Actual source code: sf.c
1: #include <petsc/private/sfimpl.h>
2: #include <petsc/private/hashseti.h>
3: #include <petsc/private/viewerimpl.h>
4: #include <petsc/private/hashmapi.h>
6: #if defined(PETSC_HAVE_CUDA)
7: #include <cuda_runtime.h>
8: #endif
10: #if defined(PETSC_HAVE_HIP)
11: #include <hip/hip_runtime.h>
12: #endif
14: #if defined(PETSC_CLANG_STATIC_ANALYZER)
15: void PetscSFCheckGraphSet(PetscSF, int);
16: #else
17: #if defined(PETSC_USE_DEBUG)
18: #define PetscSFCheckGraphSet(sf, arg) PetscCheck((sf)->graphset, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetGraph() or PetscSFSetGraphWithPattern() on argument %d \"%s\" before %s()", (arg), #sf, PETSC_FUNCTION_NAME);
19: #else
20: #define PetscSFCheckGraphSet(sf, arg) \
21: do { \
22: } while (0)
23: #endif
24: #endif
26: const char *const PetscSFDuplicateOptions[] = {"CONFONLY", "RANKS", "GRAPH", "PetscSFDuplicateOption", "PETSCSF_DUPLICATE_", NULL};
27: const char *const PetscSFConcatenateRootModes[] = {"local", "shared", "global", "PetscSFConcatenateRootMode", "PETSCSF_CONCATENATE_../../../../..MODE_", NULL};
29: /*@
30: PetscSFCreate - create a star forest communication context
32: Collective
34: Input Parameter:
35: . comm - communicator on which the star forest will operate
37: Output Parameter:
38: . sf - new star forest context
40: Options Database Keys:
41: . -sf_type type - value of type may be
42: .vb
43: basic -Use MPI persistent Isend/Irecv for communication (Default)
44: window -Use MPI-3 one-sided window for communication
45: neighbor -Use MPI-3 neighborhood collectives for communication
46: .ve
48: Level: intermediate
50: Note:
51: When one knows the communication graph is one of the predefined graph, such as `MPI_Alltoall()`, `MPI_Allgatherv()`,
52: `MPI_Gatherv()`, one can create a `PetscSF` and then set its graph with `PetscSFSetGraphWithPattern()`. These special
53: `SF`s are optimized and they have better performance than general `SF`s.
55: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFSetGraphWithPattern()`, `PetscSFDestroy()`
56: @*/
57: PetscErrorCode PetscSFCreate(MPI_Comm comm, PetscSF *sf)
58: {
59: PetscSF b;
61: PetscFunctionBegin;
63: PetscCall(PetscSFInitializePackage());
65: PetscCall(PetscHeaderCreate(b, PETSCSF_CLASSID, "PetscSF", "Star Forest", "PetscSF", comm, PetscSFDestroy, PetscSFView));
67: b->nroots = -1;
68: b->nleaves = -1;
69: b->minleaf = PETSC_MAX_INT;
70: b->maxleaf = PETSC_MIN_INT;
71: b->nranks = -1;
72: b->rankorder = PETSC_TRUE;
73: b->ingroup = MPI_GROUP_NULL;
74: b->outgroup = MPI_GROUP_NULL;
75: b->graphset = PETSC_FALSE;
76: #if defined(PETSC_HAVE_DEVICE)
77: b->use_gpu_aware_mpi = use_gpu_aware_mpi;
78: b->use_stream_aware_mpi = PETSC_FALSE;
79: b->unknown_input_stream = PETSC_FALSE;
80: #if defined(PETSC_HAVE_KOKKOS) /* Prefer kokkos over cuda*/
81: b->backend = PETSCSF_BACKEND_KOKKOS;
82: #elif defined(PETSC_HAVE_CUDA)
83: b->backend = PETSCSF_BACKEND_CUDA;
84: #elif defined(PETSC_HAVE_HIP)
85: b->backend = PETSCSF_BACKEND_HIP;
86: #endif
88: #if defined(PETSC_HAVE_NVSHMEM)
89: b->use_nvshmem = PETSC_FALSE; /* Default is not to try NVSHMEM */
90: b->use_nvshmem_get = PETSC_FALSE; /* Default is to use nvshmem_put based protocol */
91: PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_nvshmem", &b->use_nvshmem, NULL));
92: PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_nvshmem_get", &b->use_nvshmem_get, NULL));
93: #endif
94: #endif
95: b->vscat.from_n = -1;
96: b->vscat.to_n = -1;
97: b->vscat.unit = MPIU_SCALAR;
98: *sf = b;
99: PetscFunctionReturn(PETSC_SUCCESS);
100: }
102: /*@
103: PetscSFReset - Reset a star forest so that different sizes or neighbors can be used
105: Collective
107: Input Parameter:
108: . sf - star forest
110: Level: advanced
112: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFSetGraph()`, `PetscSFDestroy()`
113: @*/
114: PetscErrorCode PetscSFReset(PetscSF sf)
115: {
116: PetscFunctionBegin;
118: PetscTryTypeMethod(sf, Reset);
119: sf->nroots = -1;
120: sf->nleaves = -1;
121: sf->minleaf = PETSC_MAX_INT;
122: sf->maxleaf = PETSC_MIN_INT;
123: sf->mine = NULL;
124: sf->remote = NULL;
125: sf->graphset = PETSC_FALSE;
126: PetscCall(PetscFree(sf->mine_alloc));
127: PetscCall(PetscFree(sf->remote_alloc));
128: sf->nranks = -1;
129: PetscCall(PetscFree4(sf->ranks, sf->roffset, sf->rmine, sf->rremote));
130: sf->degreeknown = PETSC_FALSE;
131: PetscCall(PetscFree(sf->degree));
132: if (sf->ingroup != MPI_GROUP_NULL) PetscCallMPI(MPI_Group_free(&sf->ingroup));
133: if (sf->outgroup != MPI_GROUP_NULL) PetscCallMPI(MPI_Group_free(&sf->outgroup));
