs(Vec x) Xi = |xi|
VecNorm(Vec x, NormType type, PetscReal *r) r=||x||

M. Knepley () PETSc

GUCAS '10

89/318

PETSc Integration Vector Algebra

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray (Vec, double x[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray (Vec, double *x[])
@ Allows PETSc to handle data structure conversions
e Commonly, these routines are inexpensive and do not involve a
copy

M. Knepley () PETSC GUCAS’10 90/318

PETSc Integration Vector Algebra

VecGetArray in C

Vec v;

PetscScalar =*array;
PetscInt n, ij;
PetscErrorCode ierr;

VecGetArray (v, &array);
VecGetLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
for(i = 0; 1 < n; 1i++) {
array[i] += (PetscScalar) rank;
}

VecRestoreArray (v, &array);

M. Knepley () PETSC GUCAS’10 91/318

PETSc Integration Vector Algebra

VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;

PetscScalar array(1l)
PetscOffset offset

PetscInt n, 1

PetscErrorCode ierr

call VecGetArray (v, array, offset, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n

array (itoffset) = array(itoffset) + rank
end do
call VecRestoreArray (v, array, offset, ierr)

M. Knepley () PETSC GUCAS’10 91/318

PETSc Integration Vector Algebra

VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;

PetscScalar pointer :: array(:)
PetscInt n, 1

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n
array (i) = array (i) + rank
end do
call VecRestoreArrayF90 (v, array, ilerr)

M. Knepley () PETSc

GUCAS '10

91/318

PETSc Integration Matrix Algebra

Outline

e PETSc Integration

@ Matrix Algebra

M. Knepley () PETSCc GUCAS’10 92/318

PETSc Integration Matrix Algebra

Matrix Algebra

What are PETSc matrices?
@ Fundamental objects for storing stiffness matrices and Jacobians

@ Each process locally owns a contiguous set of rows
@ Supports many data types

e AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
@ Supports structures for many packages

e MUMPS, Spooles, SuperLU, UMFPack, DSCPack

M. Knepley () PETSC GUCAS’10 93/318

PETSc Integration Matrix Algebra

How do | create matrices?

MatCreate (MPI_Comm, Mat x)
MatSetSizes (Mat, int m, int n, int M, int N)
MatSetType (Mat, MatType typeName)
MatSetFromOptions (Mat)

o Can set the type at runtime

MatSegAIJPreallocation (Mat,
PetscInt nz, const PetscInt nnz[])

MatMPIAIJPreallocation (Mat,

PetscInt dnz, const PetscInt dnz[],
PetscInt onz, const PetscInt onz[])

MatSetValues (Mat, ...)
e MUST be used, but does automatic communication

M. Knepley () PETSC GUCAS 10

94/318

PETSc Integration Matrix Algebra

Matrix Polymorphism

The PETSc Mat has a single user interface,
@ Matrix assembly
@ MatSetValues ()
@ Matrix-vector multiplication
@ MatMult ()
@ Matrix viewing
@ MatView ()
but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense
@ Matrix-Free
@ etc.

A matrix is defined by its interface, not by its data structure.

M. Knepley () PETSC GUCAS 10

95/318

PETSc Integration Matrix Algebra

Matrix Assembly

@ A three step process

e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat m, m, rows[], n, cols|[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)

o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY

M. Knepley () PETSC GUCAS’10 96/318

PETSc Integration Matrix Algebra

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;

if (rank == 0) {

for (row = O; row < N; row++) {
cols[0] = -1; cols[l] = row; cols[2] = rowt+l;
if (row ==) {

MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;

} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;

} else {
MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

P}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

M. Knepley () PETSC GUCAS’10 97/318

PETSc Integration Matrix Algebra

A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;

for (row = start; row < end; rowt++) {
cols[0] = row-1; cols[l] = row; cols[2] = row+l;
if (row == 0) {

MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;

} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;

} else {
MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

}

MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY);

M. Knepley () PETSC GUCAS’10 98/318

PETSc Integration Matrix Algebra

Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide significant performance

benefits
e PETSc has many formats and makes it easy to add new data

structures
@ Assembly is difficult enough without worrying about partitioning

o PETSc provides parallel assembly routines
@ Achieving high performance still requires making most operations

local
e However, programs can be incrementally developed.
@ MatPartitioning and MatOrdering can help
@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
e For other ordering, PETSc provides “Application Orderings” (AQ)

M. Knepley () PETSC GUCAS’10 99/318

PETSc Integration Algebraic Solvers

Outline

© PETSc Integration

@ Algebraic Solvers

M. Knepley () PETSCc GUCAS’10 100/318

PETSc Integration Algebraic Solvers

Solver Types

@ Explicit:

o Field variables are updated using local neighbor information
@ Semi-implicit:

e Some subsets of variables are updated with global solves

e Others with direct local updates
@ Implicit:

e Most or all variables are updated in a single global solve

M. Knepley () PETSC GUCAS’10 101/318

PETSc Integration Algebraic Solvers

Linear Solvers

Krylov Methods

@ Using PETSc linear algebra, just add:

@ KSPSetOperators (KSP ksp, Mat A, Mat M,
MatStructure flag)
@ KSPSolve (KSP ksp, Vec b, Vec x)

@ Can access subobjects
@ KSPGetPC (KSP ksp, PC =xpc)

@ Preconditioners must obey PETSc interface
o Basically just the KSP interface

@ Can change solver dynamically from the command line
@ -ksp_type bicgstab

M. Knepley () PETSC GUCAS’10 102/318

PETSc Integration Algebraic Solvers

Nonlinear Solvers

Newton and Picard Methods

@ Using PETSc linear algebra, just add:
@ SNESSetFunction (SNES snes, Vec r, residualFunc,

void *ctx)
@ SNESSetJacobian (SNES snes, Mat A, Mat M, jacFunc,

void *ctx)
@ SNESSolve (SNES snes, Vec b, Vec x)
@ Can access subobjects
@ SNESGetKSP (SNES snes, KSP xksp)
@ Can customize subobjects from the cmd line
@ Set the subdomain preconditioner to ILU with —sub_pc_type ilu

M. Knepley () PETSC GUCAS’10 103/318

PETSc Integration Algebraic Solvers

Basic Solver Usage

We will illustrate basic solver usage with SNES.

@ Use SNESSetFromOptions () S0 that everything is set
dynamically

o Use —snes_type to set the type or take the default

@ Override the tolerances
@ Use -snes_rtol and -snes_atol

@ View the solver to make sure you have the one you expect
@ Use -snes_view

@ For debugging, monitor the residual decrease

@ Use -snes_monitor
e Use -ksp_monitor to see the underlying linear solver

M. Knepley () PETSC GUCAS’10 104/318

PETSc Integration Algebraic Solvers

3rd Party Solvers in PETSc

@ Sequential LU

ILUDT (SPARSEKIT2, Yousef Saad, U of MN)
EUCLID & PILUT (Hypre, David Hysom, LLNL)
ESSL (IBM)

SuperLU (Jim Demmel and Sherry Li, LBNL)
Matlab

UMFPACK (Tim Davis, U. of Florida)

LUSOL (MINOS, Michael Saunders, Stanford)

@ Parallel LU

MUMPS (Patrick Amestoy, IRIT)
SPOOLES (Cleve Ashcroft, Boeing)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)

© Parallel Cholesky

DSCPACK (Padma Raghavan, Penn. State)

© XYTlib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)

M. Knepley () PETSC GUCAS’10 105/318

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration Algebraic Solvers

3rd Party Preconditioners in PETSc

@ Parallel ICC

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel ILU

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel Sparse Approximate Inverse

e Parasails (Hypre, Edmund Chow, LLNL)

e SPAI 3.0 (Marcus Grote and Barnard, NYU)
@ Sequential Algebraic Multigrid

e RAMG (John Ruge and Klaus Steuben, GMD)

o SAMG (Klaus Steuben, GMD)
@ Parallel Algebraic Multigrid

o Prometheus (Mark Adams, PPPL)

o BoomerAMG (Hypre, LLNL)

e ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

M. Knepley () PETSC GUCAS 10

105/318

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration More Abstractions

Outline

© PETSc Integration

@ More Abstractions

M. Knepley () PETSCc GUCAS’10 106/318

PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
@ Structured grid interface
o Fixed simple topology
@ Supports stencils, communication, reordering
o Limited idea of operators

@ Nice for simple finite differences

The PETSc Mesh class is a topology interface.
@ Unstructured grid interface
o Arbitrary topology and element shape

@ Supports partitioning, distribution, and global orders

M. Knepley () PETSC GUCAS’10 107/318

PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
@ Supports multigrid
@ DMMG combines it with the MG preconditioner

@ Abstracts the logic of multilevel methods

The PETSc section class is a function interface.
@ Functions over unstructured grids
o Arbitrary layout of degrees of freedom

@ Support distribution and assembly

M. Knepley () PETSC GUCAS’10 107/318

PETSc Integration More Abstractions

3 Ways To Use PETSc

DMMGSetSNESLocal()

Grid Info

Solvers

DAGetMat()

DAGetGlobal Ve

MatCreate()
VecCreate()

SNESCreate()

@ User manages all topology (just use Vec and Mat)
@ PETSc manages single topology (use DA)
@ PETSc manages a hierarchy (use DM)

M. Knepley () PETSc GUCAS '10 108/318

Advanced PETSc
Outline

© Advanced PETSc
@ SNES
@ DA

M. Knepley () PETSC GUCAS’10 109/318

Advanced PETSc SNES

Outline

© Advanced PETSc
@ SNES

M. Knepley () PETSCc GUCAS’10 110/318

Advanced PETSc SNES

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation

M. Knepley () PETSc GUCAS'10 111/318

y

Advanced PETSc SNES

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
@ PETSc never sees application data

M. Knepley () PETSC GUCAS '10

112/318

Advanced PETSc SNES

Topology Abstractions

@ DA

o Abstracts Cartesian grids in any dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ Mesh

o Abstracts general topology in any dimension
o Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations

M. Knepley () PETSC GUCAS’10 113/318

Advanced PETSc SNES

Assembly Abstractions

@ DM

o Abstracts the logic of multilevel (multiphysics) methods
o Manages allocation and assembly of local and global structures
o Interfaces to DMMG solver

@ Section

@ Abstracts functions over a topology
e Manages allocation and assembly of local and global structures
o Will merge with bM somehow

M. Knepley () PETSC GUCAS’10 114/318

Advanced PETSc SNES

SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void *ctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants

M. Knepley () PETSC GUCAS’10 115/318

Advanced PETSc SNES

SNES Jacobian

The user provided function which calculates the Jacobian has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat =J,Mat
*M, MatStructure xflag,void #*ctx)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants
@ Possible MatStructure values are:
o SAME_NONZERO_PATTERN
o DIFFERENT_NONZERO_PATTERN
Alternatively, you can use
@ a builtin sparse finite difference approximation
@ automatic differentiation (ADIC/ADIFOR)

M. Knepley () PETSC GUCAS’10 116/318

Advanced PETSc SNES

SNES Variants

e Line search strategies
e Trust region approaches
e Pseudo-transient continuation

o Matrix-free variants

M. Knepley () PETSC GUCAS'10 117/318

Advanced PETSc SNES

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
o Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

o Uses preconditioning matrix from SNESSet Jacobian ()

