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Getting Started with PETSc
Outline

0 Getting Started with PETSc

@ What is PETSc?

@ Who uses and develops PETSc?
Stuff for Windows
@ How can | get PETSc?
@ How do | Configure PETSc?
@ How do | Build PETSc?
°
°

How do | run an example?
How do | get more help?
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Getting Started with PETSc What is PETSc?

Unit Objectives

e Introduce PETSc
e Download, Configure, Build, and Run an Example

e Empower students to learn more about PETSc
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Getting Started with PETSc What is PETSc?

What | Need From You

e Tell me if you do not understand

o Tell me if an example does not work

e Suggest better wording or figures

e Followup problems at petsc-maint@mcs.anl.gov
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Getting Started with PETSc What is PETSc?

Ask Questions!!!

e Helps me understand what you are missing
e Helps you clarify misunderstandings

e Helps others with the same question
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Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation

e Answer email at petsc-maint@mcs.anl.gov
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How We Can Help at the Tutorial

e Point out relevant documentation
e Quickly answer questions

e Answer email at petsc-maint@mcs.anl.gov
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How We Can Help at the Tutorial
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Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

e Point out relevant documentation

e Quickly answer questions

e Help install

e Guide design of large scale codes

e Answer email at petsc-maint@mcs.anl.gov
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Getting Started with PETSc What is PETSc?

Tutorial Repositories

http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial
@ Very simple
@ Shows how to create your own project
@ Uses multiple languages

http://petsc.cs.iit.edu/petsc/tutorials/GUCAS10
@ Fairly complex
@ Shows how to use most PETSc features
@ Uses C and C++
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Getting Started with PETSc What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

LOOK Ir-.IE-Il.‘-'EI

We want to experiment with different
@ Models I]EB[IH[I[IEIIIHH
@ Discretizations
@ Solvers

@ Algorithms
@ which blur these boundaries
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Getting Started with PETSc What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
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Getting Started with PETSc What is PETSc?

What is PETSc?

A freely available and supported research code
Download from http://www.mcs.anl.gov/petsc
Free for everyone, including industrial users

Hyperlinked manual, examples, and manual pages for all routines

Support via email: petsc-maint@mcs.anl.gov

°
°

@ Hundreds of tutorial-style examples

°

@ Usable from C, C++, Fortran 77/90, and Python
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Getting Started with PETSc What is PETSc?

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT5, BG/P, Earth Simulator, Sun Blade, SGI Altix
o Loosely coupled systems, such as networks of workstations
@ |IBM, Mac, Sun, PCs running Linux or Windows
@ PETSc History
o Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
@ SciDAC, MICS Program, INL Reactor Program
o National Science Foundation
@ CIG, CISE, Multidisciplinary Challenge Program
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Active Developers

Getting Started with PETSc What is PETSc?

Timeline

6 +Victor
5 +Matt Kris
+Hong
4 FKris
-Lois
3 +Satish
+Barry
2 il b
1
1991 1993 1995 1996 2000 2001 2003 2005
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Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media
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Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media

@ PETSc has run on over 224,000 cores efficiently

@ UNIC on the IBM BG/P Intrepid at ANL
o PFLOTRAN on the Cray XT5 Jaguar at ORNL
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Getting Started with PETSc What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 1 billion unknowns
o PFLOTRAN for flow in porous media

@ PETSc has run on over 224,000 cores efficiently

@ UNIC on the IBM BG/P Intrepid at ANL
o PFLOTRAN on the Cray XT5 Jaguar at ORNL

@ PETSc applications have run at 3 Teraflops
o LANL PFLOTRAN code
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@ Who uses and develops PETSc?

M. Knepley () PETSc GUCAS’10  16/318



Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

e Computational Scientists

e PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEOQO,
Columbia), PFLOTRAN (DOE)

e Algorithm Developers
e lterative methods and Preconditioning researchers

e Package Developers
e SLEPc, TAO, Dealll, PETSc-FEM, MagPar, PetFMM, PetRBF
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Getting Started with PETSc Who uses and develops PETSc?

The PETSc Team

P o

Barry Sm|th Satish Balay

Jed Brown Matt Knépley Lisandro Dalcin

B
Hong Zhang Vlctor Eukhout Dmitry Karpeev
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Getting Started with PETSc Stuff for Windows
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o Getting Started with PETSc

@ Stuff for Windows
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Getting Started with PETSc Stuff for Windows

Questions for Windows Users

@ Have you installed cygwin?
o Need python, make, and build-utils packages

@ Will you use the GNU compilers?

e If not, remove 1ink.exe
o If MS, check compilers from cmd window and use win32fe

@ Which MPI will you use?
@ You can use —with-mpi=0
o If MS, need to install MPICH2
e If GNU, can use —download-mpich
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o Getting Started with PETSc

@ How can | get PETSc?

M. Knepley () PETSc GUCAS’10  21/318



Getting Started with PETSc How can | get PETSc?

Downloading PETSc

@ The latest tarball is on the PETSc site

o ftp://ftp.mcs.anl.gov/pub/petsc/petsc.tar.gz
e We no longer distribute patches (everything is in the distribution)

@ There is a Debian package
@ There is a FreeBSD Port
@ There is a Mercurial development repository
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Getting Started with PETSc How can | get PETSc?

Cloning PETSc

@ The full development repository is open to the public

e http://petsc.cs.iit.edu/petsc/petsc-dev
e http://petsc.cs.iit.edu/petsc/BuildSystem

@ Why is this better?

@ You can clone to any release (or any specific ChangeSet)
@ You can easily rollback changes (or releases)
@ You can get fixes from us the same day

@ We also make release repositories available

e http://petsc.cs.iit.edu/petsc/releases/petsc-3.1
e http://petsc.cs.iit.edu/petsc/releases/BuildSystem-3.1
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Getting Started with PETSc How can | get PETSc?

Unpacking PETSc

@ Just clone development repository

@ hg clone http://petsc.cs.iit.edu/petsc/petsc—dev
petsc-dev
@ hg clone -rrelease-3.1 petsc-dev petsc-3.1

or

@ Unpack the tarball

@ tar xzf petsc.tar.gz
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Getting Started with PETSc How can | get PETSc?

Exercise 1

Download and Unpack PETSc!
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o Getting Started with PETSc

@ How do | Configure PETSc?
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Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc

@ Set SPETSC_DIR to the installation root directory
@ Run the configuration utility
@ SPETSC_DIR/configure
@ SPETSC_DIR/configure -help
@ SPETSC_DIR/configure —-download-mpich
@ SPETSC_DIR/configure —-prefix=/usr
@ There are many examples on the installation page
@ Configuration files are in SPETSC_DIR/SPETSC_ARCH/conf

o Configure header is in SPETSC_DIR/SPETSC_ARCH/include
@ SPETSC_ARCH has a default if not specified
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Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc

@ You can easily reconfigure with the same options
@ ./S$SPETSC_ARCH/conf/reconfigure-$SPETSC_ARCH.py
@ Can maintain several different configurations
@ ./configure -PETSC_ARCH=linux-fast
-with-debugging=0
@ All configuration information is in the logfile

@ ./SPETSC_ARCH/conf/configure.log
o ALWAYS send this file with bug reports
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Getting Started with PETSc How do | Configure PETSc?

Configuring PETSc for Unstructured Meshes

-with-clanguage=cxx

o

@ —with-shared -with-dynamic

@ -download-f-blas-lapack —download-mpich
o

—download-boost —download-fiat
—download—-generator

@ -download-triangle —download-tetgen

@ -download-chaco —-download-parmetis
—download-zoltan

@ —with-sieve
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Getting Started with PETSc How do | Configure PETSc?

Automatic Downloads

@ Starting in 2.2.1, some packages are automatically

e Downloaded
o Configured and Built (in $PETSC_DIR/externalpackages)
o Installed with PETSc
@ Currently works for
@ petscdpy
PETSc documentation utilities (Sowing, Igrind, c2html)
BLAS, LAPACK, BLACS, ScalLAPACK, PLAPACK
MPICH, MPE, LAM
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
BLOPEX, FFTW, SPRNG
Prometheus, HYPRE, ML, SPAI
Sundials
Triangle, TetGen
FIAT, FFC, Generator
Boost
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Getting Started with PETSc How do | Configure PETSc?

Exercise 2

Configure your downloaded PETSc.
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@ How do | Build PETSc?
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Getting Started with PETSc How do | Build PETSc?

Building PETSc

@ Uses recursive make starting in cd $SPETSC_DIR

@ make
@ make install if you configured with ——prefix
@ Check build when done with make test

@ Complete log for each build is in logfile

@ ./$SPETSC_ARCH/conf/make.log
o ALWAYS send this with bug reports

@ Can build multiple configurations

@ PETSC_ARCH=linux-fast make
o Libraries are in $PETSC_DIR/$PETSC_ARCH/1lib/

@ Can also build a subtree

@ cd src/snes; make
@ cd src/snes; make ACTION=libfast tree
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Getting Started with PETSc How do | Build PETSc?

Exercise 3

Build your configured PETSc.
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Getting Started with PETSc How do | Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

o

linux—gnu—-c—-debug/conf/reconfigure-linux—gnu-c—-debug.py

@ -PETSC_ARCH=linux-parmetis
@ —download-parmetis

© PETSC_ARCH=linux-parmetis make
© PETSC_ARCH=linux-parmetis make test
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@ How do | run an example?
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Getting Started with PETSc How do | run an example?

Running PETSc

@ Try running PETSc examples first
@ cd S$PETSC_DIR/src/snes/examples/tutorials
@ Build examples using make targets
@ make ex5
@ Run examples using the make target
@ make runexb5
@ Can also run using MPI directly

@ mpirun ./ex5 —-snes_max_it 5
@ mpiexec ./ex5 —-snes_monitor
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Getting Started with PETSc How do | run an example?

Using MPI

@ The Message Passing Interface is:

@ a library for parallel communication
e a system for launching parallel jobs (mpirun/mpiexec)
@ a community standard

@ Launching jobs is easy
@ mpiexec -n 4 ./ex5

@ You should never have to make MPI calls when using PETSc
o Almost never
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Getting Started with PETSc How do | run an example?

MPI1 Concepts

@ Communicator

@ A context (or scope) for parallel communication (“Who can | talk to”)
@ There are two defaults:

@ yourself (PETSC_COMM_SELF),
@ and everyone launched (PETSC_COMM_WORLD)

e Can create new communicators by splitting existing ones
o Every PETSc object has a communicator
o Set PETSC_COMM_WORLD to put all of PETSc in a subcomm

@ Point-to-point communication

e Happens between two processes (like in MatMult ())
@ Reduction or scan operations

e Happens among all processes (like in VecDot ())
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Getting Started with PETSc How do | run an example?

Alternative Memory Models

@ Single process (address space) model
o OpenMP and threads in general
e Fortran 90/95 and compiler-discovered parallelism
@ System manages memory and (usually) thread scheduling
o Named variables refer to the same storage
@ Single name space model
e HPF, UPC
o Global Arrays
o Titanium
e Variables refer to the coherent values (distribution is automatic)
@ Distributed memory (shared nothing)

e Message passing
o Names variables in different processes are unrelated
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Getting Started with PETSc How do | run an example?

Common Viewing Options

@ Gives a text representation
@ —-vec_view

@ Generally views subobjects too
@ —snes_view

@ Can visualize some objects
@ —mat_view_draw

@ Alternative formats

@ -vec_view_binary, -vec_view_matlab,
-vec_view_socket

@ Sometimes provides extra information

@ —mat_view_info, -mat_view_info_detailed
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Getting Started with PETSc How do | run an example?

Common Monitoring Options

@ Display the residual
@ -ksp_monitor, graphically ~ksp_monitor_draw
@ Can disable dynamically
® —ksp_monitors_cancel
@ Does not display subsolvers
@ —snes_monitor
@ Can use the true residual
@ —ksp_monitor_true_residual
@ Can display different subobjects
@ —-snes_monitor_residual, -—snes_monitor_solution,
—snes_monitor_solution_update
@ —-snes_monitor_range
@ —-ksp_gmres_krylov_monitor
@ Can display the spectrum

@ —-ksp_monitor_singular_value
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Getting Started with PETSc How do | run an example?

Exercise 5

Run SNES Example 5 using come custom options.

cd SPETSC_DIR/src/snes/examples/tutorials
make exb5
mpiexec ./ex5 —-snes_monitor -snes_view

mpiexec ./ex5 —-snes_type tr —-snes_monitor
—snes_view

mpiexec ./ex5 —-ksp_monitor —-snes_monitor
-snes_view

mpiexec ./ex5 -pc_type jacobi -ksp_monitor
—-snes_monitor —-snes_view

© 06 0 00060

mpiexec ./ex5 -ksp_type bicg -ksp_monitor
—-snes_monitor —-snes_view
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Getting Started with PETSc How do | run an example?