134: if (sf->multi) sf->multi->multi = NULL;
135: PetscCall(PetscSFDestroy(&sf->multi));
136: PetscCall(PetscLayoutDestroy(&sf->map));
138: #if defined(PETSC_HAVE_DEVICE)
139: for (PetscInt i = 0; i < 2; i++) PetscCall(PetscSFFree(sf, PETSC_MEMTYPE_DEVICE, sf->rmine_d[i]));
140: #endif
142: sf->setupcalled = PETSC_FALSE;
143: PetscFunctionReturn(PETSC_SUCCESS);
144: }
146: /*@C
147: PetscSFSetType - Set the `PetscSF` communication implementation
149: Collective
151: Input Parameters:
152: + sf - the `PetscSF` context
153: - type - a known method
154: .vb
155: PETSCSFWINDOW - MPI-2/3 one-sided
156: PETSCSFBASIC - basic implementation using MPI-1 two-sided
157: .ve
159: Options Database Key:
160: . -sf_type <type> - Sets the method; for example basic or window use -help for a list of available methods (for instance, window, basic, neighbor)
162: Level: intermediate
164: Notes:
165: See "include/petscsf.h" for available methods (for instance)
167: .seealso: `PetscSFType`, `PetscSFCreate()`
168: @*/
169: PetscErrorCode PetscSFSetType(PetscSF sf, PetscSFType type)
170: {
171: PetscBool match;
172: PetscErrorCode (*r)(PetscSF);
174: PetscFunctionBegin;
178: PetscCall(PetscObjectTypeCompare((PetscObject)sf, type, &match));
179: if (match) PetscFunctionReturn(PETSC_SUCCESS);
181: PetscCall(PetscFunctionListFind(PetscSFList, type, &r));
182: PetscCheck(r, PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "Unable to find requested PetscSF type %s", type);
183: /* Destroy the previous PetscSF implementation context */
184: PetscTryTypeMethod(sf, Destroy);
185: PetscCall(PetscMemzero(sf->ops, sizeof(*sf->ops)));
186: PetscCall(PetscObjectChangeTypeName((PetscObject)sf, type));
187: PetscCall((*r)(sf));
188: PetscFunctionReturn(PETSC_SUCCESS);
189: }
191: /*@C
192: PetscSFGetType - Get the `PetscSF` communication implementation
194: Not Collective
196: Input Parameter:
197: . sf - the `PetscSF` context
199: Output Parameter:
200: . type - the `PetscSF` type name
202: Level: intermediate
204: .seealso: `PetscSFType`, `PetscSFSetType()`, `PetscSFCreate()`
205: @*/
206: PetscErrorCode PetscSFGetType(PetscSF sf, PetscSFType *type)
207: {
208: PetscFunctionBegin;
211: *type = ((PetscObject)sf)->type_name;
212: PetscFunctionReturn(PETSC_SUCCESS);
213: }
215: /*@C
216: PetscSFDestroy - destroy star forest
218: Collective
220: Input Parameter:
221: . sf - address of star forest
223: Level: intermediate
225: .seealso: `PetscSFType`, `PetscSFCreate()`, `PetscSFReset()`
226: @*/
227: PetscErrorCode PetscSFDestroy(PetscSF *sf)
228: {
229: PetscFunctionBegin;
230: if (!*sf) PetscFunctionReturn(PETSC_SUCCESS);
232: if (--((PetscObject)(*sf))->refct > 0) {
233: *sf = NULL;
234: PetscFunctionReturn(PETSC_SUCCESS);
235: }
236: PetscCall(PetscSFReset(*sf));
237: PetscTryTypeMethod((*sf), Destroy);
238: PetscCall(PetscSFDestroy(&(*sf)->vscat.lsf));
239: if ((*sf)->vscat.bs > 1) PetscCallMPI(MPI_Type_free(&(*sf)->vscat.unit));
240: PetscCall(PetscHeaderDestroy(sf));
241: PetscFunctionReturn(PETSC_SUCCESS);
242: }
244: static PetscErrorCode PetscSFCheckGraphValid_Private(PetscSF sf)
245: {
246: PetscInt i, nleaves;
247: PetscMPIInt size;
248: const PetscInt *ilocal;
249: const PetscSFNode *iremote;
251: PetscFunctionBegin;
252: if (!sf->graphset || !PetscDefined(USE_DEBUG)) PetscFunctionReturn(PETSC_SUCCESS);
253: PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &ilocal, &iremote));
254: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)sf), &size));
255: for (i = 0; i < nleaves; i++) {
256: const PetscInt rank = iremote[i].rank;
257: const PetscInt remote = iremote[i].index;
258: const PetscInt leaf = ilocal ? ilocal[i] : i;
259: PetscCheck(rank >= 0 && rank < size, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided rank (%" PetscInt_FMT ") for remote %" PetscInt_FMT " is invalid, should be in [0, %d)", rank, i, size);
260: PetscCheck(remote >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided index (%" PetscInt_FMT ") for remote %" PetscInt_FMT " is invalid, should be >= 0", remote, i);
261: PetscCheck(leaf >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided location (%" PetscInt_FMT ") for leaf %" PetscInt_FMT " is invalid, should be >= 0", leaf, i);
262: }
263: PetscFunctionReturn(PETSC_SUCCESS);
264: }
266: /*@
267: PetscSFSetUp - set up communication structures
269: Collective
271: Input Parameter:
272: . sf - star forest communication object
274: Level: beginner
276: .seealso: `PetscSFType`, `PetscSFSetFromOptions()`, `PetscSFSetType()`
277: @*/