M. Knepley () PETSC GUCAS’10 118/318

Advanced PETSc SNES

SNES Example

Driven Cavity

Solution Components

-
B
-
veloaity: i velocity: v @ Velocity-vorticity formulation

@ Flow driven by lid and/or bouyancy
@ Logically regular grid

- e Parallelized with DA
@ Finite difference discretization

vorticity: temperature: T @ Authored by David Keyes

$PETCS_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley () PETSC GUCAS’10 119/318

Advanced PETSc SNES

SNES Example

Driven Cavity Application Context

typedef struct {
/+*——— basic application data ———%/
double 1lid_velocity;
double prandtl, grashof;
int mx, my;

int mc;

PetscTruth draw_contours;
/+——— parallel data —--—«/
MPI_Comm comm;

DA daj;

/+ Local ghosted solution and residual =/
Vec localX, localF;
} AppCtx;

$PETCS_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley () PETSC GUCAS’10 119/318

Advanced PETSc SNES

SNES Example

Driven Cavity Residual Evaluation

DrivenCavityFunction (SNES snes, Vec X, Vec F, void xptr) {
AppCtx *user = (AppCtx x) ptr;
/* local starting and ending grid points =/
int istart, iend, Jjstart, jend;
PetscScalar *f; /* local vector data =*/
PetscReal grashof = user—->grashof;
PetscReal prandtl = user—->prandtl;
PetscErrorCode ierr;

/+ Code to communicate nonlocal ghost point data =*/
VecGetArray (F, &f);

/+ Code to compute local function components =*/
VecRestoreArray (F, &f);
return 0;

$PETCS_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley () PETSC GUCAS’10 119/318

Advanced PETSc SNES

SNES Example

Better Driven Cavity Residual Evaluation

PetscErrorCode DrivenCavityFuncLocal (DALocalInfo *info,
Field **x,Field x*f,void =*ctx) {
/+ Handle boundaries */
/+ Compute over the interior points =/
for(j = info->ys; j < info->xs+info->xm; J++) {
for(i = info->xs; 1 < info->ys+info->ym; i++) {
/* convective coefficients for upwinding =/
/* U velocity =/

u = x[J][i].u;

uxx = (2.0*u - x[J][i-1].u - x[3][i+1].u)rhydhx;
uyy = (2.0%xu - x[J-1][1i].u - x[3j+1][1i].u)~rhxdhy;
upw = 0.5%x(x[Jj+1][1i] .omega-x[j-1][i].omega) ~hx

fl31[1i].u = uxx + uyy - upw;
/+ V velocity, Omega, Temperature =/

P}
$PETCS_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley () PETSC GUCAS’10 119/318

Advanced PETSc DA

Outline

© Advanced PETSc

o DA

M. Knepley () PETSCc GUCAS’10 120/318

Advanced PETSc DA

What is a DA?

DA is a topology interface handling parallel data layout on structured
grids
@ Handles local and global indices
@ DAGetGlobalIndices () and DAGetAO ()
@ Provides local and global vectors
@ DAGetGlobalVector () and DAGetLocalVector ()
@ Handles ghost values coherence
@ DAGetGlobalToLocal () and DAGetLocalToGlobal ()

M. Knepley () PETSC GUCAS’10 121/318

Advanced PETSc DA

DA Paradigm

The DA interface is based upon local callback functions
@ FormFunctionLocal (), set by DASetLocalFunction ()

@ FormJacobianLocal (), set by DASetLocalJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Each process evaluates the local residual

@ PETSc assembles the global residual automatically
o Uses DALocalToGlobal () method

M. Knepley () PETSC GUCAS '10

122/318

Advanced PETSc DA

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring
processes

. Local Node

Q Ghost Node

M. Knepley () PETSC GUCAS’10 123/318

Advanced PETSc DA

DA Global Numberings

Proc 2 Proc 3 Proc 2 Proc 3
25 26 27|28 29 21 22 23|28 29
20 21 22|23 24 18 19 20 | 26 27
15 16 17 |18 19 15 16 17 |24 25
10 11 12 (13 14 6 7 8 |13 14
5 6 7|8 9 3 4 5 |11 12
0 1 2|1 3 4 0o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Natural numbering

M. Knepley ()

PETSc

PETSc numbering

GUCAS '10

124 /318

Advanced PETSc DA

DA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20|26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5|11 12
o 1 2|3 X o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Local numbering

M. Knepley ()

PETSc

Global numbering

GUCAS '10

125/318

Advanced PETSc DA

DA Local Function

The user provided function which calculates the nonlinear residual in
2D has signature

PetscErrorCode (x1lfunc) (DALocalInfo =*info,
PetscScalar *+*x, PetscScalar x*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetTLocalFunction ()

The local DA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)

M. Knepley () PETSC GUCAS'10 126/318

Advanced PETSc DA

Bratu Residual Evaluation

Au+2e"=0

BratuResidualLocal (DALocalInfo *info,Field x*x,Field xxf)
{

/* Not Shown: Handle boundaries =/

/+ Compute over the interior points =/

for(j = info->ys; j < info->xs+info->ym; J++) {
for(i = info->xs; i < info->ys+info->xm; i++) {
u = x[J1[i];
Uu_xXX = (2.0xu - x[]J][1i-1] - x[j][i+1]) rhydhx;
u_yy = (2.0xu - x[3-11[i] - x[J+1]1[1i])~rhxdhy;

f13]11[1] u_xx + u_yy - hxxhyxlambdaxexp (u);

$PETCS_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley () PETSC GUCAS’10 127/318

Advanced PETSc DA

DA Local Jacobian

The user provided function which calculates the Jacobian in 2D has
signature

PetscErrorCode (xlfunc) (DALocalInfo *info, PetscScalar
*xx, Mat J, void #*ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalFunction ()

The local DA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJdacobian, ctx)

M. Knepley () PETSC GUCAS'10 128/318

Advanced PETSc DA

Bratu Jacobian Evaluation

BratuJacobianLocal (DALocalInfo *info,PetscScalar **x,
Mat Jjac,void xctx) {

for(j = info->ys; j < info->ys + info->ym; Jj++) {
for(i = info->xs; i < info->xs + info->xm; 1i++) {
row.j = j; row.i = 1i;
if (1 == [l 3 ==0 1] 1 ==mx-1 || J == my-1) {
v[0] = 1.0;
MatSetValuesStencil (jac, 1, &row, 1, &row, v, INSERT_VALUES
} else {
v[0] = —-(hx/hy); col[0].] = j-1; col[0].1i = i;
v[1l] = —(hy/hx); col[l]l.] = J; col[l].1i = i-1;
v[2] = 2.0x (hy/hx+hx/hy)
— hxshy*xlambda*PetscExpScalar (x[Jj][i]);
v[3] = —(hy/hx); col[3].] = J; col[3].1 = i+1;

v[4] = —(hx/hy); col[4].] = j+1; col[4].1i = i;
MatSetValuesStencil (jac, 1, &row, 5, col, v, INSERT_VALUES)
Frorod

$PETCS_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley () PETSC GUCAS’10 129/318

Advanced PETSc DA

A DA is more than a Mesh

A DA contains topology, geometry, and an implicit Q1 discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)

M. Knepley () PETSC GUCAS’10 130/318

Advanced PETSc DA

DA Vectors

@ The DA object contains only layout (topology) information
o All field data is contained in PETSc vecs
@ Global vectors are parallel

e Each process stores a unique local portion
@ DACreateGlobalVector (DA da, Vec =*gvec)

@ Local vectors are sequential (and usually temporary)

e Each process stores its local portion plus ghost values
@ DACreatelLocalVector (DA da, Vec =*lvec)
e includes ghost values!

M. Knepley () PETSC GUCAS’10 131/318

Advanced PETSc DA

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DAGlobalToLocalBegin (da, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@ DAGlobalToLocalEnd(da, gvec, mode, lvec)
@ Finishes the communication

The process can be reversed with DAL.ocalToGlobal ().

M. Knepley () PETSC GUCAS '10

132/318

Advanced PETSc DA

DA Stencils

Both the box stencil and star stencil are available.

proc 10 proc 10

proc 0 proc 1 proc 0 proc 1

Box Stencil Star Stencil

M. Knepley () PETSC GUCAS’10 133/318

Advanced PETSc DA

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n,
MatStencil idxn[], wvalues[], mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

M. Knepley () PETSC GUCAS'10 134/318

Advanced PETSc DA

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s,
Im[], 1In[], DA =xda)

Nrap.

_ype:

M/N:
m/n:
dof:

: The stencil width
lm/n:

Specifies periodicity
@ DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, Of
DA_XYPERIODIC

Specifies stencil
@ DA_STENCIL_BOX Or DA_STENCIL_STAR

Number of grid points in x/y-direction
Number of processes in x/y-direction
Degrees of freedom per node

Alternative array of local sizes
@ Use PETSC_NULL for the default

M. Knepley () PETSC GUCAS '10

135/318

Advanced PETSc DA

Homework

@ You may hand in homework:
e On paper at the beginning of class

e By email, to knepley@gmail.com

@ Please include your name and student number on all homework

@ All homework must be turned in by the beginning of class on
Friday

M. Knepley () PETSC GUCAS'10 136/318

mailto:knepley@gmail.com

Advanced PETSc DA

Homework 1

@ How are PETSc matrices divided in parallel?
e By rows
e By columns
o By blocks (of rows and columns)

©@ What is a PETSc KSP object?
© What command line option changes the type of linear solver?
© Which of these operations is collective?
@ MatSetValues ()
@ VecScale ()
@ SNESSolve ()
@ PetscFree ()
©@ What option can be used with SNES to calculate a
Finite-Difference approximation to the Jacobian?
© What are the two kinds of DA stencils?
@ List three third-party solvers which can be used with PETSc.
© What option launches the debugger when PETSc is run?

M. Knepley () PETSC GUCAS 10

137/318

Serial Performance
Outline

e Serial Performance

M. Knepley () PETSC GUCAS’10 138/318

Serial Performance
Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
@ computation
@ memory usage
@ communication
@ bandwidth
@ achievable concurrency
This allows us to
@ verify the implementation
@ predict scaling behavior

M. Knepley () PETSC GUCAS'10 139/318

Serial Performance
Complexity Analysis

The key performance indicator, which we will call the balance factor g,
is the ratio of flops executed to bytes transfered.

flop
byte

@ Using the peak flop rate r,.., we can get the required bandwidth
B4 for an algorithm

@ We will designate the unit as the Keyes

s peak
B

@ Using the peak bandwidth Bj..x, we can get the maximum flop
rate rax for an algorithm

Breq = (1)

Imax = BBpeak (2)

M. Knepley () PETSC GUCAS’10 140/318

Serial Performance
Performance Caveats

@ The peak flop rate r,..x on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-Dbit registers.

@ SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

C1 = C1 + a; * by 3)
Co=0Co+ a * b (4)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.

@ Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.