Exercise 6

Create a new code based upon SNES Example 5.

@ Create a new directory
@ mkdir -p /home/knepley/proj/newsim/src
© Copy the source
@ cp ex5.c /home/knepley/proj/newsim/src
o Add mystuff.c andmyStuff2.F
© Create a PETSc makefile
@ bin/ex5: src/ex5.0 src/myStuff.o src/myStuff2.o
° S{CLINKER} -o $@ $~ S{PETSC_SNES_LIB}
@ include ${PETSC_DIR}/conf/variables
@ include ${PETSC_DIR}/conf/rules

To get the project ready-made
hg clone
http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial

newsim
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Getting Started with PETSc How do | get more help?

Getting More Help

@ http://www.mcs.anl.gov/petsc
@ Hyperlinked documentation

e Manual
e Manual pages for evey method
e HTML of all example code (linked to manual pages)

e FAQ
@ Full support at petsc-maint@mcs.anl.gov

@ High profile users

o David Keyes

e Marc Spiegelman
@ Richard Katz

e Brad Aagaard

o Lorena Barba

e Jed Brown
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Parallel Computing in Brief

Scalability is not Efficiency
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Parallel Computing in Brief

Scalability is not Efficiency

Scalability is easy

M. Knepley () PETSCc GUCAS’10  47/318



Parallel Computing in Brief

Scalability is not Efficiency

Scalability is easy

Efficiency is hard
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Parallel Computing in Brief
Scalability

Def: Computation, Communication, and Memory are
in O(N)

@ Can also demand O(P)

@ Watch out for hidden constants
@ 6N and 6000N are both scalable
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Parallel Computing in Brief

PDEs are scalable
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Parallel Computing in Brief

PDEs are scalable

@ Computations are local
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Parallel Computing in Brief

PDEs are scalable

@ Computations are local

@ Communication is nearest neighbor
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Parallel Computing in Brief

PDEs are scalable unless you screw something up
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PDEs are scalable unless you screw something up

Mistakes:
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PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat
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PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat
@ Fully replicated data structures
e parallel data structures, e.g. DA
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Parallel Computing in Brief

PDEs are scalable unless you screw something up

Mistakes:
@ Prescribed data structures
e abstract data types, e.g. Mat
@ Fully replicated data structures
e parallel data structures, e.g. DA
@ Referenced arbitrary unknowns

@ GlobalToLocalMapping
@ DA, Mesh, VecScatter

M. Knepley () PETSc GUCAS’10  49/318



Parallel Computing in Brief
Integral Equations

Integral equations can be scalable
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Integral Equations

Integral equations can be scalable

@ But, they couple all unknowns
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Parallel Computing in Brief
Integral Equations

Integral equations can be scalable

@ But, they couple all unknowns

@ Need special algorithms
e Fast Fourier Transform

e Fast Multipole Method

o Fast Wavelet Transform
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Outline

e Common PETSc Usage
@ Principles and Design
@ Debugging PETSc
@ Profiling PETSc
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Outline

e Common PETSc Usage
@ Principles and Design
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Common PETSc Usage Principles and Design

PETSc Structure

-

M. Knepley () PETSc GUCAS’10  53/318



Common PETSc Usage Principles and Design

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation
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Common PETSc Usage Principles and Design

Levels of Abstraction

In Mathematical Software

@ Application-specific interface
e Programmer manipulates objects associated with the application
@ High-level mathematics interface
e Programmer manipulates mathematical objects
@ Weak forms, boundary conditions, meshes
@ Algorithmic and discrete mathematics interface
e Programmer manipulates mathematical objects
@ Sparse matrices, nonlinear equations
e Programmer manipulates algorithmic objects
@ Solvers
@ Low-level computational kernels
o BLAS-type operations, FFT
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Common PETSc Usage Principles and Design

Object-Oriented Design

@ Design based on operations you perform,
e rather than the data in the object

@ Example: A vector is
e not a 1d array of numbers

@ an object allowing addition and scalar multiplication
@ The efficient use of the computer is an added difficulty
@ which often leads to code generation
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Common PETSc Usage Principles and Design

The PETSc Programming Model

@ Goals
o Portable, runs everywhere
e High performance
@ Scalable parallelism
@ Approach
o Distributed memory (“shared-nothing”)
e No special compiler
o Access to data on remote machines through MPI
o Hide within objects the details of the communication
e User orchestrates communication at a higher abstract level

M. Knepley () PETSC GUCAS’10  57/318



Common PETSc Usage Principles and Design

Symmetry Principle

Interfaces to mutable data must be symmetric.

@ Creation and query interfaces are paired
@ “No get without a set”
@ Fairness
e “If you can do it, your users will want to do it”
@ Openness
e “If you can do it, your users will want to undo it”
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Common PETSc Usage Principles and Design

Empiricism Principle

Interfaces must allow easy testing and comparison.

@ Swapping different implementations
e “You will not be smart enough to pick the solver”
@ Commonly violated in FE code
e Elements are hard coded
@ Also avoid assuming structure outside of the interface

e Making continuous fields have discrete structure
e Temptation to put metadata in a different places
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Common PETSc Usage Principles and Design

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.
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Common PETSc Usage Principles and Design

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
e Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec %*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VvecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process
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Common PETSc Usage Principles and Design

What is not in PETSc?

° U I I . I ulati
@ In 3.0, we have Mesh objects

@ Discretizations
e Dealll
e In 3.0, we have an interface to FIAT

@ Higher level representations of PDEs
e FENICS (FFC/Syfi) and Sundance

@ Load balancing
o Interface to Zoltan

@ Sophisticated visualization capabilities
o Interface to MayaVi2 through VTK

@ Eigenvalues
e SLEPcand SIP

@ Optimization and sensitivity
e TAO and Veltisto
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Common PETSc Usage Principles and Design

Basic PetscObject Usage

Every object in PETSc supports a basic interface

Function | Operation
Create () | create the object
Get/SetName () | name the object
Get/SetType () | setthe implementation type
Get/SetOptionsPrefix () | set the prefix for all options
SetFromOptions () | customize object from the command lin
SetUp () | preform other initialization
View () | view the object
Destroy () | cleanup object allocation

Also, all objects support the —help option.
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Common PETSc Usage Debugging PETSc

Correctness Debugging

e Automatic generation of tracebacks
e Detecting memory corruption and leaks

e Optional user-defined error handlers
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Common PETSc Usage Debugging PETSc

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ -on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —display khan.mcs.anl.gov:0.0
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Common PETSc Usage Debugging PETSc

Debugging Tips

@ Put a breakpoint in PetscError () to catch errors as they occur
@ PETSc tracks memory overwrites at both ends of arrays

e The CHKMEMQ macro causes a check of all allocated memory
e Track memory overwrites by bracketing them with CHKMEMQ

@ PETSc checks for leaked memory

@ Use PetscMalloc () and PetscFree () for all allocation
@ Print unfreed memory on PetscFinalize () with -malloc_dump

@ Simply the best tool today is valgrind

e It checks memory access, cache performance, memory usage, etc.
(]
@ Need -trace-children=yes when running under MPI
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Common PETSc Usage Debugging PETSc

Exercise 7

Use the debugger to find a SEGV

Locate a memory overwrite using CHKMEMQ.

@ Get the example
@ hg clone -rl
http://petsc.cs.iit.edu/petsc/SimpleTutorial

@ Build the example make
@ Run it and watch the fireworks

@ mpiexec -n 2 ./bin/ex5 -use_coords
@ Run it under the debugger and correct the error

@ mpiexec -n 2 ./bin/ex5 -use_coords
—-start_in_debugger -display :0.0
@ hg update -r2

@ Build it and run again smoothly
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Common PETSc Usage Profiling PETSc

Performance Debugging

@ PETSc has integrated profiling
@ Option —-1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage
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Common PETSc Usage Profiling PETSc

Using Stages and Events

@ Use PetsclLogStageRegister () to create a new stage
e Stages are identifier by an integer handle
@ Use PetsclLogStagePush/Pop () to manage stages
e Stages may be nested, but will not aggregate in a nested fashion
@ Use PetsclLogEventRegister () to create a new stage
e Events also have an associated class
@ Use PetscLogEventBegin/End () to manage events

e Events may also be nested and will aggregate in a nested fashion
e Canuse PetscLogFlops () to log user flops
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Common PETSc Usage Profiling PETSc

Adding A Logging Stage

int stageNum;

PetsclLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

Code to Monitor

PetscLogStagePop () ;
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Common PETSc Usage Profiling PETSc

Adding A Logging Event

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID)
PetscLogEventBegin (USER_EVENT,0,0,0,0);

Code to Monitor

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT,0,0,0,0);
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Common PETSc Usage Profiling PETSc

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type
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Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

@ PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
Dynamically adding many nonzeros
e requires additional memory allocations
@ requires copies
e can kill performance
Memory preallocation provides
o the freedom of dynamic data structures
@ good performance
Easiest solution is to replicate the assembly code
@ Remove computation, but preserve the indexing code
o Store set of columns for each row
Call preallocation rourines for all datatypes

@ MatSegAIJSetPreallocation ()
@ MatMPIAIJSetPreallocation ()
@ Only the relevant data will be used
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Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Sequential Sparse Matrices

MatSegAIJPreallocation(Mat A, int nz, int nnz[])
nz: expected number of nonzeros in any row
nz(i): expected number of nonzeros in row i

.\.,
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Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

ParallelSparseMatrix

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

. diagonal blocks

. offdiagonal blocks

proc 0

proc 1
proc 2

proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A, int =*start,int =xend)
start: first locally owned row of global matrix
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Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Parallel Sparse Matrices

MatMPIAIJPreallocation (Mat A, int dnz, int dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
nz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
nz(i): expected number of nonzeros in row i in the offdiagonal portion
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Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

Verifying Preallocation

@ Use runtime option —info
@ Output:

[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used

[proc #] Number of mallocs during MatSetValues( )
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unneeded, 250 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize: PETSc successfully ended!
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Common PETSc Usage Profiling PETSc

Exercise 8

Return to Execise 7 and add more profiling.

@ Update to the next revision
@ hg update -r3
@ Build, run, and look at the profiling report

@ make ex5
@ ./bin/ex5 -use_coords —-log_summary

@ Add a new stage for setup
@ Add a new event for FormInitialGuess () and log the flops
@ Build it again and look at the profiling report
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PETSc Integration Initial Operations

Application Integration

@ Be willing to experiment with algorithms
o No optimality without interplay between physics and algorithmics
@ Adopt flexible, extensible programming
o Algorithms and data structures not hardwired
@ Be willing to play with the real code
o Toy models are rarely helpful
@ If possible, profile before integration
e Automatic in PETSc
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PETSc Integration Initial Operations

PETSc Integration

PETSc is a set a library interfaces
@ We do not seize main ()
@ We do not control output
@ We propagate errors from underlying packages
@ We present the same interfaces in:
o C
o C++
o F77

e F90
e Python

See Gropp in SIAM, OO Methods for Interop SciEng, '99
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PETSc Integration Initial Operations

Integration Stages

Version Control

e ltis impossible to overemphasize
Initialization

e Linking to PETSc
Profiling

e Profile before changing

@ Also incorporate command line processing

Linear Algebra
o First PETSc data structures
Solvers
o Very easy after linear algebra is integrated
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PETSc Integration Initial Operations

Initialization

@ Call petscInitialize ()

o Setup static data and services
e Setup MPI if it is not already

@ Call petscFinalize ()

o Calculates logging summary
e Shutdown and release resources

@ Checks compile and link
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PETSc Integration Initial Operations

Profiling

@ Use -1og_summary for a performance profile
e Event timing

Event flops
e Memory usage
e MPI messages

@ Call petscLogStagePush () and PetscLogStagePop ()
e User can add new stages

@ Call petscLogEventBegin () and PetscLogEventEnd ()
o User can add new events
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PETSc Integration Initial Operations

Command Line Processing

Check for an option
@ PetscOptionsHasName ()
Retrieve a value
@ PetscOptionsGetInt (), PetscOptionsGetIntArray ()
Set a value
@ PetscOptionsSetValue ()
Check for unused options
@ -options_left
Clear, alias, reject, etc.
Modern form uses

@ PetscOptionsBegin (), PetscOptionsEnd ()
@ PetscOptionsInt (),PetscOptionsReal ()
o Integrates with —help
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PETSc Integration Vector Algebra

Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing field solutions, right-hand
sides, etc.