278: PetscErrorCode PetscSFSetUp(PetscSF sf)
279: {
280: PetscFunctionBegin;
282: PetscSFCheckGraphSet(sf, 1);
283: if (sf->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
284: PetscCall(PetscLogEventBegin(PETSCSF_SetUp, sf, 0, 0, 0));
285: PetscCall(PetscSFCheckGraphValid_Private(sf));
286: if (!((PetscObject)sf)->type_name) PetscCall(PetscSFSetType(sf, PETSCSFBASIC)); /* Zero all sf->ops */
287: PetscTryTypeMethod(sf, SetUp);
288: #if defined(PETSC_HAVE_CUDA)
289: if (sf->backend == PETSCSF_BACKEND_CUDA) {
290: sf->ops->Malloc = PetscSFMalloc_CUDA;
291: sf->ops->Free = PetscSFFree_CUDA;
292: }
293: #endif
294: #if defined(PETSC_HAVE_HIP)
295: if (sf->backend == PETSCSF_BACKEND_HIP) {
296: sf->ops->Malloc = PetscSFMalloc_HIP;
297: sf->ops->Free = PetscSFFree_HIP;
298: }
299: #endif
301: #
302: #if defined(PETSC_HAVE_KOKKOS)
303: if (sf->backend == PETSCSF_BACKEND_KOKKOS) {
304: sf->ops->Malloc = PetscSFMalloc_Kokkos;
305: sf->ops->Free = PetscSFFree_Kokkos;
306: }
307: #endif
308: PetscCall(PetscLogEventEnd(PETSCSF_SetUp, sf, 0, 0, 0));
309: sf->setupcalled = PETSC_TRUE;
310: PetscFunctionReturn(PETSC_SUCCESS);
311: }
313: /*@
314: PetscSFSetFromOptions - set `PetscSF` options using the options database
316: Logically Collective
318: Input Parameter:
319: . sf - star forest
321: Options Database Keys:
322: + -sf_type - implementation type, see PetscSFSetType()
323: . -sf_rank_order - sort composite points for gathers and scatters in rank order, gathers are non-deterministic otherwise
324: . -sf_use_default_stream - Assume callers of SF computed the input root/leafdata with the default cuda stream. SF will also
325: use the default stream to process data. Therefore, no stream synchronization is needed between SF and its caller (default: true).
326: If true, this option only works with -use_gpu_aware_mpi 1.
327: . -sf_use_stream_aware_mpi - Assume the underlying MPI is cuda-stream aware and SF won't sync streams for send/recv buffers passed to MPI (default: false).
328: If true, this option only works with -use_gpu_aware_mpi 1.
330: - -sf_backend cuda | hip | kokkos -Select the device backend SF uses. Currently SF has these backends: cuda, hip and Kokkos.
331: On CUDA (HIP) devices, one can choose cuda (hip) or kokkos with the default being kokkos. On other devices,
332: the only available is kokkos.
334: Level: intermediate
336: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFSetType()`
337: @*/
338: PetscErrorCode PetscSFSetFromOptions(PetscSF sf)
339: {
340: PetscSFType deft;
341: char type[256];
342: PetscBool flg;
344: PetscFunctionBegin;
346: PetscObjectOptionsBegin((PetscObject)sf);
347: deft = ((PetscObject)sf)->type_name ? ((PetscObject)sf)->type_name : PETSCSFBASIC;
348: PetscCall(PetscOptionsFList("-sf_type", "PetscSF implementation type", "PetscSFSetType", PetscSFList, deft, type, sizeof(type), &flg));
349: PetscCall(PetscSFSetType(sf, flg ? type : deft));
350: PetscCall(PetscOptionsBool("-sf_rank_order", "sort composite points for gathers and scatters in rank order, gathers are non-deterministic otherwise", "PetscSFSetRankOrder", sf->rankorder, &sf->rankorder, NULL));
351: #if defined(PETSC_HAVE_DEVICE)
352: {
353: char backendstr[32] = {0};
354: PetscBool isCuda = PETSC_FALSE, isHip = PETSC_FALSE, isKokkos = PETSC_FALSE, set;
355: /* Change the defaults set in PetscSFCreate() with command line options */
356: PetscCall(PetscOptionsBool("-sf_unknown_input_stream", "SF root/leafdata is computed on arbitrary streams unknown to SF", "PetscSFSetFromOptions", sf->unknown_input_stream, &sf->unknown_input_stream, NULL));
357: PetscCall(PetscOptionsBool("-sf_use_stream_aware_mpi", "Assume the underlying MPI is cuda-stream aware", "PetscSFSetFromOptions", sf->use_stream_aware_mpi, &sf->use_stream_aware_mpi, NULL));
358: PetscCall(PetscOptionsString("-sf_backend", "Select the device backend SF uses", "PetscSFSetFromOptions", NULL, backendstr, sizeof(backendstr), &set));
359: PetscCall(PetscStrcasecmp("cuda", backendstr, &isCuda));
360: PetscCall(PetscStrcasecmp("kokkos", backendstr, &isKokkos));
361: PetscCall(PetscStrcasecmp("hip", backendstr, &isHip));
362: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
363: if (isCuda) sf->backend = PETSCSF_BACKEND_CUDA;
364: else if (isKokkos) sf->backend = PETSCSF_BACKEND_KOKKOS;
365: else if (isHip) sf->backend = PETSCSF_BACKEND_HIP;
366: else PetscCheck(!set, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "-sf_backend %s is not supported. You may choose cuda, hip or kokkos (if installed)", backendstr);
367: #elif defined(PETSC_HAVE_KOKKOS)