M. Knepley () PETSC GUCAS’10 141/318

Analysis of BLAS axpy ()

7(—00?—#}7

For vectors of length N and b-byte numbers, we have
@ Computation
e 2N flops

@ Memory Access
e (3N + 1)bbytes

Thus, our balance factor 3 = (3,@’:’1)[) ~ %Keyes

M. Knepley () PETSC GUCAS'10 142/318

Analysis of BLAS axpy ()

For Matt’s Laptop,
@ ryeak = 1700MF/s
implies that
@ By =2550b MB/s
@ Much greater than Bcax

@ Byeak = 1122MB/s
implies that
@ Iax = 722 MF/s
@ 5.5% of feax

M. Knepley () PETSC GUCAS'10 142/318

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax

@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

M. Knepley ()

PETSc

GUCAS '10 143/318

http://www.cs.virginia.edu/stream

Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
(8 + V> e + v byte/flop (5)
or achieveable performance given a bandwith BW
Vnz
BV r2)ymtenzo/ Milop/s ©)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

M. Knepley () PETSC GUCAS'10 144/318

http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf
http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf

Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most
1
———— bytes/flop(1122.4 MB/s) = 151 MFlops/s, (7)
BT T e/ /s) /
which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.

M. Knepley () PETSC GUCAS'10 145/318

Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

———— bytes/flop(1122.4 MB/s) = 151 MFlops/s, (7)
@r2)156" /flop(/s) ps/

which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)
e N data, N? computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation

M. Knepley () PETSC GUCAS'10 145/318

Serial Performance
Performance Tradeoffs

We must balance storage, bandwidth, and cycles

@ Assembled Operator Action
o Trades cycles and storage for bandwidth in application
@ Unassembled Operator Action

e Trades bandwidth and storage for cycles in application

e For high orders, storage is impossible

o Can make use of FErari decomposition to save calculation
e Could storage element matrices to save cycles

@ Partial assembly gives even finer control over tradeoffs
@ Also allows introduction of parallel costs (load balance, ...)

M. Knepley () PETSC GUCAS’10 146/318

Serial Performance
Homework 2

Consider the Gram-Schmidt Orthogonalization process. Starting with a
set of vectors {v;}, create a set of orthonormal vectors {n;}.

V4

vl
W:
n = HW2 where W2=V2—(I71-V2)n1 (9)
2|l
Wy
ne = where Wy, = v — n; - vg)n; 10
Tl = Vk— > (M- vi)n; (10)

j<k
What is
@ the balance factor 3 for this algorithm?
@ the bandwidth required to run at peak (B.q) On your computer?
© the maximum achievable flop rate (fy.x) ON your computer?

Extra Credit: Can this algorithm be improved?

M. Knepley () PETSC GUCAS’10 147/318

Serial Performance
Homework 3

Run SNES ex5 for a variety of solver and
preconditioner combinations. Plot the total number of
linear iterations against the problem size.

M. Knepley () PETSC GUCAS'10 148/318

Creating a Simple Mesh
Outline

0 Creating a Simple Mesh
@ Structured Meshes

M. Knepley () GUCAS'10 149/318

Creating a Simple Mesh

Configuring PETSc for Unstructured Meshes

-with-clanguage=cxx

o

@ —with-shared -with-dynamic

@ -download-f-blas-lapack —download-mpich
o

—download-boost —download-fiat
—download—-generator

@ -download-triangle —download-tetgen

@ -download-chaco —-download-parmetis
—download-zoltan

@ —with-sieve

M. Knepley () PETSC GUCAS’10 150/318

Creating a Simple Mesh

Multiple Mesh Types

\
v
Triangular E ‘ Tetrahedral
,, ’Y
Rectangular Pt Hexahedral
“\ /
\
- ;{gc;monumr 08 .“7 Dlsmacememrm)

M. Knepley () PETSc GUCAS '10 151/318

Creating a Simple Mesh
Cohesive Cells

Original Mesh Mesh with Cohesive Cell
1 3 5 1 37 5
0 2 4 0 26 4
1 33 5 1 3 377 5
o
..
0 22 4 0 2266 4

Exploded view of meshes

M. Knepley () PETSC GUCAS’10 152/318

Creating a Simple Mesh
Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
@ Demand complex mesh manipulation

o We allow specification of only fault vertices
o Must “sew” together on output

@ Use Lagrange multipliers to enforce constraints
e Forces illuminate physics
@ Allow different fault constitutive models

e Simplest is enforced slip
@ Now have fault constitutive models

M. Knepley () PETSC GUCAS’10 152/318

Creating a Simple Mesh
Mesh Paradigm

The Mesh interface also uses local callback functions
@ maps between global vec and local vec

@ Local vectors are combined into a Section object

When PETSc needs to evaluate the nonlinear residual F(x),
@ Each process evaluates the local residual for each element

@ PETSc assembles the global residual automatically
@ SectionComplete () generalizes DALocalToGlobal ()

M. Knepley () PETSC GUCAS’10 153/318

Creating a Simple Mesh Structured Meshes

Outline

e Creating a Simple Mesh
@ Structured Meshes

M. Knepley () PETSC GUCAS'10 154/318

Creating a Simple Mesh Structured Meshes

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
@ Structured grid interface
o Fixed simple topology
@ Supports stencils, communication, reordering
o Limited idea of operators

@ Nice for simple finite differences

The PETSc Mesh class is a topology interface.
@ Unstructured grid interface
o Arbitrary topology and element shape

@ Supports partitioning, distribution, and global orders

M. Knepley () PETSC GUCAS’10 155/318

Creating a Simple Mesh Structured Meshes

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
@ Supports multigrid
@ DMMG combines it with the MG preconditioner

@ Abstracts the logic of multilevel methods

The PETSc section class is a function interface.
@ Functions over unstructured grids
o Arbitrary layout of degrees of freedom

@ Support distribution and assembly

M. Knepley () PETSC GUCAS'10 155/318

Creating a Simple Mesh Structured Meshes

Code Update

Update to Revision 2

M. Knepley () PETSC GUCAS'10 156/318

Creating a Simple Mesh Structured Meshes

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s,
Im[], 1n[], DA =xda)
vrap: Specifies periodicity
@ DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, Or
DA_XYPERIODIC

—ype: Specifies stencil
@ DA_STENCIIL_BOX Of DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node

s: The stencil width
Im/n: Alternative array of local sizes
e Use PETSC_NULL for the default

M. Knepley () PETSC GUCAS '10

157 /318

Creating a Simple Mesh Structured Meshes

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring
processes

. Local Node

Q Ghost Node

M. Knepley () PETSC GUCAS'10 158/318

Creating a Simple Mesh

DA Global Numberings

Structured Meshes

Proc 2 Proc 3 Proc 2 Proc 3
25 26 27|28 29 21 22 23|28 29
20 21 22|23 24 18 19 20 | 26 27
15 16 17 |18 19 15 16 17 |24 25
10 11 12 (13 14 6 7 8 |13 14
5 6 7|8 9 3 4 5 |11 12
0 1 2|1 3 4 0o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Natural numbering

M. Knepley ()

PETSc

PETSc numbering

GUCAS '10

159/318

Creating a Simple Mesh Structured Meshes

DA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20|26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5|11 12
o 1 2|3 X o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Local numbering

M. Knepley ()

PETSc

Global numbering

GUCAS '10

160/318

Creating a Simple Mesh Structured Meshes

Viewing the DA

@ make NP=1 EXTRA_ARGS="-da_view_draw —draw_pause -1" runbratu

@ make NP=1 EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -da_view_draw

—draw_pause -1" runbratu

@ make NP=4 EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -da_view_draw

—draw_pause —-1" runbratu

M. Knepley () PETSC GUCAS'10 161/318

Creating a Simple Mesh Common PETSc Usage

Outline

e Creating a Simple Mesh

@ Common PETSc Usage

M. Knepley () PETSC GUCAS’10 162/318

Creating a Simple Mesh Common PETSc Usage

Correctness Debugging

e Automatic generation of tracebacks
e Detecting memory corruption and leaks

e Optional user-defined error handlers

M. Knepley () PETSC GUCAS’10 163/318

Creating a Simple Mesh Common PETSc Usage

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ -on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —display khan.mcs.anl.gov:0.0

M. Knepley () PETSC GUCAS'10 164/318

Creating a Simple Mesh Common PETSc Usage

Debugging Tips

@ Put a breakpoint in PetscError () to catch errors as they occur
@ PETSc tracks memory overwrites at both ends of arrays

e The CHKMEMQ macro causes a check of all allocated memory
e Track memory overwrites by bracketing them with CHKMEMQ

@ PETSc checks for leaked memory

@ Use PetscMalloc () and PetscFree () for all allocation
@ Print unfreed memory on PetscFinalize () with -malloc_dump

@ Simply the best tool today is valgrind

e It checks memory access, cache performance, memory usage, etc.
(]
@ Need -trace-children=yes when running under MPI

M. Knepley () PETSC GUCAS’10 165/318

http://www.valgrind.org

Creating a Simple Mesh Common PETSc Usage

Memory Debugging

We can check for unfreed memory using:

make EXTRA_ARGS="-malloc_dump" runbratu
There is a leak!

All options can be seen using:

make EXTRA_ARGS="-help" runbratu

M. Knepley () PETSC GUCAS'10 166/318

Creating a Simple Mesh Ci PETSc Usage

Code Update

Update to Revision 3

M. Knepley () PETSC GUCAS’10 167/318

Creating a Simple Mesh Common PETSc Usage

Command Line Processing

@ Check for an option
@ PetscOptionsHasName ()
@ Retrieve a value
@ PetscOptionsGetInt (), PetscOptionsGetIntArray ()
@ Set avalue
@ PetscOptionsSetValue ()
@ Check for unused options
@ -options_left
@ Clear, alias, reject, etc.
@ Modern form uses

@ PetscOptionsBegin (), PetscOptionsEnd ()
@ PetscOptionsInt (),PetscOptionsReal ()
o Integrates with —help

M. Knepley () PETSC GUCAS’10 168/318

Creating a Simple Mesh Ci PETSc Usage

Code Update

Update to Revision 6

M. Knepley () PETSC GUCAS'10 169/318

Creating a Simple Mesh Common PETSc Usage

Performance Debugging

@ PETSc has integrated profiling
@ Option —-1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage

M. Knepley () PETSC GUCAS’10 170/318

Creating a Simple Mesh Common PETSc Usage

Using Stages and Events

@ Use PetsclLogStageRegister () to create a new stage
e Stages are identifier by an integer handle
@ Use PetsclLogStagePush/Pop () to manage stages
e Stages may be nested, but will not aggregate in a nested fashion
@ Use PetsclLogEventRegister () to create a new stage
e Events also have an associated class
@ Use PetscLogEventBegin/End () to manage events

e Events may also be nested and will aggregate in a nested fashion
e Canuse PetscLogFlops () to log user flops

M. Knepley () PETSC GUCAS’10 171/318

Creating a Simple Mesh Common PETSc Usage

Adding A Logging Stage

int stageNum;

PetsclLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

Code to Monitor

PetscLogStagePop () ;

M. Knepley () PETSC GUCAS’10 172/318

Creating a Simple Mesh Common PETSc Usage

Adding A Logging Event

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin (USER_EVENT,0,0,0,0);

Code to Monitor

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT,0,0,0,0);

M. Knepley () PETSC GUCAS’10 173/318

Creating a Simple Mesh Common PETSc Usage

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type

M. Knepley () PETSC GUCAS'10 174/318

Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
Dynamically adding many nonzeros
e requires additional memory allocations
@ requires copies
e can kill performance
Memory preallocation provides
o the freedom of dynamic data structures
@ good performance
Easiest solution is to replicate the assembly code
@ Remove computation, but preserve the indexing code
o Store set of columns for each row
Call preallocation rourines for all datatypes

@ MatSegAIJSetPreallocation ()
@ MatMPIAIJSetPreallocation ()
@ Only the relevant data will be used

M. Knepley () PETSC GUCAS’10 175/318

Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Sequential Sparse Matrices

MatSegAIJPreallocation(Mat A, int nz, int nnz[])
nz: expected number of nonzeros in any row
nz(i): expected number of nonzeros in row i

.\.,

M. Knepley () PETSC GUCAS’10 175/318

Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

ParallelSparseMatrix

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

. diagonal blocks

. offdiagonal blocks

proc 0

proc 1
proc 2

proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A, int =*start,int =xend)
start: first locally owned row of global matrix

GUCAS '10 175/318

Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Parallel Sparse Matrices

MatMPIAIJPreallocation (Mat A, int dnz, int dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
nz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
nz(i): expected number of nonzeros in row i in the offdiagonal portion

M. Knepley () PETSC GUCAS’10 175/318

Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Verifying Preallocation

@ Use runtime option —info
@ Output:

[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used

[proc #] Number of mallocs during MatSetValues()
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unneeded, 250 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize: PETSc successfully ended!