@ Each process locally owns a subvector of contiguous global data
How do | create vectors?

@ VecCreate (MPI_Comm, Vec x)

@ VecSetSizes (Vec, int n, int N)

@ VecSetType (Vec, VecType typeName)
@ VecSetFromOptions (Vec)
o Can set the type at runtime
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PETSc Integration Vector Algebra

Vector Algebra

A PETSc Vec

@ Has a direct interface to the values

@ Supports all vector space operations
@ VecDot (), VecNorm (), VecScale()

@ Has unusual operations, e.g. VecsSqgrt (), VecWhichBetween ()
@ Communicates automatically during assembly
@ Has customizable communication (scatters)
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PETSc Integration Vector Algebra

Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

e Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase
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PETSc Integration Vector Algebra

Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ VecSetValues (Vec v, int n, int rows][],
PetscScalar values|[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
@ Two phase assembly allows overlap of communication and
computation
@ VecAssemblyBegin (Vec V)
@ VecAssemblyEnd (Vec v)
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PETSc Integration Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i =0, val = 0.0; i < N; i++, wval += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);

}

/+ These routines ensure that the data i1s distributed
to the other processes x/

VecAssemblyBegin (x) ;

VecAssemblyEnd (x) ;
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PETSc Integration Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low,
for(i = low,val = low*10.0; 1
{

VecSetValues(x, 1, &i, &val,

}

&high);

< high; i++,val +=

INSERT_VALUES) ;

10.0)

/* These routines ensure that the data is distributed

to the other processes */
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;
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PETSc Integration Vector Algebra

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=x+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y +axx
VecScale(Vec x, PetscScalar a) X=axx
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) W = X * Y
VecMax(Vec x, Petscint *idx, PetscScalar *r) r = maxf;
VecShift(Vec x, PetscScalar r) Xi=Xj+r
VecAbs(Vec x) Xi = |xi|
VecNorm(Vec x, NormType type, PetscReal *r) r=||x||
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PETSc Integration Vector Algebra

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray (Vec, double x[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray (Vec, double *x[])
@ Allows PETSc to handle data structure conversions
e Commonly, these routines are inexpensive and do not involve a
copy
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PETSc Integration Vector Algebra

VecGetArray in C

Vec v;

PetscScalar =*array;
PetscInt n, ij;
PetscErrorCode ierr;

VecGetArray (v, &array);
VecGetLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
for(i = 0; 1 < n; 1i++) {
array[i] += (PetscScalar) rank;
}

VecRestoreArray (v, &array);
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PETSc Integration Vector Algebra

VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;

PetscScalar array(1l)
PetscOffset offset

PetscInt n, 1

PetscErrorCode ierr

call VecGetArray (v, array, offset, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n

array (itoffset) = array(itoffset) + rank
end do
call VecRestoreArray (v, array, offset, ierr)
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PETSc Integration Vector Algebra

VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;

PetscScalar pointer :: array(:)
PetscInt n, 1

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n
array (i) = array (i) + rank
end do
call VecRestoreArrayF90 (v, array, ilerr)
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PETSc Integration Matrix Algebra

Matrix Algebra

What are PETSc matrices?
@ Fundamental objects for storing stiffness matrices and Jacobians

@ Each process locally owns a contiguous set of rows
@ Supports many data types

e AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
@ Supports structures for many packages

e MUMPS, Spooles, SuperLU, UMFPack, DSCPack
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PETSc Integration Matrix Algebra

How do | create matrices?

MatCreate (MPI_Comm, Mat x)
MatSetSizes (Mat, int m, int n, int M, int N)
MatSetType (Mat, MatType typeName)
MatSetFromOptions (Mat)

o Can set the type at runtime

MatSegAIJPreallocation (Mat,
PetscInt nz, const PetscInt nnz[])

MatMPIAIJPreallocation (Mat,

PetscInt dnz, const PetscInt dnz[],
PetscInt onz, const PetscInt onz[])

MatSetValues (Mat, ...)
e MUST be used, but does automatic communication
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PETSc Integration Matrix Algebra

Matrix Polymorphism

The PETSc Mat has a single user interface,
@ Matrix assembly
@ MatSetValues ()
@ Matrix-vector multiplication
@ MatMult ()
@ Matrix viewing
@ MatView ()
but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense
@ Matrix-Free
@ etc.

A matrix is defined by its interface, not by its data structure.
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PETSc Integration Matrix Algebra

Matrix Assembly

@ A three step process

e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat m, m, rows[], n, cols|[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)

o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY
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PETSc Integration Matrix Algebra

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;

if (rank == 0) {

for (row = O; row < N; row++) {
cols[0] = -1; cols[l] = row; cols[2] = rowt+l;
if (row == ) {

MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;

} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;

} else {
MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

P}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;
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PETSc Integration Matrix Algebra

A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;

for (row = start; row < end; rowt++) {
cols[0] = row-1; cols[l] = row; cols[2] = row+l;
if (row == 0) {

MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;

} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;

} else {
MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

}

MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY);
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PETSc Integration Matrix Algebra

Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide significant performance

benefits
e PETSc has many formats and makes it easy to add new data

structures
@ Assembly is difficult enough without worrying about partitioning

o PETSc provides parallel assembly routines
@ Achieving high performance still requires making most operations

local
e However, programs can be incrementally developed.
@ MatPartitioning and MatOrdering can help
@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
e For other ordering, PETSc provides “Application Orderings” (AQ)
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PETSc Integration Algebraic Solvers

Solver Types

@ Explicit:

o Field variables are updated using local neighbor information
@ Semi-implicit:

e Some subsets of variables are updated with global solves

e Others with direct local updates
@ Implicit:

e Most or all variables are updated in a single global solve
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PETSc Integration Algebraic Solvers

Linear Solvers

Krylov Methods

@ Using PETSc linear algebra, just add:

@ KSPSetOperators (KSP ksp, Mat A, Mat M,
MatStructure flag)
@ KSPSolve (KSP ksp, Vec b, Vec x)

@ Can access subobjects
@ KSPGetPC (KSP ksp, PC =xpc)

@ Preconditioners must obey PETSc interface
o Basically just the KSP interface

@ Can change solver dynamically from the command line
@ -ksp_type bicgstab
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PETSc Integration Algebraic Solvers

Nonlinear Solvers

Newton and Picard Methods

@ Using PETSc linear algebra, just add:
@ SNESSetFunction (SNES snes, Vec r, residualFunc,

void *ctx)
@ SNESSetJacobian (SNES snes, Mat A, Mat M, jacFunc,

void *ctx)
@ SNESSolve (SNES snes, Vec b, Vec x)
@ Can access subobjects
@ SNESGetKSP (SNES snes, KSP xksp)
@ Can customize subobjects from the cmd line
@ Set the subdomain preconditioner to ILU with —sub_pc_type ilu

M. Knepley () PETSC GUCAS’10  103/318



PETSc Integration Algebraic Solvers

Basic Solver Usage

We will illustrate basic solver usage with SNES.

@ Use SNESSetFromOptions () S0 that everything is set
dynamically

o Use —snes_type to set the type or take the default

@ Override the tolerances
@ Use -snes_rtol and -snes_atol

@ View the solver to make sure you have the one you expect
@ Use -snes_view

@ For debugging, monitor the residual decrease

@ Use -snes_monitor
e Use -ksp_monitor to see the underlying linear solver
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PETSc Integration Algebraic Solvers

3rd Party Solvers in PETSc

@ Sequential LU

ILUDT (SPARSEKIT2, Yousef Saad, U of MN)
EUCLID & PILUT (Hypre, David Hysom, LLNL)
ESSL (IBM)

SuperLU (Jim Demmel and Sherry Li, LBNL)
Matlab

UMFPACK (Tim Davis, U. of Florida)

LUSOL (MINOS, Michael Saunders, Stanford)

@ Parallel LU

MUMPS (Patrick Amestoy, IRIT)
SPOOLES (Cleve Ashcroft, Boeing)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)

© Parallel Cholesky

DSCPACK (Padma Raghavan, Penn. State)

© XYTlib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)

M. Knepley () PETSC GUCAS’10  105/318


http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration Algebraic Solvers

3rd Party Preconditioners in PETSc

@ Parallel ICC

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel ILU

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel Sparse Approximate Inverse

e Parasails (Hypre, Edmund Chow, LLNL)

e SPAI 3.0 (Marcus Grote and Barnard, NYU)
@ Sequential Algebraic Multigrid

e RAMG (John Ruge and Klaus Steuben, GMD)

o SAMG (Klaus Steuben, GMD)
@ Parallel Algebraic Multigrid

o Prometheus (Mark Adams, PPPL)

o BoomerAMG (Hypre, LLNL)

e ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

M. Knepley () PETSC GUCAS 10

105/318


http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration More Abstractions
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PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
@ Structured grid interface
o Fixed simple topology
@ Supports stencils, communication, reordering
o Limited idea of operators

@ Nice for simple finite differences

The PETSc Mesh class is a topology interface.
@ Unstructured grid interface
o Arbitrary topology and element shape

@ Supports partitioning, distribution, and global orders
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PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
@ Supports multigrid
@ DMMG combines it with the MG preconditioner

@ Abstracts the logic of multilevel methods

The PETSc section class is a function interface.
@ Functions over unstructured grids
o Arbitrary layout of degrees of freedom

@ Support distribution and assembly
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PETSc Integration More Abstractions

3 Ways To Use PETSc

DMMGSetSNESLocal()

Grid Info

Solvers

DAGetMat()

DAGetGlobal Ve

MatCreate()
VecCreate()

SNESCreate()

@ User manages all topology (just use Vec and Mat)
@ PETSc manages single topology (use DA)
@ PETSc manages a hierarchy (use DM)
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Advanced PETSc
Outline

© Advanced PETSc
@ SNES
@ DA
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Advanced PETSc SNES

Outline

© Advanced PETSc
@ SNES
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Advanced PETSc SNES

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation
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Advanced PETSc SNES

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
@ PETSc never sees application data

M. Knepley () PETSC GUCAS '10
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Advanced PETSc SNES

Topology Abstractions

@ DA

o Abstracts Cartesian grids in any dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ Mesh

o Abstracts general topology in any dimension
o Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations
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Advanced PETSc SNES

Assembly Abstractions

@ DM

o Abstracts the logic of multilevel (multiphysics) methods
o Manages allocation and assembly of local and global structures
o Interfaces to DMMG solver

@ Section

@ Abstracts functions over a topology
e Manages allocation and assembly of local and global structures
o Will merge with bM somehow
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Advanced PETSc SNES

SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void *ctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants
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Advanced PETSc SNES

SNES Jacobian

The user provided function which calculates the Jacobian has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat =J,Mat
*M, MatStructure xflag,void #*ctx)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants
@ Possible MatStructure values are:
o SAME_NONZERO_PATTERN
o DIFFERENT_NONZERO_PATTERN
Alternatively, you can use
@ a builtin sparse finite difference approximation
@ automatic differentiation (ADIC/ADIFOR)
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Advanced PETSc SNES

SNES Variants

e Line search strategies
e Trust region approaches
e Pseudo-transient continuation

o Matrix-free variants
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Advanced PETSc SNES

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
o Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

o Uses preconditioning matrix from SNESSet Jacobian ()
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Advanced PETSc SNES

SNES Example

Driven Cavity

Solution Components

-
B
-
veloaity: i velocity: v @ Velocity-vorticity formulation

@ Flow driven by lid and/or bouyancy
@ Logically regular grid

- e Parallelized with DA
@ Finite difference discretization

vorticity: temperature: T @ Authored by David Keyes

$PETCS_DIR/src/snes/examples/tutorials/ex19.c
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Advanced PETSc SNES

SNES Example

Driven Cavity Application Context

typedef struct {
/+*——— basic application data ———%/
double 1lid_velocity;
double prandtl, grashof;
int mx, my;

int mc;

PetscTruth draw_contours;
/+——— parallel data —--—«/
MPI_Comm comm;

DA daj;

/+ Local ghosted solution and residual =/
Vec localX, localF;
} AppCtx;

$PETCS_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley () PETSC GUCAS’10  119/318



Advanced PETSc SNES

SNES Example

Driven Cavity Residual Evaluation

DrivenCavityFunction (SNES snes, Vec X, Vec F, void xptr) {
AppCtx *user = (AppCtx x) ptr;
/* local starting and ending grid points =/
int istart, iend, Jjstart, jend;
PetscScalar *f; /* local vector data =*/
PetscReal grashof = user—->grashof;
PetscReal prandtl = user—->prandtl;
PetscErrorCode ierr;

/+ Code to communicate nonlocal ghost point data =*/
VecGetArray (F, &f);

/+ Code to compute local function components =*/
VecRestoreArray (F, &f);
return 0;

$PETCS_DIR/src/snes/examples/tutorials/ex19.c
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Advanced PETSc SNES

SNES Example

Better Driven Cavity Residual Evaluation

PetscErrorCode DrivenCavityFuncLocal (DALocalInfo *info,
Field **x,Field x*f,void =*ctx) {
/+ Handle boundaries */
/+ Compute over the interior points =/
for(j = info->ys; j < info->xs+info->xm; J++) {
for(i = info->xs; 1 < info->ys+info->ym; i++) {
/* convective coefficients for upwinding =/
/* U velocity =/

u = x[J][i].u;

uxx = (2.0*u - x[J][i-1].u - x[3][i+1].u)rhydhx;
uyy = (2.0%xu - x[J-1][1i].u - x[3j+1][1i].u)~rhxdhy;
upw = 0.5%x(x[Jj+1][1i] .omega-x[j-1][i].omega) ~hx

fl31[1i].u = uxx + uyy - upw;
/+ V velocity, Omega, Temperature =/

P}
$PETCS_DIR/src/snes/examples/tutorials/ex19.c
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Advanced PETSc DA

Outline

© Advanced PETSc

o DA
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Advanced PETSc DA

What is a DA?