368: PetscCheck(!set || isKokkos, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "-sf_backend %s is not supported. You can only choose kokkos", backendstr);
369: #endif
370: }
371: #endif
372: PetscTryTypeMethod(sf, SetFromOptions, PetscOptionsObject);
373: PetscOptionsEnd();
374: PetscFunctionReturn(PETSC_SUCCESS);
375: }
377: /*@
378: PetscSFSetRankOrder - sort multi-points for gathers and scatters by rank order
380: Logically Collective
382: Input Parameters:
383: + sf - star forest
384: - flg - `PETSC_TRUE` to sort, `PETSC_FALSE` to skip sorting (lower setup cost, but non-deterministic)
386: Level: advanced
388: .seealso: `PetscSFType`, `PetscSFGatherBegin()`, `PetscSFScatterBegin()`
389: @*/
390: PetscErrorCode PetscSFSetRankOrder(PetscSF sf, PetscBool flg)
391: {
392: PetscFunctionBegin;
395: PetscCheck(!sf->multi, PetscObjectComm((PetscObject)sf), PETSC_ERR_ARG_WRONGSTATE, "Rank ordering must be set before first call to PetscSFGatherBegin() or PetscSFScatterBegin()");
396: sf->rankorder = flg;
397: PetscFunctionReturn(PETSC_SUCCESS);
398: }
400: /*@C
401: PetscSFSetGraph - Set a parallel star forest
403: Collective
405: Input Parameters:
406: + sf - star forest
407: . nroots - number of root vertices on the current process (these are possible targets for other process to attach leaves)
408: . nleaves - number of leaf vertices on the current process, each of these references a root on any process
409: . ilocal - locations of leaves in leafdata buffers, pass NULL for contiguous storage (locations must be >= 0, enforced
410: during setup in debug mode)
411: . localmode - copy mode for ilocal
412: . iremote - remote locations of root vertices for each leaf on the current process (locations must be >= 0, enforced
413: during setup in debug mode)
414: - remotemode - copy mode for iremote
416: Level: intermediate
418: Notes:
419: Leaf indices in ilocal must be unique, otherwise an error occurs.
421: Input arrays ilocal and iremote follow the PetscCopyMode semantics.
422: In particular, if localmode/remotemode is `PETSC_OWN_POINTER` or `PETSC_USE_POINTER`,
423: PETSc might modify the respective array;
424: if `PETSC_USE_POINTER`, the user must delete the array after PetscSFDestroy().
425: Only if `PETSC_COPY_VALUES` is used, the respective array is guaranteed to stay intact and a const array can be passed (but a cast to non-const is needed).
427: Fortran Note:
428: In Fortran you must use PETSC_COPY_VALUES for localmode and remotemode.
430: Developer Note:
431: We sort leaves to check for duplicates and contiguousness and to find minleaf/maxleaf.
432: This also allows to compare leaf sets of two SFs easily.
434: .seealso: `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFGetGraph()`
435: @*/
436: PetscErrorCode PetscSFSetGraph(PetscSF sf, PetscInt nroots, PetscInt nleaves, PetscInt *ilocal, PetscCopyMode localmode, PetscSFNode *iremote, PetscCopyMode remotemode)
437: {
438: PetscBool unique, contiguous;
440: PetscFunctionBegin;
444: PetscCheck(nroots >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nroots %" PetscInt_FMT ", cannot be negative", nroots);
445: PetscCheck(nleaves >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nleaves %" PetscInt_FMT ", cannot be negative", nleaves);
446: /* enums may be handled as unsigned by some compilers, NVHPC for example, the int cast
447: * below is to prevent NVHPC from warning about meaningless comparison of unsigned with zero */
448: PetscCheck((int)localmode >= PETSC_COPY_VALUES && localmode <= PETSC_USE_POINTER, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Wrong localmode %d", localmode);
449: PetscCheck((int)remotemode >= PETSC_COPY_VALUES && remotemode <= PETSC_USE_POINTER, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Wrong remotemode %d", remotemode);
451: if (sf->nroots >= 0) { /* Reset only if graph already set */
452: PetscCall(PetscSFReset(sf));
453: }
455: PetscCall(PetscLogEventBegin(PETSCSF_SetGraph, sf, 0, 0, 0));
457: sf->nroots = nroots;
458: sf->nleaves = nleaves;
460: if (localmode == PETSC_COPY_VALUES && ilocal) {
461: PetscInt *tlocal = NULL;
463: PetscCall(PetscMalloc1(nleaves, &tlocal));
464: PetscCall(PetscArraycpy(tlocal, ilocal, nleaves));
465: ilocal = tlocal;
466: }
467: if (remotemode == PETSC_COPY_VALUES) {
468: PetscSFNode *tremote = NULL;
470: PetscCall(PetscMalloc1(nleaves, &tremote));
471: PetscCall(PetscArraycpy(tremote, iremote, nleaves));
472: iremote = tremote;
473: }
475: if (nleaves && ilocal) {
476: PetscSFNode work;
478: PetscCall(PetscSortIntWithDataArray(nleaves, ilocal, iremote, sizeof(PetscSFNode), &work));