M. Knepley () PETSC GUCAS’10 175/318

Creating a Simple Mesh PETSc Design

Outline

e Creating a Simple Mesh

@ PETSc Design

M. Knepley () PETSC GUCAS’10 176/318

Creating a Simple Mesh PETSc Design

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation

M. Knepley () PETSc GUCAS'10 177/318

y

Creating a Simple Mesh PETSc Design

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
e Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec %*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VvecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process

M. Knepley () PETSC GUCAS’10 178/318

Creating a Simple Mesh PETSc Design

Basic PetscObject Usage

Every object in PETSc supports a basic interface

Function | Operation
Create () | create the object
Get/SetName () | name the object
Get/SetType () | setthe implementation type
Get/SetOptionsPrefix () | set the prefix for all options
SetFromOptions () | customize object from the command lin
SetUp () | preform other initialization
View () | view the object
Destroy () | cleanup object allocation

Also, all objects support the —help option.

M. Knepley () PETSC GUCAS’10 179/318

Creating a Simple Mesh PETSc Design

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.

M. Knepley () PETSC GUCAS’10 180/318

Creating a Simple Mesh Unstructured Meshes

Outline

e Creating a Simple Mesh

@ Unstructured Meshes

M. Knepley () PETSC GUCAS’10 181/318

Creating a Simple Mesh Unstructured Meshes

Creating the Mesh

@ Generic object

@ MeshCreate ()

@ MeshSetMesh ()
@ File input

@ MeshCreateExodus ()

@ MeshCreateDolfin ()

@ MeshCreatePyLith ()
@ Generation

@ MeshGenerate ()

@ MeshRefine (), MeshCoarsen ()

@ ALE: :MeshBuilder<>::createSquareBoundary ()
@ Representation

@ ALE::SieveBuilder<>::buildTopology ()

@ ALE: :SieveBuilder<>::buildCoordinates ()
@ Partitioning and Distribution

@ MeshDistribute ()

@ MeshDistributeByFace ()

M. Knepley () PETSC GUCAS'10 182/318

Creating a Simple Mesh Unstructured Meshes

Code Update

Update to Revision 9

M. Knepley () PETSC GUCAS'10 183/318

Creating a Simple Mesh Unstructured Meshes

Viewing the Mesh

@ make NP=1 EXTRA_ARGS="-structured 0 -mesh_view_vtk" runbratu
@ mayavi2 -d bratu.vtk -m Surfaces
@ make NP=4 EXTRA_ARGS="-structured 0 -mesh_view_vtk" runbratu

@ Viewable using Mayavi or Paraview

M. Knepley () PETSC GUCAS'10 184/318

Creating a Simple Mesh Unstructured Meshes

Refining the Mesh

@ make NP=1 EXTRA_ARGS="-structured 0 —-generate -mesh_view_vtk"

runbratu

@ make NP=1 EXTRA_ARGS="-structured 0 —generate -refinement_limit

0.0625 -mesh_view_vtk" runbratu

@ make NP=4 EXTRA_ARGS="-structured 0 —generate -refinement_limit

0.0625 -mesh_view_vtk" runbratu

M. Knepley () PETSC GUCAS’10 185/318

Creating a Simple Mesh Unstructured Meshes

Parallel Sieves

@ Sieves use names, not numberings

e Allows independent adaptation
e Demanding a global numbering hurts memory scaling
o Numberings can be constructed on demand

@ Overlaps relate names on different processes
@ An Overlap can be encoded by a Sieve

@ Distribution of a section pushes forward along the Overlap
e Sieves are distributed as “cone” sections

M. Knepley () PETSC GUCAS'10 186/318

Creating a Simple Mesh Unstructured Meshes

Overlap for Distribution

Process0

@ The send overlap is above the receive overlap
@ Green points are remote process ranks

@ Arrow labels indicate remote i rocess names
M. Knepley () PETSc GUCAS '10 187/318

Creating a Simple Mesh 3D Meshes

Outline

e Creating a Simple Mesh

@ 3D Meshes

M. Knepley () PETSC GUCAS'10 188/318

Creating a Simple Mesh 3D Meshes

Code Update

Update to Revision 12

M. Knepley () PETSC GUCAS’10 189/318

Creating a Simple Mesh 3D Meshes

Viewing the 3d Mesh

@ make NP=1 EXTRA_ARGS="-dim 3 -da_view_draw -draw_pause —-1"

runbratu

@ make NP=4 EXTRA_ARGS="-dim 3 -da_grid_x 5 -da_grid_y 5 -da_grid_z

5 -da_view_draw —-draw_pause —-1" runbratu

@ make NP=1 EXTRA_ARGS="-dim 3 -structured 0 -generate

-mesh_view_vtk" runbratu

@ mayavi2 -d bratu.vtk -f ExtractEdges -m Surface

@ make NP=4 EXTRA_ARGS="-dim 3 -structured 0 -generate

-refinement_limit 0.01 -mesh_view_vtk" runbratu

M. Knepley () PETSC GUCAS’10 190/318

Defining a Function

Outline

M. Knepley (GUCAS'10 191/318

Defining a Function Vectors

Outline

@ Defining a Function
@ Vectors

M. Knepley () PETSCc GUCAS'10 192/318

Defining a Function Vectors

A DA is more than a Mesh

A DA contains topology, geometry, and an implicit Q1 discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)

M. Knepley () PETSC GUCAS'10 193/318

Defining a Function Vectors

DA Vectors

@ The DA object contains only layout (topology) information
o All field data is contained in PETSc vecs
@ Global vectors are parallel

e Each process stores a unique local portion
@ DACreateGlobalVector (DA da, Vec =*gvec)

@ Local vectors are sequential (and usually temporary)

e Each process stores its local portion plus ghost values
@ DACreatelLocalVector (DA da, Vec =*lvec)
e includes ghost values!

M. Knepley () PETSC GUCAS'10 194/318

Defining a Function Vectors

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DAGlobalToLocalBegin (da, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@ DAGlobalToLocalEnd(da, gvec, mode, lvec)
@ Finishes the communication

The process can be reversed with DAL.ocalToGlobal ().

M. Knepley () PETSC GUCAS '10

195/318

Defining a Function Vectors

DA Local Function

The user provided function which calculates the nonlinear residual in
2D has signature

PetscErrorCode (x1lfunc) (DALocalInfo =*info,
PetscScalar *+*x, PetscScalar x*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetTLocalFunction ()

The local DA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)

M. Knepley () PETSC GUCAS'10 196/318

Defining a Function Vectors

DA Stencils

Both the box stencil and star stencil are available.

proc 10 proc 10

proc 0 proc 1 proc 0 proc 1

Box Stencil Star Stencil

M. Knepley () PETSC GUCAS’10 197/318

Defining a Function Vectors

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n,
MatStencil idxn[], wvalues[], mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

M. Knepley () PETSC GUCAS'10 198/318

Code Update

Update to Revision 15

M. Knepley () PETSC GUCAS’10 199/318

Defining a Function Vectors

Structured Functions

@ Functions takes values at the DA vertices
@ Used as approximations to functions on the continuous domain
e Values are really coefficients of linear basis

@ User only constructs the local portion

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw —-draw_pause -1"

runbratu

M. Knepley () PETSC GUCAS’10 200/318

Defining a Function Sections

Outline

@ Defining a Function

@ Sections

M. Knepley () PETSCc GUCAS’10 201/318

Defining a Function Sections

Sections

Sections associate data to submeshes

@ Name comes from section of a fiber bundle
o Generalizes linear algebra paradigm

@ Define restrict (),update ()

@ Define complete ()
@ Assembly routines take a Sieve and several Sections
o Thisis called a Bundle

M. Knepley () PETSC GUCAS'10 202/318

Defining a Function Sections

Section Types

Section can contain arbitrary values
@ C interface has two value types

@ SectionReal
@ SectionInt

@ C++ interface is templated over value type

Section can have arbitrary layout
@ C interface has default layouts

@ MeshGetVertexSectionReal ()
@ MeshGetCellSectionReal ()

@ C++ interface can place dof on any Mesh entity (Sieve point)

@ Mesh::setupField () allows layout on a hierarchy
o Itis parametrized by Discretization and
BoundaryCondition

M. Knepley () PETSC GUCAS '10

203/318

Code Update

Update to Revision 18

M. Knepley () PETSC GUCAS'10 204/318

Defining a Function Sections

Viewing the Section

@ nmake EXTRA_ARGS="-run test -structured 0 -vec_view_vtk" runbratu
@ Produces linear.vtk and cos.vtk
@ Viewable with MayaVi, exactly as with the mesh.
@ make NP=2 EXTRA_ARGS="-run test -structured 0 -vec_view_vtk
—generate -refinement_limit 0.003125" runbratu

e Use mayavi2 -d cos.vtk -f WarpScalar -m Surface

M. Knepley () PETSc GUCAS '10 205/318

Discretization

Outline

M. Knepley () PETSCc GUCAS'10 206/318

Discretization Finite Elements

Outline

e Discretization
@ Finite Elements

M. Knepley () PETSC GUCAS’10 207/318

Discretization Finite Elements

Weak Forms

A weak form is the pairing of

a function with an element of the dual space.

@ Produces a number (by definition of the dual)

@ Can be viewed as a “function” of the dual vector
@ Used to define finite element solutions

@ Require a dual space and integration rules

For example, for f € V, we have the weak form

/gb(x)f(x)dx peV*
Q

M. Knepley () PETSc

GUCAS '10

208/318

Discretization Finite Elements

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
User can build arbitrary elements specifying the Ciarlet triple (K, P, P")

FIAT is part of the FENniCS project, as is the PETSc Sieve module

M. Knepley () PETSC GUCAS'10 209/318

http://www.fenics.org/fiat

Discretization Finite Elements

We are interested in nonlinear maps F : R” — R".
@ Can contain the action of differential operators

@ Encapsulated in Rhs_* () methods
@ Will later be used to form the residual of our system

M. Knepley () PETSC GUCAS’10 210/318

Code Update

Update to Revision 21

M. Knepley () PETSC GUCAS’10 211/318

Discretization Finite Elements

FIAT Integration

The quadrature. fiat file contains:
@ An element (usually a family and degree) defined by FIAT
@ A quadrature rule

Itis run
@ automatically by make, or
@ independently by the user

It can take arguments
@ -element_family and —element_order, Or
@ make takes variables ELEMENT and ORDER

Then make produces bratu_guadrature.h with:
@ Quadrature points and weights
@ Basis function and derivative evaluations at the quadrature points
@ Integration against dual basis functions over the cell
@ Local dofs for Section allocation

M. Knepley () PETSC GUCAS’10 212/318

Discretization Finite Elements

Boundary Conditions

Dirichlet conditions may be expressed as
ur=g

and implemented by constraints on dofs in a Section
@ The user provides a function.