DA is a topology interface handling parallel data layout on structured
grids
@ Handles local and global indices
@ DAGetGlobalIndices () and DAGetAO ()
@ Provides local and global vectors
@ DAGetGlobalVector () and DAGetLocalVector ()
@ Handles ghost values coherence
@ DAGetGlobalToLocal () and DAGetLocalToGlobal ()
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Advanced PETSc DA

DA Paradigm

The DA interface is based upon local callback functions
@ FormFunctionLocal (), set by DASetLocalFunction ()

@ FormJacobianLocal (), set by DASetLocalJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Each process evaluates the local residual

@ PETSc assembles the global residual automatically
o Uses DALocalToGlobal () method
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Advanced PETSc DA

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring
processes

. Local Node

Q Ghost Node
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Advanced PETSc DA

DA Global Numberings

Proc 2 Proc 3 Proc 2 Proc 3
25 26 27|28 29 21 22 23|28 29
20 21 22|23 24 18 19 20 | 26 27
15 16 17 |18 19 15 16 17 |24 25
10 11 12 (13 14 6 7 8 |13 14
5 6 7|8 9 3 4 5 |11 12
0 1 2|1 3 4 0o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Natural numbering

M. Knepley ()
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Advanced PETSc DA

DA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20|26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5|11 12
o 1 2|3 X o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Local numbering

M. Knepley ()

PETSc

Global numbering
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Advanced PETSc DA

DA Local Function

The user provided function which calculates the nonlinear residual in
2D has signature

PetscErrorCode (x1lfunc) (DALocalInfo =*info,
PetscScalar *+*x, PetscScalar x*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetTLocalFunction ()

The local DA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)
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Advanced PETSc DA

Bratu Residual Evaluation

Au+2e"=0

BratuResidualLocal (DALocalInfo *info,Field x*x,Field xxf)
{

/* Not Shown: Handle boundaries =/

/+ Compute over the interior points =/

for(j = info->ys; j < info->xs+info->ym; J++) {
for(i = info->xs; i < info->ys+info->xm; i++) {
u = x[J1[i];
Uu_xXX = (2.0xu - x[]J][1i-1] - x[j][i+1]) rhydhx;
u_yy = (2.0xu - x[3-11[i] - x[J+1]1[1i])~rhxdhy;

f13]11[1] u_xx + u_yy - hxxhyxlambdaxexp (u);

$PETCS_DIR/src/snes/examples/tutorials/ex5.c
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Advanced PETSc DA

DA Local Jacobian

The user provided function which calculates the Jacobian in 2D has
signature

PetscErrorCode (xlfunc) (DALocalInfo *info, PetscScalar
*xx, Mat J, void #*ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalFunction ()

The local DA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJdacobian, ctx)
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Advanced PETSc DA

Bratu Jacobian Evaluation

BratuJacobianLocal (DALocalInfo *info,PetscScalar **x,
Mat Jjac,void xctx) {

for(j = info->ys; j < info->ys + info->ym; Jj++) {
for(i = info->xs; i < info->xs + info->xm; 1i++) {
row.j = j; row.i = 1i;
if (1 == [l 3 ==0 1] 1 ==mx-1 || J == my-1) {
v[0] = 1.0;
MatSetValuesStencil (jac, 1, &row, 1, &row, v, INSERT_VALUES
} else {
v[0] = —-(hx/hy); col[0].] = j-1; col[0].1i = i;
v[1l] = —(hy/hx); col[l]l.] = J; col[l].1i = i-1;
v[2] = 2.0x (hy/hx+hx/hy)
— hxshy*xlambda*PetscExpScalar (x[Jj][i]);
v[3] = —(hy/hx); col[3].] = J; col[3].1 = i+1;

v[4] = —(hx/hy); col[4].] = j+1; col[4].1i = i;
MatSetValuesStencil (jac, 1, &row, 5, col, v, INSERT_VALUES)
Frorod

$PETCS_DIR/src/snes/examples/tutorials/ex5.c
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Advanced PETSc DA

A DA is more than a Mesh

A DA contains topology, geometry, and an implicit Q1 discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)
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Advanced PETSc DA

DA Vectors

@ The DA object contains only layout (topology) information
o All field data is contained in PETSc vecs
@ Global vectors are parallel

e Each process stores a unique local portion
@ DACreateGlobalVector (DA da, Vec =*gvec)

@ Local vectors are sequential (and usually temporary)

e Each process stores its local portion plus ghost values
@ DACreatelLocalVector (DA da, Vec =*lvec)
e includes ghost values!
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Advanced PETSc DA

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DAGlobalToLocalBegin (da, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@ DAGlobalToLocalEnd(da, gvec, mode, lvec)
@ Finishes the communication

The process can be reversed with DAL.ocalToGlobal ().

M. Knepley () PETSC GUCAS '10
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Advanced PETSc DA

DA Stencils

Both the box stencil and star stencil are available.

proc 10 proc 10

proc 0 proc 1 proc 0 proc 1

Box Stencil Star Stencil
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Advanced PETSc DA

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n,
MatStencil idxn[], wvalues[], mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col
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Advanced PETSc DA

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s,
Im[], 1In[], DA =xda)

Nrap.

_ype:

M/N:
m/n:
dof:

: The stencil width
lm/n:

Specifies periodicity
@ DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, Of
DA_XYPERIODIC

Specifies stencil
@ DA_STENCIL_BOX Or DA_STENCIL_STAR

Number of grid points in x/y-direction
Number of processes in x/y-direction
Degrees of freedom per node

Alternative array of local sizes
@ Use PETSC_NULL for the default
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Advanced PETSc DA

Homework

@ You may hand in homework:
e On paper at the beginning of class

e By email, to knepley@gmail.com

@ Please include your name and student number on all homework

@ All homework must be turned in by the beginning of class on
Friday
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Advanced PETSc DA

Homework 1

@ How are PETSc matrices divided in parallel?
e By rows
e By columns
o By blocks (of rows and columns)

©@ What is a PETSc KSP object?
© What command line option changes the type of linear solver?
© Which of these operations is collective?
@ MatSetValues ()
@ VecScale ()
@ SNESSolve ()
@ PetscFree ()
©@ What option can be used with SNES to calculate a
Finite-Difference approximation to the Jacobian?
© What are the two kinds of DA stencils?
@ List three third-party solvers which can be used with PETSc.
© What option launches the debugger when PETSc is run?
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Serial Performance
Outline

e Serial Performance
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Serial Performance
Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
@ computation
@ memory usage
@ communication
@ bandwidth
@ achievable concurrency
This allows us to
@ verify the implementation
@ predict scaling behavior
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Serial Performance
Complexity Analysis

The key performance indicator, which we will call the balance factor g,
is the ratio of flops executed to bytes transfered.

flop
byte

@ Using the peak flop rate r,.., we can get the required bandwidth
B4 for an algorithm

@ We will designate the unit as the Keyes

s peak
B

@ Using the peak bandwidth Bj..x, we can get the maximum flop
rate rax for an algorithm

Breq = (1 )

Imax = BBpeak (2)
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Serial Performance
Performance Caveats

@ The peak flop rate r,..x on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-Dbit registers.

@ SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

C1 = C1 + a; * by 3)
Co=0Co+ a * b (4)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.

@ Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.
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Analysis of BLAS axpy ()

7(—00?—#}7

For vectors of length N and b-byte numbers, we have
@ Computation
e 2N flops

@ Memory Access
e (3N + 1)bbytes

Thus, our balance factor 3 = (3,@’:’1)[) ~ %Keyes
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Analysis of BLAS axpy ()

For Matt’s Laptop,
@ ryeak = 1700MF/s
implies that
@ By =2550b MB/s
@ Much greater than Bcax

@ Byeak = 1122MB/s
implies that
@ Iax = 722 MF/s
@ 5.5% of feax
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STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax

@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance
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Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
(8 + V> e + v byte/flop (5)
or achieveable performance given a bandwith BW
Vnz
BV r2)ymtenzo/ Milop/s ©)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most
1
———— bytes/flop(1122.4 MB/s) = 151 MFlops/s, (7)
BT T e/ /s) /
which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.
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Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

———— bytes/flop(1122.4 MB/s) = 151 MFlops/s, (7)
@r2)156" /flop( /s) ps/

which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)
e N data, N? computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation
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Serial Performance
Performance Tradeoffs

We must balance storage, bandwidth, and cycles

@ Assembled Operator Action
o Trades cycles and storage for bandwidth in application
@ Unassembled Operator Action

e Trades bandwidth and storage for cycles in application

e For high orders, storage is impossible

o Can make use of FErari decomposition to save calculation
e Could storage element matrices to save cycles

@ Partial assembly gives even finer control over tradeoffs
@ Also allows introduction of parallel costs (load balance, ...)
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Serial Performance
Homework 2

Consider the Gram-Schmidt Orthogonalization process. Starting with a
set of vectors {v;}, create a set of orthonormal vectors {n;}.

V4

vl
W:
n = HW2 where W2=V2—(I71-V2)n1 (9)
2|l
Wy
ne = where Wy, = v — n; - vg)n; 10
Tl = Vk— > (M- vi)n; (10)

j<k
What is
@ the balance factor 3 for this algorithm?
@ the bandwidth required to run at peak (B.q) On your computer?
© the maximum achievable flop rate (fy.x) ON your computer?

Extra Credit: Can this algorithm be improved?
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Serial Performance
Homework 3

Run SNES ex5 for a variety of solver and
preconditioner combinations. Plot the total number of
linear iterations against the problem size.