479: PetscCall(PetscSortedCheckDupsInt(nleaves, ilocal, &unique));
480: unique = PetscNot(unique);
481: PetscCheck(sf->allow_multi_leaves || unique, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input ilocal has duplicate entries which is not allowed for this PetscSF");
482: sf->minleaf = ilocal[0];
483: sf->maxleaf = ilocal[nleaves - 1];
484: contiguous = (PetscBool)(unique && ilocal[0] == 0 && ilocal[nleaves - 1] == nleaves - 1);
485: } else {
486: sf->minleaf = 0;
487: sf->maxleaf = nleaves - 1;
488: unique = PETSC_TRUE;
489: contiguous = PETSC_TRUE;
490: }
492: if (contiguous) {
493: if (localmode == PETSC_USE_POINTER) {
494: ilocal = NULL;
495: } else {
496: PetscCall(PetscFree(ilocal));
497: }
498: }
499: sf->mine = ilocal;
500: if (localmode == PETSC_USE_POINTER) {
501: sf->mine_alloc = NULL;
502: } else {
503: sf->mine_alloc = ilocal;
504: }
505: sf->remote = iremote;
506: if (remotemode == PETSC_USE_POINTER) {
507: sf->remote_alloc = NULL;
508: } else {
509: sf->remote_alloc = iremote;
510: }
511: PetscCall(PetscLogEventEnd(PETSCSF_SetGraph, sf, 0, 0, 0));
512: sf->graphset = PETSC_TRUE;
513: PetscFunctionReturn(PETSC_SUCCESS);
514: }
516: /*@
517: PetscSFSetGraphWithPattern - Sets the graph of a `PetscSF` with a specific pattern
519: Collective
521: Input Parameters:
522: + sf - The `PetscSF`
523: . map - Layout of roots over all processes (insignificant when pattern is `PETSCSF_PATTERN_ALLTOALL`)
524: - pattern - One of `PETSCSF_PATTERN_ALLGATHER`, `PETSCSF_PATTERN_GATHER`, `PETSCSF_PATTERN_ALLTOALL`
526: Level: intermediate
528: Notes:
529: It is easier to explain `PetscSFPattern` using vectors. Suppose we have an MPI vector x and its layout is map.
530: n and N are local and global sizes of x respectively.
532: With `PETSCSF_PATTERN_ALLGATHER`, the routine creates a graph that if one does Bcast on it, it will copy x to
533: sequential vectors y on all ranks.
535: With `PETSCSF_PATTERN_GATHER`, the routine creates a graph that if one does Bcast on it, it will copy x to a
536: sequential vector y on rank 0.
538: In above cases, entries of x are roots and entries of y are leaves.
540: With `PETSCSF_PATTERN_ALLTOALL`, map is insignificant. Suppose NP is size of sf's communicator. The routine
541: creates a graph that every rank has NP leaves and NP roots. On rank i, its leaf j is connected to root i
542: of rank j. Here 0 <=i,j<NP. It is a kind of `MPI_Alltoall()` with sendcount/recvcount being 1. Note that it does
543: not mean one can not send multiple items. One just needs to create a new MPI datatype for the mulptiple data
544: items with `MPI_Type_contiguous` and use that as the <unit> argument in SF routines.
546: In this case, roots and leaves are symmetric.
548: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFGetGraph()`
549: @*/
550: PetscErrorCode PetscSFSetGraphWithPattern(PetscSF sf, PetscLayout map, PetscSFPattern pattern)
551: {
552: MPI_Comm comm;
553: PetscInt n, N, res[2];
554: PetscMPIInt rank, size;
555: PetscSFType type;
557: PetscFunctionBegin;
560: PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
561: PetscCheck(pattern >= PETSCSF_PATTERN_ALLGATHER && pattern <= PETSCSF_PATTERN_ALLTOALL, comm, PETSC_ERR_ARG_OUTOFRANGE, "Unsupported PetscSFPattern %d", pattern);
562: PetscCallMPI(MPI_Comm_rank(comm, &rank));
563: PetscCallMPI(MPI_Comm_size(comm, &size));
565: if (pattern == PETSCSF_PATTERN_ALLTOALL) {
566: type = PETSCSFALLTOALL;
567: PetscCall(PetscLayoutCreate(comm, &sf->map));
568: PetscCall(PetscLayoutSetLocalSize(sf->map, size));
569: PetscCall(PetscLayoutSetSize(sf->map, ((PetscInt)size) * size));
570: PetscCall(PetscLayoutSetUp(sf->map));
571: } else {
572: PetscCall(PetscLayoutGetLocalSize(map, &n));
573: PetscCall(PetscLayoutGetSize(map, &N));
574: res[0] = n;
575: res[1] = -n;
576: /* Check if n are same over all ranks so that we can optimize it */
577: PetscCall(MPIU_Allreduce(MPI_IN_PLACE, res, 2, MPIU_INT, MPI_MAX, comm));
578: if (res[0] == -res[1]) { /* same n */
579: type = (pattern == PETSCSF_PATTERN_ALLGATHER) ? PETSCSFALLGATHER : PETSCSFGATHER;
580: } else {
581: type = (pattern == PETSCSF_PATTERN_ALLGATHER) ? PETSCSFALLGATHERV : PETSCSFGATHERV;
582: }
583: PetscCall(PetscLayoutReference(map, &sf->map));
584: }
585: PetscCall(PetscSFSetType(sf, type));
587: sf->pattern = pattern;
588: sf->mine = NULL; /* Contiguous */
590: /* Set nleaves, nroots here in case user calls PetscSFGetGraph, which is legal to call even before PetscSFSetUp is called.
591: Also set other easy stuff.