Neumann conditions may be expressed as
Vu- h|r =h

and implemented by explicit integration along the boundary
@ The user provides a weak form.

M. Knepley () PETSC GUCAS'10 213/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Arr Arr ur fr

However ur is known, so we may reduce this to
Ajup = f — Arrur

We will show that our scheme automatically constructs this extra term.

M. Knepley () PETSC GUCAS'10 214/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

M. Knepley () PETSC GUCAS'10 215/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

u/s513|7
f5/0 00
Restrict
5
1
3

M. Knepley () PETSC GUCAS'10 215/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1 /3|7

f 5000
Compute
0.5/0.0+0.5 | 5 1
0.00.5.0.5 |1 | = |-1
-0.5-0.51.0| | 3 o

M. Knepley () PETSC GUCAS'10 215/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

us5/1 37
f/ 5000
Compute
A Ay || 5 1
1| = |-1 This piece contains
i IR I e B rhs interior values

M. Knepley () PETSC GUCAS'10 215/318

Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

us5|(1 /3|7
f 5-100
Update

M. Knepley () PETSC GUCAS'10 215/318

Discretization Finite Elements

Dirichlet Conditions (Essential BC)

@ Explicit limitation of the approximation space
@ ldea:
o Maintain the same FEM interface (restrict (), update())
o Allow direct access to reduced problem (contiguous storage)
@ Implementation
@ Ignored by size () and update (), but restrict () works
normally
o Use updateBC () to define the boundary values
o Use updatenll () to define both boundary and regular values
e Points have a negative fiber dimension or
o Dof are specified as constrained

M. Knepley () PETSC GUCAS'10 216/318

Discretization Finite Elements

Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

o Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints

M. Knepley () PETSC GUCAS’10 217/318

Discretization Finite Elements

Dual Basis Application

We would like the action of a dual basis vector (functional)

</\/,-,f>:/ Ni(x)F(x)dV
ref

@ Projection onto P
@ Code is generated from FIAT specification
e Python code generation package inside PETSc

@ Common interface for all elements

M. Knepley () PETSC GUCAS'10 218/318

Discretization Finite Elements

Section Assembly

First we do local operations:
@ Loop over cells
@ Compute cell geometry

@ Integrate each basis function to produce an element vector
@ Call sectionUpdateAdd ()
o Note that this updates the closure of the cell
Then we do global operations:
@ SectionComplete () exchanges data across overlap
o C just adds nonlocal values (C++ is flexible)

@ C++ also allows completion over arbitrary overlaps

M. Knepley () PETSC GUCAS’10 219/318

Discretization Finite Elements

Viewing a Mesh Weak Form

@ We use finite elements and a Galerkin formulation
e We calculate the residual F(u) = —Au —f
o Correct basis/derivatives table chosen by setupQuadrature ()
e Could substitute exact integrals for quadrature

@ make NP=2 EXTRA_ARGS="-run test -structured 0 -vec_view_vtk
—generate -refinement_limit 0.003125" runbratu
@ make EXTRA_ARGS="-run test -dim 3 -structured 0 -generate

-vec_view_vtk" runbratu

M. Knepley () GUCAS'10 220/318

Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)

M. Knepley () PETSC GUCAS'10 221/318

Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

M. Knepley () PETSC GUCAS'10 221/318

Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)

M. Knepley () PETSc GUCAS'10 221/318

Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals @ Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

M. Knepley () PETSc GUCAS'10 221/318

Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals @ Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)

M. Knepley () PETSc GUCAS'10 221/318

Discretization Finite Differences

Outline

e Discretization

@ Finite Differences

M. Knepley () PETSC GUCAS'10 222/318

Discretization Finite Differences

Difference Approximations

With finite differences, we approximate differential operators with
difference quotients,

ou(x) UOCEh)—u(x—h)
Pu(X) u(xrh)—2u(x)+u(x—h)
Ix2 ~ h2

The important property for the approximation is consistency, meaning

du(x) u(x+h)—u(x—h) _

/Llno ox 2h 0
and in fact,
2 _ _
9°u(x) u(x+h)—2u(x) +u(x —h) € O(?)

ox? h?

M. Knepley () PETSC GUCAS'10 223/318

Code Update

Update to Revision 24

M. Knepley () PETSC GUCAS'10 224/318

Discretization Finite Differences

Viewing FD Operator Actions

We cannot currently visualize the 3D results,
@ make EXTRA_ARGS="-run test -vec_view_draw -draw_pause —1" runbratu

@ make EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-vec_view_draw -draw_pause —-1" runbratu
@ make EXTRA_ARGS="-run test -dim 3 -vec_view" runbratu

but can check the ASCII output if necessary.

M. Knepley () PETSC GUCAS'10 225/318

Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu

M. Knepley () PETSC GUCAS'10 226/318

Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu
@ Spawns one debugger window per process

M. Knepley () PETSC GUCAS '10

226 /318

Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates

M. Knepley () PETSC GUCAS '10

226 /318

Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:
@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"
debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates
@ Fix by using a local ghosted vector
e Update to Revision 26

M. Knepley () PETSC GUCAS '10

226 /318

Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"
debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates
@ Fix by using a local ghosted vector
e Update to Revision 26
@ Notice

e we already use ghosted assembly (completion) for FEM
e FD does not need ghosted assembly

M. Knepley () PETSC GUCAS '10

226 /318

Discretization Evaluating the

Outline

e Discretization

@ Evaluating the Error

M. Knepley () PETSC GUCAS'10 227/318

Discretization Evaluating the Error

Representations of the Error

@ A single number, the norm itself
@ A number per element, the element-wise norm

@ Injection into the finite element space

e= Z eidi(X)

o We calculate e; by least-squares projection into P

M. Knepley () PETSC GUCAS'10 228/318

Discretization Evaluating the Error

Interpolation Pitfalls

Comparing solutions on different meshes can be problematic.

@ Picture our solutions as functions defined over the entire domain
e For FEM, E/(x) = Zi U,‘(;S,'(X)
@ After interpolation, the interpolant might not be the same function
@ We often want to preserve thermodynamic bulk properties
o Energy, stress energy, incompressibility, ...
@ Can constrain interpolation to preserve desirable quantities
e Usually produces a saddlepoint system

M. Knepley () PETSC GUCAS’10 229/318

Discretization Evaluating the Error

Calculating the L, Error

We begin with a continuum field u(x) and an FEM approximation
a(x) = bidi(x)
i

The FE theory predicts a convergence rate for the quantity

HU—ElH%:Z/TdA(U—H)Z (11)
T

2
=3 wglJ] (u(q) -3 0j¢j(Q)) (12)
T q j

The estimate for linear elements is
|u— Tp|| < Chlul|
GUCAS '10 230/318

M. Knepley () PETSc

Discretization Evaluating the Error

Code Update

Update to Revision 29

M. Knepley () PETSC GUCAS’10 231/318

Discretization Evaluating the Error

Calculating the Error

@ Added CreateProblem()

o Define the global section
e Setup exact solution and boundary conditions

@ Added CreateExactSolution () to project the solution function

@ Added CheckError () to form the error norm

o Finite differences calculates a pointwise error
o Finite elements calculates a normwise error

@ Added CheckResidual () which uses our previous functionality

M. Knepley () PETSC GUCAS'10 232/318

Discretization Evaluating the Error

Checking the Error

@ make NP=2 EXTRA_ARGS="-run
runbratu

@ make EXTRA_ARGS="-run full

@ make EXTRA_ARGS="-run full

@ make NP=2 EXTRA_ARGS="-run

@ make EXTRA_ARGS="-run full

-refinement_limit 0.03125"
@ make EXTRA_ARGS="-run full

full -da_grid_x 10 -da_grid_y 10"

—-dim 3" runbratu

—-structured 0 -generate" runbratu

full -structured 0 —-generate" runbratu
—-structured 0 -generate

runbratu

-dim 3 -structured 0 -generate

-refinement_limit 0.01" runbratu
Notice that the FE error does not always vanish, since we are using
information across the entire element. We can enrich our FE space:

@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-run full
-refinement_limit 0.03125"
@ make EXTRA_ARGS="-run full

-structured 0 -generate
runbratu

—-dim 3 -structured 0 —-generate

—-refinement_limit 0.01" runbratu

M. Knepley ()

PETSc GUCAS '10 233/318

Defining an Operator

Outline

M. Knepley () PETSC GUCAS'10 234/318

Defining an Operator
DA Local Jacobian

The user provided function which calculates the Jacobian in 2D has
signature

PetscErrorCode (xlfunc) (DALocalInfo *info, PetscScalar

*xx, Mat J, void #*ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalFunction ()

The local DA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJdacobian, ctx)

M. Knepley () PETSC GUCAS'10 235/318

Code Update

Update to Revision 32

M. Knepley () PETSC GUCAS'10 236/318

Defining an Operator
Operators

@ Evaluate only the local portion
@ No nice local array form without copies

@ Use MatSetValuesStencil () to convert (i, j, k) to indices

@ make NP=2 EXTRA_ARGS="-run test —da_grid_x 10 -da_grid_y 10

-mat_view_draw -draw_pause -1" runbratu

@ make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

—da_grid_z 5 -mat_view_draw -draw_pause —-1" runbratu

M. Knepley () PETSC GUCAS'10 237/318

Defining an Operator
Mesh Operators

We evaluate the local portion just as with functions
Notice we use J~' to convert derivatives

Currently updateOperator () uses MatSetValues ()
@ We need to call MatAssembleyBegin/End ()
@ We should properly have OperatorComplete ()
o Also requires a Section, for layout, and a global variable order for
PETSc index conversion
make EXTRA_ARGS="-run test -structured 0 -mat_view_draw

—draw_pause -1 —generate" runbratu

make NP=2 EXTRA_ARGS="-run test -structured 0 —-mat_view_draw

—-draw_pause -1 -generate -refinement_limit 0.03125" runbratu

make EXTRA_ARGS="-run test -dim 3 -structured 0 -mat_view_draw

—-draw_pause -1 —-generate" runbratu

M. Knepley () PETSC GUCAS'10 238/318

Solving Systems of Equations

Outline

M. Knepley () PETSC GUCAS'10 239/318

Solving Systems of Equations Linear Equations

Outline

@ Solving Systems of Equations
@ Linear Equations

M. Knepley () PETSCc GUCAS'10 240/318

Solving Systems of Equations Linear Equations

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation

M. Knepley () PETSc GUCAS'10 241/318

y

Solving Systems of Equations Linear Equations

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
@ PETSc never sees application data

M. Knepley () PETSC GUCAS '10

242 /318

Solving Systems of Equations Linear Equations

SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void *ctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants

M. Knepley () PETSC GUCAS'10 243/318

Solving Systems of Equations Linear Equations

SNES Jacobian

The user provided function which calculates the Jacobian has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat =J,Mat
*M, MatStructure xflag,void #*ctx)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants
@ Possible MatStructure values are:
o SAME_NONZERO_PATTERN
o DIFFERENT_NONZERO_PATTERN
Alternatively, you can use
@ a builtin sparse finite difference approximation
@ automatic differentiation (ADIC/ADIFOR)