M. Knepley () PETSC GUCAS'10  148/318



Creating a Simple Mesh
Outline

0 Creating a Simple Mesh
@ Structured Meshes
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Creating a Simple Mesh

Configuring PETSc for Unstructured Meshes

-with-clanguage=cxx

o

@ —with-shared -with-dynamic

@ -download-f-blas-lapack —download-mpich
o

—download-boost —download-fiat
—download—-generator

@ -download-triangle —download-tetgen

@ -download-chaco —-download-parmetis
—download-zoltan

@ —with-sieve
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Creating a Simple Mesh

Multiple Mesh Types

\
v
Triangular E ‘ Tetrahedral
,, ’Y
Rectangular Pt Hexahedral
“\ /
\
- ;{gc;monumr 08 .“7 Dlsmacememrm)
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Creating a Simple Mesh
Cohesive Cells

Original Mesh Mesh with Cohesive Cell
1 3 5 1 37 5
0 2 4 0 26 4
1 33 5 1 3 377 5
o
..
0 22 4 0 2266 4

Exploded view of meshes
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Creating a Simple Mesh
Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
@ Demand complex mesh manipulation

o We allow specification of only fault vertices
o Must “sew” together on output

@ Use Lagrange multipliers to enforce constraints
e Forces illuminate physics
@ Allow different fault constitutive models

e Simplest is enforced slip
@ Now have fault constitutive models
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Creating a Simple Mesh
Mesh Paradigm

The Mesh interface also uses local callback functions
@ maps between global vec and local vec

@ Local vectors are combined into a Section object

When PETSc needs to evaluate the nonlinear residual F(x),
@ Each process evaluates the local residual for each element

@ PETSc assembles the global residual automatically
@ SectionComplete () generalizes DALocalToGlobal ()
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Creating a Simple Mesh Structured Meshes

Outline

e Creating a Simple Mesh
@ Structured Meshes
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Creating a Simple Mesh Structured Meshes

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
@ Structured grid interface
o Fixed simple topology
@ Supports stencils, communication, reordering
o Limited idea of operators

@ Nice for simple finite differences

The PETSc Mesh class is a topology interface.
@ Unstructured grid interface
o Arbitrary topology and element shape

@ Supports partitioning, distribution, and global orders
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Creating a Simple Mesh Structured Meshes

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
@ Supports multigrid
@ DMMG combines it with the MG preconditioner

@ Abstracts the logic of multilevel methods

The PETSc section class is a function interface.
@ Functions over unstructured grids
o Arbitrary layout of degrees of freedom

@ Support distribution and assembly
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Creating a Simple Mesh Structured Meshes

Code Update

Update to Revision 2
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Creating a Simple Mesh Structured Meshes

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s,
Im[], 1n[], DA =xda)
vrap: Specifies periodicity
@ DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, Or
DA_XYPERIODIC

—ype: Specifies stencil
@ DA_STENCIIL_BOX Of DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node

s: The stencil width
Im/n: Alternative array of local sizes
e Use PETSC_NULL for the default
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Creating a Simple Mesh Structured Meshes

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring
processes

. Local Node

Q Ghost Node
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Creating a Simple Mesh

DA Global Numberings

Structured Meshes

Proc 2 Proc 3 Proc 2 Proc 3
25 26 27|28 29 21 22 23|28 29
20 21 22|23 24 18 19 20 | 26 27
15 16 17 |18 19 15 16 17 |24 25
10 11 12 (13 14 6 7 8 |13 14
5 6 7|8 9 3 4 5 |11 12
0 1 2|1 3 4 0o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Natural numbering
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PETSc numbering
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Creating a Simple Mesh Structured Meshes

DA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20|26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5|11 12
o 1 2|3 X o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Local numbering
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Global numbering
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Creating a Simple Mesh Structured Meshes

Viewing the DA

@ make NP=1 EXTRA_ARGS="-da_view_draw —draw_pause -1" runbratu

@ make NP=1 EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -da_view_draw

—draw_pause -1" runbratu

@ make NP=4 EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -da_view_draw

—draw_pause —-1" runbratu
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Creating a Simple Mesh Common PETSc Usage

Outline

e Creating a Simple Mesh

@ Common PETSc Usage
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Creating a Simple Mesh Common PETSc Usage

Correctness Debugging

e Automatic generation of tracebacks
e Detecting memory corruption and leaks

e Optional user-defined error handlers
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Creating a Simple Mesh Common PETSc Usage

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ -on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —display khan.mcs.anl.gov:0.0
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Creating a Simple Mesh Common PETSc Usage

Debugging Tips

@ Put a breakpoint in PetscError () to catch errors as they occur
@ PETSc tracks memory overwrites at both ends of arrays

e The CHKMEMQ macro causes a check of all allocated memory
e Track memory overwrites by bracketing them with CHKMEMQ

@ PETSc checks for leaked memory

@ Use PetscMalloc () and PetscFree () for all allocation
@ Print unfreed memory on PetscFinalize () with -malloc_dump

@ Simply the best tool today is valgrind

e It checks memory access, cache performance, memory usage, etc.
(]
@ Need -trace-children=yes when running under MPI
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Creating a Simple Mesh Common PETSc Usage

Memory Debugging

We can check for unfreed memory using:

make EXTRA_ARGS="-malloc_dump" runbratu
There is a leak!

All options can be seen using:

make EXTRA_ARGS="-help" runbratu
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Creating a Simple Mesh Ci PETSc Usage

Code Update

Update to Revision 3
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Creating a Simple Mesh Common PETSc Usage

Command Line Processing

@ Check for an option
@ PetscOptionsHasName ()
@ Retrieve a value
@ PetscOptionsGetInt (), PetscOptionsGetIntArray ()
@ Set avalue
@ PetscOptionsSetValue ()
@ Check for unused options
@ -options_left
@ Clear, alias, reject, etc.
@ Modern form uses

@ PetscOptionsBegin (), PetscOptionsEnd ()
@ PetscOptionsInt (),PetscOptionsReal ()
o Integrates with —help
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Creating a Simple Mesh Ci PETSc Usage

Code Update

Update to Revision 6
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Creating a Simple Mesh Common PETSc Usage

Performance Debugging

@ PETSc has integrated profiling
@ Option —-1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage
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Creating a Simple Mesh Common PETSc Usage

Using Stages and Events

@ Use PetsclLogStageRegister () to create a new stage
e Stages are identifier by an integer handle
@ Use PetsclLogStagePush/Pop () to manage stages
e Stages may be nested, but will not aggregate in a nested fashion
@ Use PetsclLogEventRegister () to create a new stage
e Events also have an associated class
@ Use PetscLogEventBegin/End () to manage events

e Events may also be nested and will aggregate in a nested fashion
e Canuse PetscLogFlops () to log user flops
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Creating a Simple Mesh Common PETSc Usage

Adding A Logging Stage

int stageNum;

PetsclLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

Code to Monitor

PetscLogStagePop () ;
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Creating a Simple Mesh Common PETSc Usage

Adding A Logging Event

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin (USER_EVENT,0,0,0,0);

Code to Monitor

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT,0,0,0,0);
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Creating a Simple Mesh Common PETSc Usage

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type
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Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
Dynamically adding many nonzeros
e requires additional memory allocations
@ requires copies
e can kill performance
Memory preallocation provides
o the freedom of dynamic data structures
@ good performance
Easiest solution is to replicate the assembly code
@ Remove computation, but preserve the indexing code
o Store set of columns for each row
Call preallocation rourines for all datatypes

@ MatSegAIJSetPreallocation ()
@ MatMPIAIJSetPreallocation ()
@ Only the relevant data will be used
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Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Sequential Sparse Matrices

MatSegAIJPreallocation(Mat A, int nz, int nnz[])
nz: expected number of nonzeros in any row
nz(i): expected number of nonzeros in row i

.\.,
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Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

ParallelSparseMatrix

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

. diagonal blocks

. offdiagonal blocks

proc 0

proc 1
proc 2

proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A, int =*start,int =xend)
start: first locally owned row of global matrix

GUCAS '10 175/318



Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Parallel Sparse Matrices

MatMPIAIJPreallocation (Mat A, int dnz, int dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
nz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
nz(i): expected number of nonzeros in row i in the offdiagonal portion
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Creating a Simple Mesh Common PETSc Usage

Matrix Memory Preallocation

Verifying Preallocation

@ Use runtime option —info
@ Output:

[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used

[proc #] Number of mallocs during MatSetValues( )
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unneeded, 250 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize: PETSc successfully ended!
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Creating a Simple Mesh PETSc Design

Outline

e Creating a Simple Mesh

@ PETSc Design
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Creating a Simple Mesh PETSc Design

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation
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Creating a Simple Mesh PETSc Design

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
e Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec %*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VvecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process

M. Knepley () PETSC GUCAS’10  178/318



Creating a Simple Mesh PETSc Design

Basic PetscObject Usage

Every object in PETSc supports a basic interface

Function | Operation
Create () | create the object
Get/SetName () | name the object
Get/SetType () | setthe implementation type
Get/SetOptionsPrefix () | set the prefix for all options
SetFromOptions () | customize object from the command lin
SetUp () | preform other initialization
View () | view the object
Destroy () | cleanup object allocation

Also, all objects support the —help option.
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Creating a Simple Mesh PETSc Design

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.
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Creating a Simple Mesh Unstructured Meshes

Outline

e Creating a Simple Mesh

@ Unstructured Meshes
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Creating a Simple Mesh Unstructured Meshes

Creating the Mesh

@ Generic object

@ MeshCreate ()

@ MeshSetMesh ()
@ File input

@ MeshCreateExodus ()

@ MeshCreateDolfin ()

@ MeshCreatePyLith ()
@ Generation

@ MeshGenerate ()

@ MeshRefine (), MeshCoarsen ()

@ ALE: :MeshBuilder<>::createSquareBoundary ()
@ Representation

@ ALE::SieveBuilder<>::buildTopology ()

@ ALE: :SieveBuilder<>::buildCoordinates ()
@ Partitioning and Distribution

@ MeshDistribute ()

@ MeshDistributeByFace ()
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Creating a Simple Mesh Unstructured Meshes

Code Update

Update to Revision 9
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Creating a Simple Mesh Unstructured Meshes

Viewing the Mesh

@ make NP=1 EXTRA_ARGS="-structured 0 -mesh_view_vtk" runbratu
@ mayavi2 -d bratu.vtk -m Surfaces
@ make NP=4 EXTRA_ARGS="-structured 0 -mesh_view_vtk" runbratu

@ Viewable using Mayavi or Paraview
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Creating a Simple Mesh Unstructured Meshes

Refining the Mesh

@ make NP=1 EXTRA_ARGS="-structured 0 —-generate -mesh_view_vtk"

runbratu

@ make NP=1 EXTRA_ARGS="-structured 0 —generate -refinement_limit

0.0625 -mesh_view_vtk" runbratu

@ make NP=4 EXTRA_ARGS="-structured 0 —generate -refinement_limit

0.0625 -mesh_view_vtk" runbratu
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Creating a Simple Mesh Unstructured Meshes

Parallel Sieves

@ Sieves use names, not numberings

e Allows independent adaptation
e Demanding a global numbering hurts memory scaling
o Numberings can be constructed on demand

@ Overlaps relate names on different processes
@ An Overlap can be encoded by a Sieve

@ Distribution of a section pushes forward along the Overlap
e Sieves are distributed as “cone” sections
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Creating a Simple Mesh Unstructured Meshes

Overlap for Distribution

Process0

@ The send overlap is above the receive overlap
@ Green points are remote process ranks

@ Arrow labels indicate remote i rocess names
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Creating a Simple Mesh 3D Meshes

Outline

e Creating a Simple Mesh

@ 3D Meshes
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Creating a Simple Mesh 3D Meshes

Code Update

Update to Revision 12
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Creating a Simple Mesh 3D Meshes

Viewing the 3d Mesh

@ make NP=1 EXTRA_ARGS="-dim 3 -da_view_draw -draw_pause —-1"

runbratu

@ make NP=4 EXTRA_ARGS="-dim 3 -da_grid_x 5 -da_grid_y 5 -da_grid_z

5 -da_view_draw —-draw_pause —-1" runbratu

@ make NP=1 EXTRA_ARGS="-dim 3 -structured 0 -generate

-mesh_view_vtk" runbratu

@ mayavi2 -d bratu.vtk -f ExtractEdges -m Surface

@ make NP=4 EXTRA_ARGS="-dim 3 -structured 0 -generate

-refinement_limit 0.01 -mesh_view_vtk" runbratu
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Defining a Function

Outline
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Defining a Function Vectors

Outline

@ Defining a Function
@ Vectors
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Defining a Function Vectors

A DA is more than a Mesh

A DA contains topology, geometry, and an implicit Q1 discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)
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Defining a Function Vectors

DA Vectors

@ The DA object contains only layout (topology) information
o All field data is contained in PETSc vecs
@ Global vectors are parallel

e Each process stores a unique local portion
@ DACreateGlobalVector (DA da, Vec =*gvec)

@ Local vectors are sequential (and usually temporary)

e Each process stores its local portion plus ghost values
@ DACreatelLocalVector (DA da, Vec =*lvec)
e includes ghost values!
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Defining a Function Vectors

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DAGlobalToLocalBegin (da, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@ DAGlobalToLocalEnd(da, gvec, mode, lvec)
@ Finishes the communication

The process can be reversed with DAL.ocalToGlobal ().
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Defining a Function Vectors

DA Local Function

The user provided function which calculates the nonlinear residual in
2D has signature

PetscErrorCode (x1lfunc) (DALocalInfo =*info,
PetscScalar *+*x, PetscScalar x*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetTLocalFunction ()

The local DA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)
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Defining a Function Vectors

DA Stencils

Both the box stencil and star stencil are available.

proc 10 proc 10

proc 0 proc 1 proc 0 proc 1

Box Stencil Star Stencil
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Defining a Function Vectors

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n,
MatStencil idxn[], wvalues[], mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col
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Code Update

Update to Revision 15
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Defining a Function Vectors

Structured Functions

@ Functions takes values at the DA vertices
@ Used as approximations to functions on the continuous domain
e Values are really coefficients of linear basis

@ User only constructs the local portion

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw —-draw_pause -1"

runbratu
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Defining a Function Sections

Outline

@ Defining a Function
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M. Knepley () PETSCc GUCAS’10  201/318



Defining a Function Sections

Sections

Sections associate data to submeshes

@ Name comes from section of a fiber bundle
o Generalizes linear algebra paradigm

@ Define restrict (),update ()

@ Define complete ()
@ Assembly routines take a Sieve and several Sections
o Thisis called a Bundle
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Defining a Function Sections

Section Types

Section can contain arbitrary values
@ C interface has two value types

@ SectionReal
@ SectionInt

@ C++ interface is templated over value type

Section can have arbitrary layout
@ C interface has default layouts

@ MeshGetVertexSectionReal ()
@ MeshGetCellSectionReal ()

@ C++ interface can place dof on any Mesh entity (Sieve point)

@ Mesh::setupField () allows layout on a hierarchy
o Itis parametrized by Discretization and
BoundaryCondition
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Code Update

Update to Revision 18
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Defining a Function Sections

Viewing the Section

@ nmake EXTRA_ARGS="-run test -structured 0 -vec_view_vtk" runbratu
@ Produces linear.vtk and cos.vtk
@ Viewable with MayaVi, exactly as with the mesh.
@ make NP=2 EXTRA_ARGS="-run test -structured 0 -vec_view_vtk
—generate -refinement_limit 0.003125" runbratu

e Use mayavi2 -d cos.vtk -f WarpScalar -m Surface
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Discretization

Outline
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Discretization Finite Elements

Outline

e Discretization
@ Finite Elements
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Discretization Finite Elements

Weak Forms

A weak form is the pairing of

a function with an element of the dual space.

