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Introduction

 Most flow routing models are not 
suitable river-basin scale and real-time 
applications

 Muskingum (kinematic) based parallel 
flow routing model developed

 Does not capture a wave propagation 
in the upstream direction
– Backwater effect 

– Overestimate flood peak

– 𝑆𝑓 ≠ 𝑆𝑏in case of dam-break
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 Scalable River Network Simulator (SRNS)  developed to solve 
SW equations using PETSc/DMNetwork



PETSc (Portable Extensible Toolkit for Scientific computation)

• High-performance software for the scalable (parallel) solution of 

scientific applications
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 It is one of data management packages in PETSc

 Data and topology management for multiphysics

PDE-based network problems

– Circuits, power grid, gas networks, electrical and water 

distribution

 Design elements

– Vertex: connection points in topology graph

– Edge: a connection between vertices

– Component: physics associated with vertex and edges

DMNetwork



Steps for using DMNetwork



One-dimensional Free Surface Flow Model

 Flow in a reach simulated
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 Flow in a junction 
h is water depth

u is flow velocity

z bottom elevation

Sb is bed slope

Sf is friction term

qi is flow rate



Numerical Methods

 Finite volume method used
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 Flux on cell interface is estimated
– The Godunov method (first order)

– Second order methods will be implemented

Ui = [hi, qi], i = 1,…,ncells on a reach



Numerical Methods Cont’d

 Forward Euler used for time stepping

9

Step 1: Initialization at all grid cells

Step 2: Interior reach cells (i=2 to ncell-1)

Step 3: Junction cell x-1/2

x1
x+1/2

x-1/2

xncells

xJ



Numerical Methods Cont’d

 Post-step processing at tn+1
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Step 1: Update ending cell points on a reach

nout : number of out going reaches at xJ
US

Step 2: Update boundary vertex points

• Reservoir

• Demand

• Inflow

• Others

ℎ1 = ℎ𝐽
𝑈𝑆

𝑞1 =
𝑞𝐽
𝑈𝑆

𝑛𝑜𝑢𝑡

ℎ𝑛𝑐𝑒𝑙𝑙𝑠 = ℎ𝐽
𝐷𝑆

𝑞𝑛𝑐𝑒𝑙𝑙𝑠 =
𝑞𝐽
𝑈𝑆

𝑛𝑖𝑛

x1 xncellsxJ
US xJ

DS

nin : number of incoming reaches at xJ
DS



Benchmark Test 1: Dam-break Problems (Toro, 2001)
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ℎ 𝑥 = ቊ
ℎ𝐿 = 1 0 < 𝑥 ≤ 10
ℎ𝑅 = 0.1 10 < 𝑥 ≤ 50

u 𝑥 = ቊ
𝑢𝐿 = 2.5 0 < 𝑥 ≤ 10
𝑢𝑅 = 0.0 10 < 𝑥 ≤ 50

Simulated left rarefaction and right shock waves



Benchmark Test 2 : Dam-break Problems (Toro, 2001)
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ℎ 𝑥 = ቊ
ℎ𝐿 = 1 0 < 𝑥 ≤ 25
ℎ𝑅 = 1 25 < 𝑥 ≤ 50

u 𝑥 = ቊ
𝑢𝐿 = −5 0 < 𝑥 ≤ 25
𝑢𝑅 = 5 25 < 𝑥 ≤ 50

Simulated left and right rarefactions waves which generate nearly dry bed



Scaling Study 
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 The Mississippi River simulated for 
scaling test

 Represents 1/8th of the total reaches in 
the conterminous U.S.

 NHDPlus dataset used to setup the river 
network 

 Simulation conducted on Theta at ANL

4,392 (node) x 64 (cores) 

Total cores = 281,088

11.69 petaflops system 



Scaling Results
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SRNS: 28,894,804 unknowns RAPID (David et al. 2011): Upper Mississippi 
simulation



Future work
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 Implement second order methods to compute flux

 Conduct additional tests to verify the improved 
implementation

 Simulate the river networks for the conterminous 
U.S. using subnetwork option provided by 
DMNetwork

 Couple it with Earth System Models



Thank you!

Contact: gbetrie@anl.gov
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