M. Knepley () PETSC GUCAS’10 244/318

Solving Systems of Equations Linear Equations

SNES Variants

e Line search strategies
e Trust region approaches
e Pseudo-transient continuation

o Matrix-free variants

M. Knepley () PETSC GUCAS'10 245/318

Solving Systems of Equations Linear Equations

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
o Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

o Uses preconditioning matrix from SNESSet Jacobian ()

M. Knepley () PETSC GUCAS’10 246/318

Solving Systems of Equations Linear Equations

Code Update

Update to Revision 35

M. Knepley () PETSC GUCAS'10 247/318

Solving Systems of Equations Linear Equations

DMMG Integration with SNES

@ DMMG supplies global residual and Jacobian to SNES

o User supplies local version to DMMG
e The Rhs_»* () and Jac_x () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using DMMGSetNullSpace ()

M. Knepley () PETSC GUCAS’10 248/318

Solving Systems of Equations Linear Equations

DM Interface

@ Allocation and layout
@ createglobalvector (DM, Vec)
@ createlocalvector (DM, Vec x)
@ getmatrix (DM, MatType, Mat *)
@ Intergrid transfer
@ getinterpolation (DM, DM, Mat *, Vec)
@ getaggregates (DM, DM, Mat x)
@ getinjection (DM, DM, VecScatter x*)

M. Knepley () PETSC GUCAS'10 249/318

Solving Systems of Equations Linear Equations

DM Interface

@ Grid creation
@ refine (DM, MPI_Comm, DM x)
@ coarsen (DM, MPI_Comm, DM x*)
@ refinehierarchy (DM, PetscInt, DM *x)
@ coarsenhierarchy (DM, PetscInt, DM sx)
@ Mapping (completion)
@ globaltolocalbegin/end (DM, Vec, InsertMode, Vec)
@ localtoglobal (DM, Vec, InsertMode, Vec)

M. Knepley () PETSC GUCAS'10 249/318

Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P;

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk" runbratu

@ The linear basis cannot represent the quadratic solution exactly

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.0078125 -ksp_monitor -snes_monitor -vec_view_vtk -ksp_rtol
1.0e-9" runbratu

@ The error decreases with h

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.0078125 -ksp_monitor —-snes_monitor -vec_view_vtk -ksp_rtol
1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.0078125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9

-vec_view_vtk" runbratu

@ Notice that the preconditioner is weaker in parallel

M. Knepley () PETSC GUCAS’10 250/318

Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P;

default
2.00
B - -

1.71

1.43
1.14
0.857

0.571

0.286
0.00

M. Knepley () PETSc

GUCAS '10 250/318

Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P,

@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
—ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Here we get the exact solution

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit 0.03125
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Notice that the solution is only as accurate as the KSP tolerance

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.03125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit

0.03125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

Again the preconditioner is weaker in parallel

Currently we have no system for visualizing higher order solutions

M. Knepley () PETSC GUCAS'10 251/318

Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: FD

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
-vec_view_draw -draw_pause —-1" runbratu

@ Notice that we converge at the vertices, despite the quadratic
solution

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
—-da_grid _x 40 -da_grid_ y 40 -vec_view_draw -draw_pause —-1"
runbratu

@ make NP=2 EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
—-da_grid_x 40 -da_grid_y 40 -vec_view_draw -draw_pause -1"
runbratu

@ Again the preconditioner is weaker in parallel

@ make NP=2 EXTRA_ARGS="-dim 3 -snes_monitor -ksp_monitor -ksp_rtol
1.0e-9 -da_grid_x 10 -da_grid_y 10 -da_grid_z 10" runbratu

M. Knepley () PETSC GUCAS'10 252/318

Solving Systems of Equations Linear Equations

Solving the Neumann Problem: P;

@ make EXTRA_ARGS="-structured 0 —-generate -bc_type neumann
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate -bc_type neumann
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk"
runbratu

@ make EXTRA_ARGS="-structured 0 —-generate -refinement_limit 0.00125
-bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
-vec_view_vtk" runbratu

@ The error decreases with h

@ make NP=2 EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.00125 -bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol

1.0e-9 -vec_view_vtk" runbratu

M. Knepley () PETSC GUCAS'10 253/318

Solving Systems of Equations Linear Equations

Solving the Neumann Problem: P;

@ bratu_quadrature.h; make ORDER=3

@ make EXTRA_ARGS="-structured 0 —generate -bc_type neumann

—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Here we get the exact solution

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit 0.00125
-bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9"
runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.00125 -bc_type neumann -snes_monitor —-ksp_monitor -ksp_rtol

1.0e-9" runbratu

M. Knepley () PETSC GUCAS'10 254/318

Solving Systems of Equations Nonlinear Equations

Outline

@ Solving Systems of Equations

@ Nonlinear Equations

M. Knepley () PETSCc GUCAS'10 255/318

Solving Systems of Equations Nonlinear Equations

The Bratu Problem

Au+Xe!=f in Q (13)
u=g on 0N (14)

@ Also called the Solid-Fuel Ignition equation
@ Can be treated as a nonlinear eigenvalue problem
@ Has two solution branches until A = 6.28

M. Knepley () PETSC GUCAS'10 256/318

Solving Systems of Equations Nonlinear Equations

Nonlinear Equations

We will have to alter
@ The residual calculation, Rhs_ * ()
@ The Jacobian calculation, Jac_ * ()

@ The forcing function to match our chosen solution,
CreateProblem()

M. Knepley () PETSC GUCAS'10 257/318

Solving Systems of Equations Nonlinear Equations

Code Update

Update to Revision 37/

M. Knepley () PETSC GUCAS'10 258/318

Solving Systems of Equati Nonlinear Equations

Solving the Bratu Problem: FD

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9

-vec_view_draw -draw_pause -1 -lambda 0.4" runbratu

@ Notice that we converge at the vertices, despite the quadratic
solution

@ make NP=2 EXTRA_ARGS="-da_grid_x 40 -da_grid_y 40 -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_draw -draw_pause -1
—lambda 6.28" runbratu

@ Notice the problem is more nonlinear near the bifurcation

@ make NP=2 EXTRA_ARGS="-dim 3 -da_grid_x 10 -da_grid_y 10
—da_grid_z 10 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda

6.28" runbratu

M. Knepley () PETSC GUCAS'10 259/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

M. Knepley () PETSC GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!

M. Knepley () PETSC GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!

@ Residual is zero, so the Jacobian could be wrong (try FD)

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_mf" runbratu

M. Knepley () PETSc GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!

@ Residual is zero, so the Jacobian could be wrong (try FD)

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_mf" runbratu

It works!

M. Knepley () PETSc GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

Investigating the Jacobian directly,

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_max_it 3

-mat_view" runbratu

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—-ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_fd -mat_view"

runbratu

M. Knepley () PETSc GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Finding Problems

Investigating the Jacobian directly,

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_max_it 3

-mat_view" runbratu

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—-ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_fd -mat_view"

runbratu

@ Entries are too big, we forgot to initialize the matrix

M. Knepley () PETSc GUCAS'10 260/318

Solving Systems of Equations Nonlinear Equations

Code Update

Update to Revision 39

M. Knepley () PETSC GUCAS'10 261/318

Solving Systems of Equations Nonlinear Equations

Solving the Bratu Problem: P-

@ make EXTRA_ARGS="-structured 0 -generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu
@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

M. Knepley () PETSC GUCAS'10 262/318

Solving Systems of Equations Nonlinear Equations

Solving the Bratu Problem: P;

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.01 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

M. Knepley () PETSC GUCAS'10 263/318

Optimal Solvers

Outline

M. Knepley () PETSCc GUCAS'10 264/318

What Is Optimal?

| will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
@ hierarchy generation
@ assembly on subdomains
@ restriction and prolongation

M. Knepley () PETSC GUCAS'10 265/318

Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines

M. Knepley () PETSCc GUCAS'10 266/318

Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
©@ Processor flops are increasing much faster than bandwidth

M. Knepley () PETSC GUCAS'10 266/318

Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

M. Knepley () PETSC GUCAS'10 266/318

Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
©@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

M. Knepley () PETSc GUCAS'10 266/318

Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley () PETSC GUCAS'10 266/318

Optimal Solvers

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time

M. Knepley () PETSC GUCAS’10 267/318

Optimal Solvers
Multigrid

Multigrid is optimal in that is does O(N) work for ||r|| < e

@ Brandt, Briggs, Chan & Smith
@ Constant work per level

e Sufficiently strong solver
o Need a constant factor decrease in the residual

@ Constant factor decrease in dof
e Log number of levels

M. Knepley () PETSC GUCAS'10 268/318

Optimal Solvers
Linear Convergence

Convergence to ||r|| < 1079||b|| using GMRES(30)/ILU

Elements | lterations
128 10
256 17
512 24

1024 34
2048 67
4096 116
8192 167
16384 329
32768 558
65536 920
131072 1730

M. Knepley () PETSC GUCAS'10 269/318

Optimal Solvers
Linear Convergence

Convergence to ||r|| < 1079||b|| using GMRES(30)/MG

Elements | lterations
128
256
512

1024
2048
4096
8192
16384
32768
65536
131072

ONONONOONONO

M. Knepley () PETSC GUCAS'10 269/318

Optimal Solvers DMMG

Outline

@ Optimal Solvers
@ DMMG

M. Knepley () PETSC GUCAS’10 270/318

Optimal Solvers DMMG

DMMG Paradigm

The DMMG interface uses the local DA/Mesh callback functions to
@ assemble global functions/operators from local pieces

@ assemble functions/operators on coarse grids
DMMG relies upon DA/Mesh (DM) to organize the
@ assembly

@ coarsening/refinement
while it organizes the control flow for the multilevel solve.

M. Knepley () PETSC GUCAS '10

271/318

Optimal Solvers DMMG

DMMG Integration with SNES

@ DMMG supplies global residual and Jacobian to SNES

o User supplies local version to DMMG
e The Rhs_»* () and Jac_x () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using DMMGSetNullSpace ()

M. Knepley () PETSC GUCAS’10 272/318

Optimal Solvers Structured MG

Outline

@ Optimal Solvers

@ Structured MG

M. Knepley () PETSC GUCAS’10 273/318

Optimal Solvers Structured MG

Multigrid with DMMG

Allows multigrid with some simple command line options

—dmmg_nlevels
-pc_mg_type, -pc_mg_cycle_type
-mg_levels_1_ksp_type, -mg_levels_1_pc_type

-mg_coarse_ksp_type, -mg_coarse_pc_type

—dmmg_view

Interface also works with 3rd party packages, like ML from Sandia

M. Knepley () PETSC GUCAS'10 274/318

Optimal Solvers Structured MG

Solving with Structured Multigrid

@ make EXTRA_ARGS="-dmmg_nlevels 2 -dmmg_view —-snes_monitor

—ksp_monitor -ksp_rtol 1le-9" runbratu
@ Notice that the solver on each level can be customized
@ number of KSP iterations is approximately constant

@ make EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -dmmg_nlevels 8

—dmmg_view —-snes_monitor -ksp_monitor -ksp_rtol 1le-9" runbratu

o Notice that there are over 1 million unknowns!
@ Coarsening is not currently implemented

M. Knepley () PETSC GUCAS’10 275/318

Optimal Solvers Unstructured MG

Outline

@ Optimal Solvers

@ Unstructured MG

M. Knepley () PETSC GUCAS’10 276/318

Optimal Solvers Unstructured MG

Why not use AMG?