@ Produces a number (by definition of the dual)

@ Can be viewed as a “function” of the dual vector
@ Used to define finite element solutions

@ Require a dual space and integration rules

For example, for f € V, we have the weak form

/gb(x)f(x)dx peV*
Q
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Discretization Finite Elements

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
User can build arbitrary elements specifying the Ciarlet triple (K, P, P")

FIAT is part of the FENniCS project, as is the PETSc Sieve module
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Discretization Finite Elements

We are interested in nonlinear maps F : R” — R".
@ Can contain the action of differential operators

@ Encapsulated in Rhs_* () methods
@ Will later be used to form the residual of our system
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Code Update

Update to Revision 21
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Discretization Finite Elements

FIAT Integration

The quadrature. fiat file contains:
@ An element (usually a family and degree) defined by FIAT
@ A quadrature rule

Itis run
@ automatically by make, or
@ independently by the user

It can take arguments
@ -element_family and —element_order, Or
@ make takes variables ELEMENT and ORDER

Then make produces bratu_guadrature.h with:
@ Quadrature points and weights
@ Basis function and derivative evaluations at the quadrature points
@ Integration against dual basis functions over the cell
@ Local dofs for Section allocation
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Discretization Finite Elements

Boundary Conditions

Dirichlet conditions may be expressed as
ur=g

and implemented by constraints on dofs in a Section
@ The user provides a function.

Neumann conditions may be expressed as
Vu- h|r =h

and implemented by explicit integration along the boundary
@ The user provides a weak form.
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Discretization Finite Elements

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Arr Arr ur fr

However ur is known, so we may reduce this to
Ajup = f — Arrur

We will show that our scheme automatically constructs this extra term.
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Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly
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Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

u/s513|7
f5/0 00
Restrict
5
1
3
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Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1 /3|7

f 5000
Compute
0.5/0.0+0.5 | 5 1
0.00.5.0.5 |1 | = |-1
-0.5-0.51.0| | 3 o
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Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

us5/1 37
f/ 5000
Compute
A Ay || 5 1
1| = |-1 This piece contains
i IR I e B rhs interior values
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Discretization Finite Elements

Assembly with Dirichlet Conditions

Residual Assembly

us5|(1 /3|7
f 5-100
Update
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Discretization Finite Elements

Dirichlet Conditions (Essential BC)

@ Explicit limitation of the approximation space
@ ldea:
o Maintain the same FEM interface (restrict (), update())
o Allow direct access to reduced problem (contiguous storage)
@ Implementation
@ Ignored by size () and update (), but restrict () works
normally
o Use updateBC () to define the boundary values
o Use updatenll () to define both boundary and regular values
e Points have a negative fiber dimension or
o Dof are specified as constrained
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Discretization Finite Elements

Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

o Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints
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Discretization Finite Elements

Dual Basis Application

We would like the action of a dual basis vector (functional)

</\/,-,f>:/ Ni(x)F(x)dV
ref

@ Projection onto P
@ Code is generated from FIAT specification
e Python code generation package inside PETSc

@ Common interface for all elements
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Discretization Finite Elements

Section Assembly

First we do local operations:
@ Loop over cells
@ Compute cell geometry

@ Integrate each basis function to produce an element vector
@ Call sectionUpdateAdd ()
o Note that this updates the closure of the cell
Then we do global operations:
@ SectionComplete () exchanges data across overlap
o C just adds nonlocal values (C++ is flexible)

@ C++ also allows completion over arbitrary overlaps
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Discretization Finite Elements

Viewing a Mesh Weak Form

@ We use finite elements and a Galerkin formulation
e We calculate the residual F(u) = —Au —f
o Correct basis/derivatives table chosen by setupQuadrature ()
e Could substitute exact integrals for quadrature

@ make NP=2 EXTRA_ARGS="-run test -structured 0 -vec_view_vtk
—generate -refinement_limit 0.003125" runbratu
@ make EXTRA_ARGS="-run test -dim 3 -structured 0 -generate

-vec_view_vtk" runbratu

M. Knepley () GUCAS'10  220/318



Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
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Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions
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Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)
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Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals @ Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies
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Discretization Finite Elements

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals @ Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)
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Discretization Finite Differences

Outline

e Discretization

@ Finite Differences
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Discretization Finite Differences

Difference Approximations

With finite differences, we approximate differential operators with
difference quotients,

ou(x)  UOCEh)—u(x—h)
Pu(X) u(xrh)—2u(x)+u(x—h)
Ix2 ~ h2

The important property for the approximation is consistency, meaning

du(x) u(x+h)—u(x—h) _

/Llno ox 2h 0
and in fact,
2 _ _
9°u(x) u(x+h)—2u(x) +u(x —h) € O(?)

ox? h?
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Code Update

Update to Revision 24
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Discretization Finite Differences

Viewing FD Operator Actions

We cannot currently visualize the 3D results,
@ make EXTRA_ARGS="-run test -vec_view_draw -draw_pause —1" runbratu

@ make EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-vec_view_draw -draw_pause —-1" runbratu
@ make EXTRA_ARGS="-run test -dim 3 -vec_view" runbratu

but can check the ASCII output if necessary.
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Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu
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Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu
@ Spawns one debugger window per process

M. Knepley () PETSC GUCAS '10

226 /318



Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"

debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates
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Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:
@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"
debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates
@ Fix by using a local ghosted vector
e Update to Revision 26
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Discretization Finite Differences

Debugging Assembly

On two processes, | get a SEGV!

So we try running with:

@ make NP=2 EXTRA_ARGS="-run test -vec_view_draw -draw_pause -1"
debugbratu
@ Spawns one debugger window per process
@ SEGV on access to ghost coordinates
@ Fix by using a local ghosted vector
e Update to Revision 26
@ Notice

e we already use ghosted assembly (completion) for FEM
e FD does not need ghosted assembly
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Discretization Evaluating the

Outline

e Discretization

@ Evaluating the Error
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Discretization Evaluating the Error

Representations of the Error

@ A single number, the norm itself
@ A number per element, the element-wise norm

@ Injection into the finite element space

e= Z eidi(X)

o We calculate e; by least-squares projection into P
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Discretization Evaluating the Error

Interpolation Pitfalls

Comparing solutions on different meshes can be problematic.

@ Picture our solutions as functions defined over the entire domain
e For FEM, E/(x) = Zi U,‘(;S,'(X)
@ After interpolation, the interpolant might not be the same function
@ We often want to preserve thermodynamic bulk properties
o Energy, stress energy, incompressibility, ...
@ Can constrain interpolation to preserve desirable quantities
e Usually produces a saddlepoint system
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Discretization Evaluating the Error

Calculating the L, Error

We begin with a continuum field u(x) and an FEM approximation
a(x) = bidi(x)
i

The FE theory predicts a convergence rate for the quantity

HU—ElH%:Z/TdA(U—H)Z (11)
T

2
=3 wglJ] (u(q) -3 0j¢j(Q)) (12)
T q j

The estimate for linear elements is
|u— Tp|| < Chlul|
GUCAS '10 230/318
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Discretization Evaluating the Error

Code Update

Update to Revision 29
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Discretization Evaluating the Error

Calculating the Error

@ Added CreateProblem()

o Define the global section
e Setup exact solution and boundary conditions

@ Added CreateExactSolution () to project the solution function

@ Added CheckError () to form the error norm

o Finite differences calculates a pointwise error
o Finite elements calculates a normwise error

@ Added CheckResidual () which uses our previous functionality
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Discretization Evaluating the Error

Checking the Error

@ make NP=2 EXTRA_ARGS="-run
runbratu

@ make EXTRA_ARGS="-run full

@ make EXTRA_ARGS="-run full

@ make NP=2 EXTRA_ARGS="-run

@ make EXTRA_ARGS="-run full

-refinement_limit 0.03125"
@ make EXTRA_ARGS="-run full

full -da_grid_x 10 -da_grid_y 10"

—-dim 3" runbratu

—-structured 0 -generate" runbratu

full -structured 0 —-generate" runbratu
—-structured 0 -generate

runbratu

-dim 3 -structured 0 -generate

-refinement_limit 0.01" runbratu
Notice that the FE error does not always vanish, since we are using
information across the entire element. We can enrich our FE space:

@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-run full
-refinement_limit 0.03125"
@ make EXTRA_ARGS="-run full

-structured 0 -generate
runbratu

—-dim 3 -structured 0 —-generate

—-refinement_limit 0.01" runbratu
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Defining an Operator

Outline
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Defining an Operator
DA Local Jacobian

The user provided function which calculates the Jacobian in 2D has
signature

PetscErrorCode (xlfunc) (DALocalInfo *info, PetscScalar

*xx, Mat J, void #*ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalFunction ()

The local DA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJdacobian, ctx)
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Code Update

Update to Revision 32
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Defining an Operator
Operators

@ Evaluate only the local portion
@ No nice local array form without copies

@ Use MatSetValuesStencil () to convert (i, j, k) to indices

@ make NP=2 EXTRA_ARGS="-run test —da_grid_x 10 -da_grid_y 10

-mat_view_draw -draw_pause -1" runbratu

@ make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

—da_grid_z 5 -mat_view_draw -draw_pause —-1" runbratu
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Defining an Operator
Mesh Operators

We evaluate the local portion just as with functions
Notice we use J~' to convert derivatives

Currently updateOperator () uses MatSetValues ()
@ We need to call MatAssembleyBegin/End ()
@ We should properly have OperatorComplete ()
o Also requires a Section, for layout, and a global variable order for
PETSc index conversion
make EXTRA_ARGS="-run test -structured 0 -mat_view_draw

—draw_pause -1 —generate" runbratu

make NP=2 EXTRA_ARGS="-run test -structured 0 —-mat_view_draw

—-draw_pause -1 -generate -refinement_limit 0.03125" runbratu

make EXTRA_ARGS="-run test -dim 3 -structured 0 -mat_view_draw

—-draw_pause -1 —-generate" runbratu
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Solving Systems of Equations

Outline
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Solving Systems of Equations Linear Equations

Outline

@ Solving Systems of Equations
@ Linear Equations
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Solving Systems of Equations Linear Equations

Flow Control for a PETSc Application

Main Routine

1

Nonlinear Solvers (SNES) ‘

+

Linear Solvers (KSP) ‘

. PETSc

Preconditioners (PC) ‘
Y

Application Function Jacobian
Initialization Evalua Evaluation
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Solving Systems of Equations Linear Equations

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
@ PETSc never sees application data
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Solving Systems of Equations Linear Equations

SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void *ctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants
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Solving Systems of Equations Linear Equations

SNES Jacobian

The user provided function which calculates the Jacobian has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat =J,Mat
*M, MatStructure xflag,void #*ctx)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants
@ Possible MatStructure values are:
o SAME_NONZERO_PATTERN
o DIFFERENT_NONZERO_PATTERN
Alternatively, you can use
@ a builtin sparse finite difference approximation
@ automatic differentiation (ADIC/ADIFOR)