592: */
593: if (pattern == PETSCSF_PATTERN_ALLGATHER) {
594: sf->nleaves = N;
595: sf->nroots = n;
596: sf->nranks = size;
597: sf->minleaf = 0;
598: sf->maxleaf = N - 1;
599: } else if (pattern == PETSCSF_PATTERN_GATHER) {
600: sf->nleaves = rank ? 0 : N;
601: sf->nroots = n;
602: sf->nranks = rank ? 0 : size;
603: sf->minleaf = 0;
604: sf->maxleaf = rank ? -1 : N - 1;
605: } else if (pattern == PETSCSF_PATTERN_ALLTOALL) {
606: sf->nleaves = size;
607: sf->nroots = size;
608: sf->nranks = size;
609: sf->minleaf = 0;
610: sf->maxleaf = size - 1;
611: }
612: sf->ndranks = 0; /* We do not need to separate out distinguished ranks for patterned graphs to improve communication performance */
613: sf->graphset = PETSC_TRUE;
614: PetscFunctionReturn(PETSC_SUCCESS);
615: }
617: /*@
618: PetscSFCreateInverseSF - given a `PetscSF` in which all vertices have degree 1, creates the inverse map
620: Collective
622: Input Parameter:
623: . sf - star forest to invert
625: Output Parameter:
626: . isf - inverse of sf
628: Level: advanced
630: Notes:
631: All roots must have degree 1.
633: The local space may be a permutation, but cannot be sparse.
635: .seealso: `PetscSFType`, `PetscSFSetGraph()`
636: @*/
637: PetscErrorCode PetscSFCreateInverseSF(PetscSF sf, PetscSF *isf)
638: {
639: PetscMPIInt rank;
640: PetscInt i, nroots, nleaves, maxlocal, count, *newilocal;
641: const PetscInt *ilocal;
642: PetscSFNode *roots, *leaves;
644: PetscFunctionBegin;
646: PetscSFCheckGraphSet(sf, 1);
649: PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, NULL));
650: maxlocal = sf->maxleaf + 1; /* TODO: We should use PetscSFGetLeafRange() */
652: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
653: PetscCall(PetscMalloc2(nroots, &roots, maxlocal, &leaves));
654: for (i = 0; i < maxlocal; i++) {
655: leaves[i].rank = rank;
656: leaves[i].index = i;
657: }
658: for (i = 0; i < nroots; i++) {
659: roots[i].rank = -1;
660: roots[i].index = -1;
661: }
662: PetscCall(PetscSFReduceBegin(sf, MPIU_2INT, leaves, roots, MPI_REPLACE));
663: PetscCall(PetscSFReduceEnd(sf, MPIU_2INT, leaves, roots, MPI_REPLACE));
665: /* Check whether our leaves are sparse */
666: for (i = 0, count = 0; i < nroots; i++)
667: if (roots[i].rank >= 0) count++;
668: if (count == nroots) newilocal = NULL;
669: else { /* Index for sparse leaves and compact "roots" array (which is to become our leaves). */ PetscCall(PetscMalloc1(count, &newilocal));
670: for (i = 0, count = 0; i < nroots; i++) {
671: if (roots[i].rank >= 0) {
672: newilocal[count] = i;
673: roots[count].rank = roots[i].rank;
674: roots[count].index = roots[i].index;
675: count++;
676: }
677: }
678: }
680: PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, isf));
681: PetscCall(PetscSFSetGraph(*isf, maxlocal, count, newilocal, PETSC_OWN_POINTER, roots, PETSC_COPY_VALUES));
682: PetscCall(PetscFree2(roots, leaves));
683: PetscFunctionReturn(PETSC_SUCCESS);
684: }
686: /*@
687: PetscSFDuplicate - duplicate a `PetscSF`, optionally preserving rank connectivity and graph
689: Collective
691: Input Parameters:
692: + sf - communication object to duplicate
693: - opt - `PETSCSF_DUPLICATE_CONFONLY`, `PETSCSF_DUPLICATE_RANKS`, or `PETSCSF_DUPLICATE_GRAPH` (see `PetscSFDuplicateOption`)
695: Output Parameter:
696: . newsf - new communication object
698: Level: beginner
700: .seealso: `PetscSFType`, `PetscSFCreate()`, `PetscSFSetType()`, `PetscSFSetGraph()`
701: @*/
702: PetscErrorCode PetscSFDuplicate(PetscSF sf, PetscSFDuplicateOption opt, PetscSF *newsf)
703: {
704: PetscSFType type;
705: MPI_Datatype dtype = MPIU_SCALAR;
707: PetscFunctionBegin;
711: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sf), newsf));
712: PetscCall(PetscSFGetType(sf, &type));
713: if (type) PetscCall(PetscSFSetType(*newsf, type));
714: (*newsf)->allow_multi_leaves = sf->allow_multi_leaves; /* Dup this flag earlier since PetscSFSetGraph() below checks on this flag */
715: if (opt == PETSCSF_DUPLICATE_GRAPH) {
716: PetscSFCheckGraphSet(sf, 1);
717: if (sf->pattern == PETSCSF_PATTERN_GENERAL) {
718: PetscInt nroots, nleaves;
719: const PetscInt *ilocal;
720: const PetscSFNode *iremote;
721: PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));
722: PetscCall(PetscSFSetGraph(*newsf, nroots, nleaves, (PetscInt *)ilocal, PETSC_COPY_VALUES, (PetscSFNode *)iremote, PETSC_COPY_VALUES));
723: } else {
724: PetscCall(PetscSFSetGraphWithPattern(*newsf, sf->map, sf->pattern));
725: }
726: }
727: /* Since oldtype is committed, so is newtype, according to MPI */
728: if (sf->vscat.bs > 1) PetscCallMPI(MPI_Type_dup(sf->vscat.unit, &dtype));
729: (*newsf)->vscat.bs = sf->vscat.bs;
730: (*newsf)->vscat.unit = dtype;
731: (*newsf)->vscat.to_n = sf->vscat.to_n;
732: (*newsf)->vscat.from_n = sf->vscat.from_n;