M. Knepley () PETSC GUCAS'10 277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG

M. Knepley () PETSc GUCAS'10 277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA

M. Knepley () PETSc GUCAS'10 277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA

@ Problems with vector character

M. Knepley () PETSc GUCAS'10 277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA

@ Problems with vector character
@ Geometric aspects to the problem

M. Knepley () PETSc

GUCAS '10

277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
o BoomerAMG, ML, SAMG, ASA
@ Problems with vector character
@ Geometric aspects to the problem
o Material property variation

M. Knepley () PETSc

GUCAS '10

277/318

Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG

@ BoomerAMG, ML, SAMG, ASA
@ Problems with vector character
@ Geometric aspects to the problem

o Material property variation
o Faults

M. Knepley () PETSC GUCAS'10 277/318

Coarsening

Optimal Solvers Unstructured MG

M. Knepley ()

@ Users want to control the
mesh

@ Developed efficient,
topological coarsening

e Miller, Talmor, Teng
algorithm

@ Provably well-shaped
hierarchy

PETSc GUCAS '10

278/318

Optimal Solvers Unstructured MG

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:

Ciow" ™ < h < Chignr"™

X

K
N
AVAV D 7N
RXKIRRD
SEENG
03
L
7,
X
L
&
o
5
i
%4 Ay
s K
¥
N2

AV ai
D
P
N

UV
O,
>
N
N/
S
5
LY
B
3
2
0
)
X!

N,

4
AVa?
14
)
KX

CXE
v
o5
1»5
2]
o
I

&
K
AVAVAYA
o

%

5
£
%’

I

,,v
5%

X
o
g

A

5
SERES
X

7
Whawgs
NN
A
2
5
A,
G
0%
A\
'A
X
0

ST,

RN
AR
XTSRS 5

<X

&
1’
5
%
2
<K
X
S
KT
5
AVAN)

Vs
<

A
s,é«» K2
Vay

N

<
%
&5
SN
S
;;n§ é
WA

X

VY

A

A

M. Knepley () PETSC GUCAS’10 279/318

uniform refinement may fail to eliminate error

L2 Error

M. Knepley ()

Reentrant Cormner Error

T
Uniform Pacman s

Graded Pacman s

1000

10000 100000

Mesh Size (Vertices)

PETSc

GUCAS '10

280/318

Optimal Solvers Unstructured MG

Geometric Multigrid

PRI
<]
KSSORI

e We allow the user to i
refine for fidelity Bia

@ Coarse grids are created
automatically

@ Could make use of AMG
interpolation schemes

M. Knepley () PETSc GUCAS'10 281/318

Optimal Solvers Unstructured MG

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

M. Knepley () PETSCc GUCAS'10 282/318

Optimal Solvers Unstructured MG

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

@ Each M satisfies the quasi-uniformity condition:

Cihx < hk < Copi

@ hy is the length-scale (longest edge) of any cell K
@ hy is the maximum length-scale in the mesh M
e pk is the diameter of the inscribed ball in K

M. Knepley () PETSCc GUCAS'10 282/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)

M. Knepley () PETSC GUCAS'10 283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1

M. Knepley () PETSCc GUCAS’10 283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f

M. Knepley () PETSC GUCAS '10

283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f
© Retriangulate

M. Knepley () PETSC GUCAS '10

283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first

M. Knepley () PETSc GUCAS'10 283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first
© Must choose boundary vertices first (and protect boundary)

M. Knepley () PETSC GUCAS’10 283/318

Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first
© Must choose boundary vertices first (and protect boundary)
© Must account for boundary geometry

M. Knepley () PETSc GUCAS'10 283/318

Optimal Solvers Unstructured MG

Function Based Coarsening

@ (Miller, Talmor, Teng; 1997)
@ triangulated planar graphs = disk-packings (Koebe; 1934)
@ define a spacing function S() over the vertices

@ obvious one: S(v) = w

M. Knepley () PETSC GUCAS’10 284/318

Optimal Solvers Unstructured MG

Function Based Coarsening

@ pick a subset of the vertices such that 5(S(v) + S(w)) > dist(v, w)
e forallv,w e M, with 8 > 1

@ dimension independent

@ provides guarantees on the size/quality of the resulting meshes

M. Knepley () PETSC GUCAS’10 285/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh

M. Knepley () PETSC GUCAS'10 286/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh

M. Knepley () PETSC GUCAS'10 286/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

M. Knepley () PETSC GUCAS'10 286/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

include a vertex in the new mesh

remove colliding adjacent vertices from the mesh
remesh links of removed vertices

repeat until no vertices are removed.

M. Knepley () PETSC GUCAS'10 286/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
@ repeat until no vertices are removed.
@ Eventually we have that

o every vertex is either included or removed
e bounded degree mesh = O(n) time

M. Knepley () PETSCc GUCAS'10 286/318

Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh

e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

@ repeat until no vertices are removed.

@ Eventually we have that

o every vertex is either included or removed
e bounded degree mesh = O(n) time

@ Remeshing may be performed either during or after coarsening

@ local Delaunay remeshing can be done in 2D and 3D
o faster to connect edges and remesh later

M. Knepley () PETSC GUCAS’10 286/318

Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))

M. Knepley () PETSC GUCAS'10 287/318

Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
@ connectivity graph induced by limiting sieve depth

M. Knepley () PETSC GUCAS’10 287/318

Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v

@ vertex link: closure(star(v)) \ star(closure(v))

@ connectivity graph induced by limiting sieve depth

@ remeshing can be handled as local modifications on the sieve
@ meshing operations, such as cone construction easy

M. Knepley () PETSC GUCAS'10 287/318

Optimal Solvers Unstructured MG

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain
accuracy

@ Coarsening preserves accuracy in MG without user intervention

S 2
SRR
SRR
SRS X
DRSO SN,
RO XDRERS
SHEAN SRS
AV RS g
R Ay RIS AT
X) VATAN AT N0 VAN SNV A4S
AR R R T
X " RIS IBATS
RSN IR
R PEAERES GRS
EONASPKON A

M. Knepley () PETSC GUCAS’10 288/318

Optimal Solvers Unstructured MG

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain

accuracy
@ Coarsening preserves accuracy in MG without user intervention

Reentrant Corner Error

@.1 ———rrr——
Unrefined Pacman —+—
Refined Facman ——<—
H.08 -
C
[
[
oA, 04 - —
3
B.82 ‘\\\-\“\.«»\’ |
@ 1

168 1600 16688 1666068 1e+B86
M. Knepley () PETSC GUCAS’10 288/318

Optimal Solvers Unstructured MG

Reentrant Problems

Exact Solution for reentrant problem: u(x, y) = rgsin(ge)

-

%

M. Knepley () PETSC GUCAS’10 288/318

RRREEA XK
RPROSN [AXK
RERARI K

O]
=
°
g
2
3}
=
@
c
=)

Optimal Solvers

Reentrant Problems

rsin(6)

y)=

bl

Exact Solution for reentrant problem: u(x

288/318

GUCAS '10

PETSc

M. Knepley ()

Optimal Solvers Unstructured MG

GMG Performance

Linear solver iterates are constant as system size increases:

KSP Iterates on Reentrant Domains
10 —— e e

L p—
Pacman e

KSP lterates

0 L i il — | L — i
1000 10000 100000 le+06

Mesh Size (Vertices)

PETSc GUCAS '10 289/318

M. Knepley ()

Optimal Solvers Unstructured MG

GMG Performance

Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains

20 T ™ = — T —TTTTT
L —
Pacman e
=
3] 5 .
£ 15
5
==
)
Ay
E 10 - -
=}
123
‘B
]
(=9
E
5 .
Q
0 s M Ll - M| L P P
1000 10000 100000 le+06

Mesh Size (Vertices)

M. Knepley () PETSC GUCAS'10 289/318

Optimal Solvers Unstructured MG

3D Test Problem

@ Reentrant corner

e —Au=f

@ f(x,y,z)=3sin(x+y+2)

@ Exact Solution: u(x,y,z) =sin(x +y + z)

M. Knepley () PETSc GUCAS '10 290/318

Optimal Solvers Unstructured MG

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains

10 . ———T —
Pacman e
Fichera s
8 _
o
g st .
©
-
2
I
= /
o 7 l
u L _
0 s M Ll - M| L P P
1000 10000 100000 le+06
Mesh Size (Vertices)
PETSc GUCAS'10 291/318

M. Knepley ()

Optimal Solvers Unstructured MG

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains

20 ——— T ———— T
Pacman e
Fichera e
]
g 15 - -
o
- w
3}
=
] 10 |- -
=]
)
‘g
2]
=%
g 14
S 5
0 s L Ll - P L P L
1000 10000 100000 le+06

Mesh Size (Vertices)

M. Knepley () PETSC GUCAS'10 291/318

Optimal Solvers Unstructured MG

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, 5 = 1.45

level | cells | vertices iR max % | min(h) | max. overlap
0 || 19927 10149 | 0.020451 | 4.134135 | 0.001305 -
1 5297 2731 | 0.016971 | 4.435928 | 0.002094 23
2 3028 1572 | 0.014506 | 4.295703 | 0.002603 14
3 1628 856 | 0.014797 | 5.295322 | 0.003339 14
4 863 464 | 0.011375 | 6.403574 | 0.003339 14
5 449 250 | 0.022317 | 6.330512 | 0.007979 13

M. Knepley () PETSC GUCAS’10 292/318

Optimal Solvers Unstructured MG

Unstructured Meshes

@ Same DMMG options as the structured case
@ Mesh refinement

o Ruppert algorithm in Triangle and TetGen
@ Mesh coarsening

o Talmor-Miller algorithm in PETSc
@ More advanced options

@ —dmmg_refine

@ -dmmg_hierarchy

@ Current version only works for linear elements

M. Knepley () PETSC GUCAS'10 293/318

petscdpy

Outline

M. Knepley () PETSC GUCAS'10 294/318

petsc4py

petcsdpy provides Python bindings for PETSc

@ Manages memory (creation/destruction)

@ Can use Python callback functions
@ SNESSetFunction ()

@ Logging using the Python with statement

@ Visualization with matplotlib

M. Knepley () PETSC GUCAS'10 295/318

http://code.google.com/p/petsc4py/
http://matplotlib.sourceforge.net

petsc4py Installation

@ Configure PETSc using —~download-petsci4py
o Can also use —~download-mpidpy

@ Downloaded to externalpackages/petscdpy-version
e Demo code is here

@ Installed into PETSc lib directory

@ Add SPETSC_DIR/SPETSC_ARCH/1lib to PYTHONPATH

M. Knepley () PETSC GUCAS’10 296/318

petsc4py Examples

o
externalpackages/petscdpy-1.1/demo/bratu2d/bratu2d
e Solves Bratu equation (SNES ex5) in 2D

e Visualizes solution with matplotlib

@ src/ts/examples/tutorials/ex8.py
@ Solves a 1D ODE for a diffusive process

@ Visualize solution using -vec_view_draw

o Control timesteps with —ts_max_steps

M. Knepley () PETSC GUCAS'10 297/318

Possible Topics

Outline

M. Knepley () PETSCc GUCAS'10 298/318

Things To Check Out

@ PCFieldSplit for multiphysics
@ Dealll and FEnICS for FEM automation

@ PetFMM for particle methods

M. Knepley () PETSC GUCAS'10 299/318

Possible Topics PCFieldSplit

Outline

@ Possible Topics
@ PCFieldSplit

M. Knepley () PETSC GUCAS’10 300/318

Possible Topics PCFieldSplit

MultiPhysics Paradigm

The PCFieldSplit interface uses the vecScatter objects to
@ extract functions/operators corresponding to each physics
e Local evaluation for each equation