M. Knepley () PETSC GUCAS’10  244/318



Solving Systems of Equations Linear Equations

SNES Variants

e Line search strategies
e Trust region approaches
e Pseudo-transient continuation

o Matrix-free variants
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Solving Systems of Equations Linear Equations

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
o Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

o Uses preconditioning matrix from SNESSet Jacobian ()
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Solving Systems of Equations Linear Equations

Code Update

Update to Revision 35

M. Knepley () PETSC GUCAS'10  247/318



Solving Systems of Equations Linear Equations

DMMG Integration with SNES

@ DMMG supplies global residual and Jacobian to SNES

o User supplies local version to DMMG
e The Rhs_»* () and Jac_x () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using DMMGSetNullSpace ()
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Solving Systems of Equations Linear Equations

DM Interface

@ Allocation and layout
@ createglobalvector (DM, Vec )
@ createlocalvector (DM, Vec x)
@ getmatrix (DM, MatType, Mat *)
@ Intergrid transfer
@ getinterpolation (DM, DM, Mat *, Vec )
@ getaggregates (DM, DM, Mat x)
@ getinjection (DM, DM, VecScatter x*)
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Solving Systems of Equations Linear Equations

DM Interface

@ Grid creation
@ refine (DM, MPI_Comm, DM x)
@ coarsen (DM, MPI_Comm, DM x*)
@ refinehierarchy (DM, PetscInt, DM *x)
@ coarsenhierarchy (DM, PetscInt, DM sx)
@ Mapping (completion)
@ globaltolocalbegin/end (DM, Vec, InsertMode, Vec)
@ localtoglobal (DM, Vec, InsertMode, Vec)
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Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P;

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk" runbratu

@ The linear basis cannot represent the quadratic solution exactly

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.0078125 -ksp_monitor -snes_monitor -vec_view_vtk -ksp_rtol
1.0e-9" runbratu

@ The error decreases with h

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.0078125 -ksp_monitor —-snes_monitor -vec_view_vtk -ksp_rtol
1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.0078125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9

-vec_view_vtk" runbratu

@ Notice that the preconditioner is weaker in parallel
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Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P;

default
2.00
B - -

1.71

1.43
1.14
0.857

0.571

0.286
0.00
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Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: P,

@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
—ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Here we get the exact solution

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit 0.03125
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Notice that the solution is only as accurate as the KSP tolerance

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.03125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit

0.03125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

Again the preconditioner is weaker in parallel

Currently we have no system for visualizing higher order solutions
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Solving Systems of Equations Linear Equations

Solving the Dirichlet Problem: FD

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
-vec_view_draw -draw_pause —-1" runbratu

@ Notice that we converge at the vertices, despite the quadratic
solution

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
—-da_grid _x 40 -da_grid_ y 40 -vec_view_draw -draw_pause —-1"
runbratu

@ make NP=2 EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
—-da_grid_x 40 -da_grid_y 40 -vec_view_draw -draw_pause -1"
runbratu

@ Again the preconditioner is weaker in parallel

@ make NP=2 EXTRA_ARGS="-dim 3 -snes_monitor -ksp_monitor -ksp_rtol
1.0e-9 -da_grid_x 10 -da_grid_y 10 -da_grid_z 10" runbratu
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Solving Systems of Equations Linear Equations

Solving the Neumann Problem: P;

@ make EXTRA_ARGS="-structured 0 —-generate -bc_type neumann
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 —generate -bc_type neumann
—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -vec_view_vtk"
runbratu

@ make EXTRA_ARGS="-structured 0 —-generate -refinement_limit 0.00125
-bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9
-vec_view_vtk" runbratu

@ The error decreases with h

@ make NP=2 EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.00125 -bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol

1.0e-9 -vec_view_vtk" runbratu
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Solving Systems of Equations Linear Equations

Solving the Neumann Problem: P;

@ bratu_quadrature.h; make ORDER=3

@ make EXTRA_ARGS="-structured 0 —generate -bc_type neumann

—snes_monitor -ksp_monitor -ksp_rtol 1.0e-9" runbratu

@ Here we get the exact solution

@ make EXTRA_ARGS="-structured 0 —generate -refinement_limit 0.00125
-bc_type neumann -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9"
runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —generate -refinement_limit
0.00125 -bc_type neumann -snes_monitor —-ksp_monitor -ksp_rtol

1.0e-9" runbratu
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Solving Systems of Equations Nonlinear Equations

Outline

@ Solving Systems of Equations

@ Nonlinear Equations
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Solving Systems of Equations Nonlinear Equations

The Bratu Problem

Au+Xe!=f in Q (13)
u=g on 0N (14)

@ Also called the Solid-Fuel Ignition equation
@ Can be treated as a nonlinear eigenvalue problem
@ Has two solution branches until A = 6.28
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Solving Systems of Equations Nonlinear Equations

Nonlinear Equations

We will have to alter
@ The residual calculation, Rhs_ * ()
@ The Jacobian calculation, Jac_ * ()

@ The forcing function to match our chosen solution,
CreateProblem()
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Solving Systems of Equations Nonlinear Equations

Code Update

Update to Revision 37/
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Solving Systems of Equati Nonlinear Equations

Solving the Bratu Problem: FD

@ make EXTRA_ARGS="-snes_monitor -ksp_monitor -ksp_rtol 1.0e-9

-vec_view_draw -draw_pause -1 -lambda 0.4" runbratu

@ Notice that we converge at the vertices, despite the quadratic
solution

@ make NP=2 EXTRA_ARGS="-da_grid_x 40 -da_grid_y 40 -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -vec_view_draw -draw_pause -1
—lambda 6.28" runbratu

@ Notice the problem is more nonlinear near the bifurcation

@ make NP=2 EXTRA_ARGS="-dim 3 -da_grid_x 10 -da_grid_y 10
—da_grid_z 10 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda

6.28" runbratu
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Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

M. Knepley () PETSC GUCAS'10  260/318



Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!
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Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!

@ Residual is zero, so the Jacobian could be wrong (try FD)

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_mf" runbratu
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Solving Systems of Equations Nonlinear Equations

Finding Problems

We switch to quadratic elements so that our FE solution will be exact
@ rm bratu_quadrature.h; make ORDER=2

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

We do not converge!

@ Residual is zero, so the Jacobian could be wrong (try FD)

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_mf" runbratu

It works!
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Solving Systems of Equations Nonlinear Equations

Finding Problems

Investigating the Jacobian directly,

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_max_it 3

-mat_view" runbratu

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—-ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_fd -mat_view"

runbratu
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Solving Systems of Equations Nonlinear Equations

Finding Problems

Investigating the Jacobian directly,

@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_max_it 3

-mat_view" runbratu

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—-ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4 -snes_fd -mat_view"

runbratu

@ Entries are too big, we forgot to initialize the matrix
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Solving Systems of Equations Nonlinear Equations

Code Update

Update to Revision 39
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Solving Systems of Equations Nonlinear Equations

Solving the Bratu Problem: P-

@ make EXTRA_ARGS="-structured 0 -generate -snes_monitor

—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu
@ make EXTRA_ARGS="-structured 0 —generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate —-snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu
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Solving Systems of Equations Nonlinear Equations

Solving the Bratu Problem: P;

@ make EXTRA_ARGS="-structured 0 —generate —-snes_monitor
—ksp_monitor -ksp_rtol 1.0e-9 -lambda 0.4" runbratu

@ make EXTRA_ARGS="-structured 0 —-generate -snes_monitor
~ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28" runbratu

@ make NP=2 EXTRA_ARGS="-structured 0 —-generate -refinement_limit
0.00125 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu

@ make EXTRA_ARGS="-dim 3 -structured 0 -generate -refinement_limit
0.01 -snes_monitor -ksp_monitor -ksp_rtol 1.0e-9 -lambda 6.28"

runbratu
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Optimal Solvers

Outline
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What Is Optimal?

| will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
@ hierarchy generation
@ assembly on subdomains
@ restriction and prolongation
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Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
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Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

M. Knepley () PETSC GUCAS'10  266/318



Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
©@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary
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Optimal Solvers
Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface
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Optimal Solvers

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time
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Optimal Solvers
Multigrid

Multigrid is optimal in that is does O(N) work for ||r|| < e

@ Brandt, Briggs, Chan & Smith
@ Constant work per level

e Sufficiently strong solver
o Need a constant factor decrease in the residual

@ Constant factor decrease in dof
e Log number of levels
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Optimal Solvers
Linear Convergence

Convergence to ||r|| < 1079||b|| using GMRES(30)/ILU

Elements | lterations
128 10
256 17
512 24

1024 34
2048 67
4096 116
8192 167
16384 329
32768 558
65536 920
131072 1730
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Optimal Solvers
Linear Convergence

Convergence to ||r|| < 1079||b|| using GMRES(30)/MG

Elements | lterations
128
256
512

1024
2048
4096
8192
16384
32768
65536
131072

ONONONOONONO
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Optimal Solvers DMMG
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Optimal Solvers DMMG

DMMG Paradigm

The DMMG interface uses the local DA/Mesh callback functions to
@ assemble global functions/operators from local pieces

@ assemble functions/operators on coarse grids
DMMG relies upon DA/Mesh (DM) to organize the
@ assembly

@ coarsening/refinement
while it organizes the control flow for the multilevel solve.
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Optimal Solvers DMMG

DMMG Integration with SNES

@ DMMG supplies global residual and Jacobian to SNES

o User supplies local version to DMMG
e The Rhs_»* () and Jac_x () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using DMMGSetNullSpace ()
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Optimal Solvers Structured MG
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Optimal Solvers Structured MG

Multigrid with DMMG

Allows multigrid with some simple command line options

—dmmg_nlevels
-pc_mg_type, -pc_mg_cycle_type
-mg_levels_1_ksp_type, -mg_levels_1_pc_type

-mg_coarse_ksp_type, -mg_coarse_pc_type

—dmmg_view

Interface also works with 3rd party packages, like ML from Sandia
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Optimal Solvers Structured MG

Solving with Structured Multigrid

@ make EXTRA_ARGS="-dmmg_nlevels 2 -dmmg_view —-snes_monitor

—ksp_monitor -ksp_rtol 1le-9" runbratu
@ Notice that the solver on each level can be customized
@ number of KSP iterations is approximately constant

@ make EXTRA_ARGS="-da_grid_x 10 -da_grid_y 10 -dmmg_nlevels 8

—dmmg_view —-snes_monitor -ksp_monitor -ksp_rtol 1le-9" runbratu

o Notice that there are over 1 million unknowns!
@ Coarsening is not currently implemented
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Optimal Solvers Unstructured MG

Outline

@ Optimal Solvers

@ Unstructured MG
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Optimal Solvers Unstructured MG

Why not use AMG?
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA

@ Problems with vector character
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
@ BoomerAMG, ML, SAMG, ASA

@ Problems with vector character
@ Geometric aspects to the problem
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG
o BoomerAMG, ML, SAMG, ASA
@ Problems with vector character
@ Geometric aspects to the problem
o Material property variation
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Optimal Solvers Unstructured MG

Why not use AMG?