733: /* Do not copy lsf. Build it on demand since it is rarely used */
735: #if defined(PETSC_HAVE_DEVICE)
736: (*newsf)->backend = sf->backend;
737: (*newsf)->unknown_input_stream = sf->unknown_input_stream;
738: (*newsf)->use_gpu_aware_mpi = sf->use_gpu_aware_mpi;
739: (*newsf)->use_stream_aware_mpi = sf->use_stream_aware_mpi;
740: #endif
741: PetscTryTypeMethod(sf, Duplicate, opt, *newsf);
742: /* Don't do PetscSFSetUp() since the new sf's graph might have not been set. */
743: PetscFunctionReturn(PETSC_SUCCESS);
744: }
746: /*@C
747: PetscSFGetGraph - Get the graph specifying a parallel star forest
749: Not Collective
751: Input Parameter:
752: . sf - star forest
754: Output Parameters:
755: + nroots - number of root vertices on the current process (these are possible targets for other process to attach leaves)
756: . nleaves - number of leaf vertices on the current process, each of these references a root on any process
757: . ilocal - locations of leaves in leafdata buffers (if returned value is NULL, it means leaves are in contiguous storage)
758: - iremote - remote locations of root vertices for each leaf on the current process
760: Level: intermediate
762: Notes:
763: We are not currently requiring that the graph is set, thus returning nroots=-1 if it has not been set yet
765: The returned ilocal/iremote might contain values in different order than the input ones in `PetscSFSetGraph()`,
766: see its manpage for details.
768: Fortran Notes:
769: The returned iremote array is a copy and must be deallocated after use. Consequently, if you
770: want to update the graph, you must call `PetscSFSetGraph()` after modifying the iremote array.
772: To check for a NULL ilocal use
773: $ if (loc(ilocal) == loc(PETSC_NULL_INTEGER)) then
775: .seealso: `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`
776: @*/
777: PetscErrorCode PetscSFGetGraph(PetscSF sf, PetscInt *nroots, PetscInt *nleaves, const PetscInt **ilocal, const PetscSFNode **iremote)
778: {
779: PetscFunctionBegin;
781: if (sf->ops->GetGraph) {
782: PetscCall((sf->ops->GetGraph)(sf, nroots, nleaves, ilocal, iremote));
783: } else {
784: if (nroots) *nroots = sf->nroots;
785: if (nleaves) *nleaves = sf->nleaves;
786: if (ilocal) *ilocal = sf->mine;
787: if (iremote) *iremote = sf->remote;
788: }
789: PetscFunctionReturn(PETSC_SUCCESS);
790: }
792: /*@
793: PetscSFGetLeafRange - Get the active leaf ranges
795: Not Collective
797: Input Parameter:
798: . sf - star forest
800: Output Parameters:
801: + minleaf - minimum active leaf on this process. Return 0 if there are no leaves.
802: - maxleaf - maximum active leaf on this process. Return -1 if there are no leaves.
804: Level: developer
806: .seealso: `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
807: @*/
808: PetscErrorCode PetscSFGetLeafRange(PetscSF sf, PetscInt *minleaf, PetscInt *maxleaf)
809: {
810: PetscFunctionBegin;
812: PetscSFCheckGraphSet(sf, 1);
813: if (minleaf) *minleaf = sf->minleaf;
814: if (maxleaf) *maxleaf = sf->maxleaf;
815: PetscFunctionReturn(PETSC_SUCCESS);
816: }
818: /*@C
819: PetscSFViewFromOptions - View a `PetscSF` based on arguments in the options database
821: Collective on A
823: Input Parameters:
824: + A - the star forest
825: . obj - Optional object that provides the prefix for the option names
826: - name - command line option
828: Level: intermediate
830: .seealso: `PetscSF`, `PetscSFView`, `PetscObjectViewFromOptions()`, `PetscSFCreate()`
831: @*/
832: PetscErrorCode PetscSFViewFromOptions(PetscSF A, PetscObject obj, const char name[])
833: {
834: PetscFunctionBegin;
836: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
837: PetscFunctionReturn(PETSC_SUCCESS);
838: }
840: /*@C
841: PetscSFView - view a star forest
843: Collective
845: Input Parameters:
846: + sf - star forest
847: - viewer - viewer to display graph, for example `PETSC_VIEWER_STDOUT_WORLD`
849: Level: beginner
851: .seealso: `PetscSF`, `PetscViewer`, `PetscSFCreate()`, `PetscSFSetGraph()`
852: @*/
853: PetscErrorCode PetscSFView(PetscSF sf, PetscViewer viewer)
854: {
855: PetscBool iascii;
856: PetscViewerFormat format;
858: PetscFunctionBegin;
860: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)sf), &viewer));
862: PetscCheckSameComm(sf, 1, viewer, 2);
863: if (sf->graphset) PetscCall(PetscSFSetUp(sf));
864: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
865: if (iascii && viewer->format != PETSC_VIEWER_ASCII_MATLAB) {
866: PetscMPIInt rank;
867: PetscInt ii, i, j;
869: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)sf, viewer));
870: PetscCall(PetscViewerASCIIPushTab(viewer));
871: if (sf->pattern == PETSCSF_PATTERN_GENERAL) {
872: if (!sf->graphset) {
873: PetscCall(PetscViewerASCIIPrintf(viewer, "PetscSFSetGraph() has not been called yet\n"));