@ assemble functions/operators over all physics
@ Generalizes LocalToGlobal ()

Notice that this works in exactly the same manner as
@ multiple resolutions (MG, FMM, Wavelets)

@ multiple domains (Domain Decomposition)

@ multiple dimensions (ADI)

M. Knepley () PETSC GUCAS’10 301/318

Possible Topics PCFieldSplit

Preconditioning

Several varieties of preconditioners can be supported:
@ Block Jacobi or Block Gauss-Siedel
@ Schur complement
@ Block ILU (approximate coupling and Schur complement)
@ Dave May’s implementation of Elman-Wathen type PCs
which only require actions of individual operator blocks

Notice also that we may have any combination of

@ “canned” PCs (ILU, AMG)

@ PCs needing special information (MG, FMM)

@ custom PCs (physics-based preconditioning, Born approximation)
since we have access to an algebraic interface

M. Knepley () PETSC GUCAS’10 302/318

Possible Topics FEniCS Tools

Outline

@ Possible Topics

@ FEniCS Tools

M. Knepley () PETSC GUCAS’10 303/318

Possible Topics FEniCS Tools

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
User can build arbitrary elements specifying the Ciarlet triple (K, P, P")

FIAT is part of the FENniCS project, as is the PETSc Sieve module

M. Knepley () PETSC GUCAS'10 304 /318

http://www.fenics.org/fiat

Possible Topics FEniCS Tools

FFC is a compiler for variational forms by Anders Logg.
Here is a mixed-form Poisson equation:
a((r,w), (o,u)) = L((1,w)) V(r,w)e V
where

a((r, w), (o, 1)) = /QTU—V-Tu—i-WV-UdX

L((m,w)) = /wadx

M. Knepley () PETSC GUCAS'10 305/318

Possible Topics FEniCS Tools

FFC is a compiler for variational forms by Anders Logg.

shape = "triangle"
BDM1 = FiniteElement ("Brezzi-Douglas—Marini", shape, 1)
DGO = FiniteElement ("Discontinuous Lagrange", shape, 0)

element = BDM1 + DGO

(tau, w) = TestFunctions (element)
(sigma, u) = TrialFunctions (element)
f = Function (DGO)

)
|

(dot (tau, sigma) - div(tau)»*u + wxdiv(sigma)) xdx
L = wrxf*dx

M. Knepley () PETSC GUCAS'10 305/318

Possible Topics FEniCS Tools

FFC

FFC is a compiler for variational forms by Anders Logg.
Here is a discontinuous Galerkin formulation of the Poisson equation:
a(v,u) = L(v) vveV
where

a(v,u) = /QVU-Vvdx
+ 283/8— <V > [[ulln — [Vl < Vu > —(a/h)vu oS
+ /8Q —Vv - [[u]ln = [[V]ln- Vu — (v/h)vu ds
L(v) = /Qvfdx

M. Knepley () PETSC GUCAS'10 305/318

Possible Topics FEniCS Tools

FFC

FFC is a compiler for variational forms by Anders Logg.

DGl = FiniteElement ("Discontinuous Lagrange", shape, 1)
= TestFunctions (DG1)

= TrialFunctions (DG1)

= Function (DG1)

= Function (DG1)

= FacetNormal ("triangle")

= MeshSize ("triangle")

= dot (grad(v), grad(u)) *dx

- dot (avg (grad(v)), Jjump(u, n))=*dsS

- dot (jump (v, n), avg(grad(u)))*dSs

+ alpha/hxdot (jump (v, n) + jump(u, n))=*dS
- dot (grad(v), Jjump(u, n))xds

- dot (jump (v, n), grad(u)) xds

+ gamma/h*v*uxds

L. = vxfxdx + vxgxds
M. Knepley () PETSc GUCAS’10 305/318

O 5B Q e <

Possible Topics PetFMM

Outline

@ Possible Topics

@ PetFMM

M. Knepley () PETSC GUCAS’10 306/318

Possible Topics PetFMM

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
e Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation

M. Knepley () PETSC GUCAS’10 307/318

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637

Conclusions

Outline

M. Knepley () PETSC GUCAS’10 308/318

Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas

@ scale an existing code to large or distributed machines
@ incorporate more scalable or higher performance algorithms

@ tune your code to new architectures

M. Knepley () PETSC GUCAS’10 309/318

Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas
e Lots of code construction, management, and debugging tools
@ scale an existing code to large or distributed machines

@ incorporate more scalable or higher performance algorithms

@ tune your code to new architectures

M. Knepley () PETSC GUCAS’10 309/318

Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas
e Lots of code construction, management, and debugging tools

@ scale an existing code to large or distributed machines
e Using FormFunctionLocal () and scalable linear algebra

@ incorporate more scalable or higher performance algorithms

@ tune your code to new architectures

M. Knepley () PETSC GUCAS’10 309/318

Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas
e Lots of code construction, management, and debugging tools

@ scale an existing code to large or distributed machines
e Using FormFunctionLocal () and scalable linear algebra

@ incorporate more scalable or higher performance algorithms
@ Such as domain decomposition or multigrid

@ tune your code to new architectures

M. Knepley () PETSC GUCAS’10 309/318

Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas
e Lots of code construction, management, and debugging tools

@ scale an existing code to large or distributed machines
e Using FormFunctionLocal () and scalable linear algebra

@ incorporate more scalable or higher performance algorithms
@ Such as domain decomposition or multigrid

@ tune your code to new architectures
e Using profiling tools and specialized implementations

M. Knepley () PETSC GUCAS’10 309/318

Conclusions
References

@ Documentation: http://www.mcs.anl.gov/petsc/docs

e PETSc Users manual

e Manual pages

e Many hyperlinked examples

e FAQ, Troubleshooting info, installation info, etc.

@ Publications: http://www.mcs.anl.gov/petsc/publications
@ Research and publications that make use PETSc

MPI Information: http://www.mpi-forum.org
Using MPI (2nd Edition), by Gropp, Lusk, and Skjellum
Domain Decomposition, by Smith, Bjorstad, and Gropp

M. Knepley () PETSC GUCAS’10 310/318

http://www.mcs.anl.gov/petsc/docs
http://www.mcs.anl.gov/petsc/publications
http://www.mpi-forum.org

Conclusions

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.

M. Knepley () PETSC GUCAS’10 311/318

Conclusions
Homework Solution 1

@ How are PETSc matrices divided in parallel?
X By rows
e By columns
@ By blocks (of rows and columns)
© What is a PETSc KSP object?
o A KSP is a Krylov Subspace solver object which solves linear
systems of equations.
© What command line option changes the type of linear solver?
@ —ksp_type
© Which of these operations is collective?
@ MatSetValues ()
@ VecScale ()
X SNESSolve ()
@ PetscFree()

M. Knepley () PETSC GUCAS'10 312/318

Conclusions
Homework Solution 1

@ What option can be used with SNES to calculate a
Finite-Difference approximation to the Jacobian?

@ —-snes_mf Or —snes_fd

© What are the two kinds of DA stencils?
@ DA_STENCIL_BROX Or DA_STENCIL_STAR

© List three third-party solvers which can be used with PETSc.
e MUMPS, Spooles, SuperLU, DSCPack, UMFPack, ...

© What option launches the debugger when PETSc is run?

@ —start_in_debugger

M. Knepley () PETSC GUCAS’10 313/318

Conclusions
Homework Solution 2

Consider the Gram-Schmidt Orthogonalization process. Starting with a
set of vectors {v;}, create a set of orthonormal vectors {n;}.

V4
n = —
vl
W
no = ——— where Wo = Vo — (n1 . v2)n1
[|well
w,
ne = m where Wy = v, — Z(nj . vk)nj
k

j<k
What is
@ the balance factor 3 for this algorithm?

M. Knepley () PETSC GUCAS’10 314/318

Conclusions
Homework Solution 2

First, the operations we use for vectors of length N and b-byte reals:
@ vector norm ||v|| uses 2N — 1 flops
@ normalizing a vector uses 3N — 1 flops
@ vector dot product uses 2N — 1 flops
@ vector subtraction and scaling use N flops
For the k = 1 case,

and the k = 2 case,

_BN-1)+(7TN-2) 10
B = iNb 4bKeyes (16)

M. Knepley () PETSC GUCAS'10 315/318

Conclusions
Homework Solution 2

For the general case, we have

@ k normalizations

)]’.‘:‘01 j= @ (subtraction + dot product + scale)s
If the w; vectors are not saved to main memory,

k(BN — 1) + XD an — 1)

_ 2
b= 2kNb (7)
K2 1

_ 7(4N—1)+k(N—§)N2k+1

= SkND ~~2p Keyes (18)
Otherwise, we have ok 1
l’

8= b Keyes (19)

M. Knepley () PETSC GUCAS'10 316/318

Conclusions
Homework Solution 2

@ the bandwidth required to run at peak (B.q) On your computer?

Mok 3400b
B 2k+1

which for b = 8 and k = 30 is 445 MB/s.
@ the maximum achievable flop rate (r,.x) on your computer?

Breq = MB/s (20)

561(2k + 1)
2b

which for b = 8 and k = 30 is 2 GF/s.

Imax = BBpeak = MF/S (21)

M. Knepley () PETSC GUCAS'10 317/318

Conclusions

Homework Solution 3

F'r;econditioner Strength as a Function of Problem Size for SNES ex5
10 T :

s—e gmres-ilu
e—e gmres-ml
s—e gmres-jacobi
10° b 1
w
c
S
=
o
£
5107 | 1
a
c
g
g
e
10" b 1
0 I L L
10
10! 102 10° 10* 10°

Problem Size

M. Knepley () PETSC GUCAS’10 318/318

	Getting Started with PETSc
	What is PETSc?
	Who uses and develops PETSc?
	Stuff for Windows
	How can I get PETSc?
	How do I Configure PETSc?
	How do I Build PETSc?
	How do I run an example?
	How do I get more help?

	Parallel Computing in Brief
	Common PETSc Usage
	Principles and Design
	Debugging PETSc
	Profiling PETSc

	PETSc Integration
	Initial Operations
	Vector Algebra
	Matrix Algebra
	Algebraic Solvers
	More Abstractions

	Advanced PETSc
	SNES
	DA

	Serial Performance
	Creating a Simple Mesh
	Structured Meshes
	Common PETSc Usage
	PETSc Design
	Unstructured Meshes
	3D Meshes

	Defining a Function
	Vectors
	Sections

	Discretization
	Finite Elements
	Finite Differences
	Evaluating the Error

	Defining an Operator
	Solving Systems of Equations
	Linear Equations
	Nonlinear Equations

	Optimal Solvers
	DMMG
	Structured MG
	Unstructured MG

	petsc4py
	Possible Topics
	PCFieldSplit
	FEniCS Tools
	PetFMM

	Conclusions