@ Of course we will try AMG

@ BoomerAMG, ML, SAMG, ASA
@ Problems with vector character
@ Geometric aspects to the problem

o Material property variation
o Faults
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Coarsening

Optimal Solvers Unstructured MG

M. Knepley ()

@ Users want to control the
mesh

@ Developed efficient,
topological coarsening

e Miller, Talmor, Teng
algorithm

@ Provably well-shaped
hierarchy

PETSc GUCAS '10
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Optimal Solvers Unstructured MG

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:
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uniform refinement may fail to eliminate error

L2 Error

M. Knepley ()

Reentrant Cormner Error

T
Uniform Pacman s

Graded Pacman s

1000

10000 100000

Mesh Size (Vertices)

PETSc
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Optimal Solvers Unstructured MG

Geometric Multigrid

PRI
<]
KSSORI

e We allow the user to i
refine for fidelity Bia

@ Coarse grids are created
automatically

@ Could make use of AMG
interpolation schemes

M. Knepley () PETSc GUCAS'10  281/318



Optimal Solvers Unstructured MG

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale
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Optimal Solvers Unstructured MG

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

@ Each M satisfies the quasi-uniformity condition:

Cihx < hk < Copi

@ hy is the length-scale (longest edge) of any cell K
@ hy is the maximum length-scale in the mesh M
e pk is the diameter of the inscribed ball in K
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1

M. Knepley () PETSCc GUCAS’10  283/318



Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

%

Simple Coarsening
@ Compute a spacing function f for the mesh (Koebe)
© Scale f by a factor C > 1
© Choose a maximal independent set of vertices for new f
© Retriangulate

M. Knepley () PETSC GUCAS '10
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first
© Must choose boundary vertices first (and protect boundary)
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Optimal Solvers Unstructured MG

Miller-Talmor-Teng Algorithm

- 18- 15

Caveats
@ Must generate coarsest grid in hierarchy first
© Must choose boundary vertices first (and protect boundary)
© Must account for boundary geometry
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Optimal Solvers Unstructured MG

Function Based Coarsening

@ (Miller, Talmor, Teng; 1997)
@ triangulated planar graphs = disk-packings (Koebe; 1934)
@ define a spacing function S() over the vertices

@ obvious one: S(v) = w
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Optimal Solvers Unstructured MG

Function Based Coarsening

@ pick a subset of the vertices such that 5(S(v) + S(w)) > dist(v, w)
e forallv,w e M, with 8 > 1

@ dimension independent

@ provides guarantees on the size/quality of the resulting meshes
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

include a vertex in the new mesh

remove colliding adjacent vertices from the mesh
remesh links of removed vertices

repeat until no vertices are removed.
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
@ repeat until no vertices are removed.
@ Eventually we have that

o every vertex is either included or removed
e bounded degree mesh = O(n) time
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Optimal Solvers Unstructured MG

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh

e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

@ repeat until no vertices are removed.

@ Eventually we have that

o every vertex is either included or removed
e bounded degree mesh = O(n) time

@ Remeshing may be performed either during or after coarsening

@ local Delaunay remeshing can be done in 2D and 3D
o faster to connect edges and remesh later
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Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
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Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
@ connectivity graph induced by limiting sieve depth
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Optimal Solvers Unstructured MG

Implementation in Sieve

Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v

@ vertex link: closure(star(v)) \ star(closure(v))

@ connectivity graph induced by limiting sieve depth

@ remeshing can be handled as local modifications on the sieve
@ meshing operations, such as cone construction easy
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Optimal Solvers Unstructured MG

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain
accuracy

@ Coarsening preserves accuracy in MG without user intervention
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Optimal Solvers Unstructured MG

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain

accuracy
@ Coarsening preserves accuracy in MG without user intervention

Reentrant Corner Error
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Optimal Solvers Unstructured MG

Reentrant Problems

Exact Solution for reentrant problem: u(x, y) = rgsin(ge)

-

%
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Optimal Solvers

Reentrant Problems

rsin(6)

y)=

bl

Exact Solution for reentrant problem: u(x

288/318

GUCAS '10

PETSc

M. Knepley ()



Optimal Solvers Unstructured MG

GMG Performance

Linear solver iterates are constant as system size increases:

KSP Iterates on Reentrant Domains
10 —— e e

L p—
Pacman e

KSP lterates

0 L i il — | L — i
1000 10000 100000 le+06

Mesh Size (Vertices)
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Optimal Solvers Unstructured MG

GMG Performance

Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains
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Optimal Solvers Unstructured MG

3D Test Problem

@ Reentrant corner

e —Au=f

@ f(x,y,z)=3sin(x+y+2)

@ Exact Solution: u(x,y,z) =sin(x +y + z)
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Optimal Solvers Unstructured MG

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains
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Optimal Solvers Unstructured MG

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains
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Optimal Solvers Unstructured MG

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, 5 = 1.45

level | cells | vertices iR max % | min(h) | max. overlap
0 || 19927 10149 | 0.020451 | 4.134135 | 0.001305 -
1 5297 2731 | 0.016971 | 4.435928 | 0.002094 23
2 3028 1572 | 0.014506 | 4.295703 | 0.002603 14
3 1628 856 | 0.014797 | 5.295322 | 0.003339 14
4 863 464 | 0.011375 | 6.403574 | 0.003339 14
5 449 250 | 0.022317 | 6.330512 | 0.007979 13
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Optimal Solvers Unstructured MG

Unstructured Meshes

@ Same DMMG options as the structured case
@ Mesh refinement

o Ruppert algorithm in Triangle and TetGen
@ Mesh coarsening

o Talmor-Miller algorithm in PETSc
@ More advanced options

@ —dmmg_refine

@ -dmmg_hierarchy

@ Current version only works for linear elements
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petscdpy

Outline
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petsc4py

petcsdpy provides Python bindings for PETSc

@ Manages memory (creation/destruction)

@ Can use Python callback functions
@ SNESSetFunction ()

@ Logging using the Python with statement

@ Visualization with matplotlib
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http://code.google.com/p/petsc4py/
http://matplotlib.sourceforge.net

petsc4py Installation

@ Configure PETSc using —~download-petsci4py
o Can also use —~download-mpidpy

@ Downloaded to externalpackages/petscdpy-version
e Demo code is here

@ Installed into PETSc lib directory

@ Add SPETSC_DIR/SPETSC_ARCH/1lib to PYTHONPATH
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petsc4py Examples

o
externalpackages/petscdpy-1.1/demo/bratu2d/bratu2d
e Solves Bratu equation (SNES ex5) in 2D

e Visualizes solution with matplotlib

@ src/ts/examples/tutorials/ex8.py
@ Solves a 1D ODE for a diffusive process

@ Visualize solution using -vec_view_draw

o Control timesteps with —ts_max_steps
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Possible Topics

Outline
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Things To Check Out

@ PCFieldSplit for multiphysics
@ Dealll and FEnICS for FEM automation

@ PetFMM for particle methods
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Possible Topics PCFieldSplit
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Possible Topics PCFieldSplit

MultiPhysics Paradigm

The PCFieldSplit interface uses the vecScatter objects to
@ extract functions/operators corresponding to each physics
e Local evaluation for each equation

@ assemble functions/operators over all physics
@ Generalizes LocalToGlobal ()

Notice that this works in exactly the same manner as
@ multiple resolutions (MG, FMM, Wavelets)

@ multiple domains (Domain Decomposition)

@ multiple dimensions (ADI)
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Possible Topics PCFieldSplit

Preconditioning

Several varieties of preconditioners can be supported:
@ Block Jacobi or Block Gauss-Siedel
@ Schur complement
@ Block ILU (approximate coupling and Schur complement)
@ Dave May’s implementation of Elman-Wathen type PCs
which only require actions of individual operator blocks

Notice also that we may have any combination of

@ “canned” PCs (ILU, AMG)

@ PCs needing special information (MG, FMM)

@ custom PCs (physics-based preconditioning, Born approximation)
since we have access to an algebraic interface
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Possible Topics FEniCS Tools
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Possible Topics FEniCS Tools

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
User can build arbitrary elements specifying the Ciarlet triple (K, P, P")

FIAT is part of the FENniCS project, as is the PETSc Sieve module
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http://www.fenics.org/fiat

Possible Topics FEniCS Tools

FFC is a compiler for variational forms by Anders Logg.
Here is a mixed-form Poisson equation:
a((r,w), (o,u)) = L((1,w)) V(r,w)e V
where

a((r, w), (o, 1)) = /QTU—V-Tu—i-WV-UdX

L((m,w)) = /wadx
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Possible Topics FEniCS Tools

FFC is a compiler for variational forms by Anders Logg.

shape = "triangle"
BDM1 = FiniteElement ("Brezzi-Douglas—Marini", shape, 1)
DGO = FiniteElement ("Discontinuous Lagrange", shape, 0)

element = BDM1 + DGO

(tau, w) = TestFunctions (element)
(sigma, u) = TrialFunctions (element)
f = Function (DGO)

)
|

(dot (tau, sigma) - div(tau)»*u + wxdiv(sigma) ) xdx
L = wrxf*dx
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Possible Topics FEniCS Tools

FFC

FFC is a compiler for variational forms by Anders Logg.
Here is a discontinuous Galerkin formulation of the Poisson equation:
a(v,u) = L(v) vveV
where

a(v,u) = /QVU-Vvdx
+ 283/8— <V > [[ulln — [Vl < Vu > —(a/h)vu oS
+ /8Q —Vv - [[u]ln = [[V]ln- Vu — (v/h)vu ds
L(v) = /Qvfdx
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Possible Topics FEniCS Tools

FFC

FFC is a compiler for variational forms by Anders Logg.

DGl = FiniteElement ("Discontinuous Lagrange", shape, 1)
= TestFunctions (DG1)

= TrialFunctions (DG1)

= Function (DG1)

= Function (DG1)

= FacetNormal ("triangle")

= MeshSize ("triangle")

= dot (grad(v), grad(u)) *dx

- dot (avg (grad(v)), Jjump(u, n))=*dsS

- dot (jump (v, n), avg(grad(u)))*dSs

+ alpha/hxdot (jump (v, n) + jump(u, n))=*dS
- dot (grad(v), Jjump(u, n))xds

- dot (jump (v, n), grad(u)) xds

+ gamma/h*v*uxds

L. = vxfxdx + vxgxds
M. Knepley () PETSc GUCAS’10  305/318
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Possible Topics PetFMM
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Possible Topics PetFMM

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
e Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation
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http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637

Conclusions
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Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas

@ scale an existing code to large or distributed machines
@ incorporate more scalable or higher performance algorithms

@ tune your code to new architectures
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Conclusions
Conclusions

PETSc can help you
@ easily construct a code to test your ideas
e Lots of code construction, management, and debugging tools

@ scale an existing code to large or distributed machines
e Using FormFunctionLocal () and scalable linear algebra

@ incorporate more scalable or higher performance algorithms
@ Such as domain decomposition or multigrid

@ tune your code to new architectures
e Using profiling tools and specialized implementations
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Conclusions

Proof is not currently enough to examine solvers

e N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778—795, 1992.

e Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465—469, 1996.
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Conclusions
Homework Solution 1

@ How are PETSc matrices divided in parallel?
X By rows
e By columns
@ By blocks (of rows and columns)
© What is a PETSc KSP object?
o A KSP is a Krylov Subspace solver object which solves linear
systems of equations.
© What command line option changes the type of linear solver?
@ —ksp_type
© Which of these operations is collective?
@ MatSetValues ()
@ VecScale ()
X SNESSolve ()
@ PetscFree()
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Conclusions
Homework Solution 1

@ What option can be used with SNES to calculate a
Finite-Difference approximation to the Jacobian?

@ —-snes_mf Or —snes_fd

© What are the two kinds of DA stencils?
@ DA_STENCIL_BROX Or DA_STENCIL_STAR

© List three third-party solvers which can be used with PETSc.
e MUMPS, Spooles, SuperLU, DSCPack, UMFPack, ...

© What option launches the debugger when PETSc is run?

@ —start_in_debugger
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Conclusions
Homework Solution 2

Consider the Gram-Schmidt Orthogonalization process. Starting with a
set of vectors {v;}, create a set of orthonormal vectors {n;}.

V4
n = —
vl
W
no = ——— where Wo = Vo — (n1 . v2)n1
[|well
w,
ne = m where Wy = v, — Z(nj . vk)nj
k

j<k
What is
@ the balance factor 3 for this algorithm?
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Conclusions
Homework Solution 2

First, the operations we use for vectors of length N and b-byte reals:
@ vector norm ||v|| uses 2N — 1 flops
@ normalizing a vector uses 3N — 1 flops
@ vector dot product uses 2N — 1 flops
@ vector subtraction and scaling use N flops
For the k = 1 case,

and the k = 2 case,

_BN-1)+(7TN-2) 10
B = iNb 4bKeyes (16)
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Conclusions
Homework Solution 2

For the general case, we have

@ k normalizations

) ]’.‘:‘01 j= @ (subtraction + dot product + scale)s
If the w; vectors are not saved to main memory,

k(BN — 1) + XD an — 1)

_ 2
b= 2kNb (7)
K2 1

_ 7(4N—1)+k(N—§)N2k+1

= SkND ~~2p Keyes (18)
Otherwise, we have ok 1
_l’_

8= b Keyes (19)
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Conclusions
Homework Solution 2

@ the bandwidth required to run at peak (B.q) On your computer?

Mok 3400b
B 2k+1

which for b = 8 and k = 30 is 445 MB/s.
@ the maximum achievable flop rate (r,.x) on your computer?

Breq = MB/s (20)

561(2k + 1)
2b

which for b = 8 and k = 30 is 2 GF/s.

Imax = BBpeak = MF/S (21)
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Conclusions

Homework Solution 3

F'r;econditioner Strength as a Function of Problem Size for SNES ex5
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