874: PetscCall(PetscViewerASCIIPopTab(viewer));
875: PetscFunctionReturn(PETSC_SUCCESS);
876: }
877: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
878: PetscCall(PetscViewerASCIIPushSynchronized(viewer));
879: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Number of roots=%" PetscInt_FMT ", leaves=%" PetscInt_FMT ", remote ranks=%" PetscInt_FMT "\n", rank, sf->nroots, sf->nleaves, sf->nranks));
880: for (i = 0; i < sf->nleaves; i++) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] %" PetscInt_FMT " <- (%" PetscInt_FMT ",%" PetscInt_FMT ")\n", rank, sf->mine ? sf->mine[i] : i, sf->remote[i].rank, sf->remote[i].index));
881: PetscCall(PetscViewerFlush(viewer));
882: PetscCall(PetscViewerGetFormat(viewer, &format));
883: if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
884: PetscMPIInt *tmpranks, *perm;
885: PetscCall(PetscMalloc2(sf->nranks, &tmpranks, sf->nranks, &perm));
886: PetscCall(PetscArraycpy(tmpranks, sf->ranks, sf->nranks));
887: for (i = 0; i < sf->nranks; i++) perm[i] = i;
888: PetscCall(PetscSortMPIIntWithArray(sf->nranks, tmpranks, perm));
889: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Roots referenced by my leaves, by rank\n", rank));
890: for (ii = 0; ii < sf->nranks; ii++) {
891: i = perm[ii];
892: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] %d: %" PetscInt_FMT " edges\n", rank, sf->ranks[i], sf->roffset[i + 1] - sf->roffset[i]));
893: for (j = sf->roffset[i]; j < sf->roffset[i + 1]; j++) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] %" PetscInt_FMT " <- %" PetscInt_FMT "\n", rank, sf->rmine[j], sf->rremote[j]));
894: }
895: PetscCall(PetscFree2(tmpranks, perm));
896: }
897: PetscCall(PetscViewerFlush(viewer));
898: PetscCall(PetscViewerASCIIPopSynchronized(viewer));
899: }
900: PetscCall(PetscViewerASCIIPopTab(viewer));
901: }
902: PetscTryTypeMethod(sf, View, viewer);
903: PetscFunctionReturn(PETSC_SUCCESS);
904: }
906: /*@C
907: PetscSFGetRootRanks - Get root ranks and number of vertices referenced by leaves on this process
909: Not Collective
911: Input Parameter:
912: . sf - star forest
914: Output Parameters:
915: + nranks - number of ranks referenced by local part
916: . ranks - [nranks] array of ranks
917: . roffset - [nranks+1] offset in rmine/rremote for each rank
918: . rmine - [roffset[nranks]] concatenated array holding local indices referencing each remote rank
919: - rremote - [roffset[nranks]] concatenated array holding remote indices referenced for each remote rank
921: Level: developer
923: .seealso: `PetscSF`, `PetscSFGetLeafRanks()`
924: @*/
925: PetscErrorCode PetscSFGetRootRanks(PetscSF sf, PetscInt *nranks, const PetscMPIInt **ranks, const PetscInt **roffset, const PetscInt **rmine, const PetscInt **rremote)
926: {
927: PetscFunctionBegin;
929: PetscCheck(sf->setupcalled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUp() before obtaining ranks");
930: if (sf->ops->GetRootRanks) {
931: PetscCall((sf->ops->GetRootRanks)(sf, nranks, ranks, roffset, rmine, rremote));
932: } else {
933: /* The generic implementation */
934: if (nranks) *nranks = sf->nranks;
935: if (ranks) *ranks = sf->ranks;
936: if (roffset) *roffset = sf->roffset;
937: if (rmine) *rmine = sf->rmine;
938: if (rremote) *rremote = sf->rremote;
939: }
940: PetscFunctionReturn(PETSC_SUCCESS);
941: }
943: /*@C
944: PetscSFGetLeafRanks - Get leaf ranks referencing roots on this process
946: Not Collective
948: Input Parameter:
949: . sf - star forest
951: Output Parameters:
952: + niranks - number of leaf ranks referencing roots on this process
953: . iranks - [niranks] array of ranks
954: . ioffset - [niranks+1] offset in irootloc for each rank
955: - irootloc - [ioffset[niranks]] concatenated array holding local indices of roots referenced by each leaf rank
957: Level: developer
959: .seealso: `PetscSF`, `PetscSFGetRootRanks()`
960: @*/
961: PetscErrorCode PetscSFGetLeafRanks(PetscSF sf, PetscInt *niranks, const PetscMPIInt **iranks, const PetscInt **ioffset, const PetscInt **irootloc)
962: {
963: PetscFunctionBegin;
965: PetscCheck(sf->setupcalled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUp() before obtaining ranks");
966: if (sf->ops->GetLeafRanks) {
967: PetscCall((sf->ops->GetLeafRanks)(sf, niranks, iranks, ioffset, irootloc));
968: } else {
969: PetscSFType type;
970: PetscCall(PetscSFGetType(sf, &type));
971: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "PetscSFGetLeafRanks() is not supported on this StarForest type: %s", type);
972: }
973: PetscFunctionReturn(PETSC_SUCCESS);
974: }
976: static PetscBool InList(PetscMPIInt needle, PetscMPIInt n, const PetscMPIInt *list)
977: {
978: PetscInt i;
979: for (i = 0; i < n; i++) {
980: if (needle == list[i]) return PETSC_TRUE;
981: }
982: return PETSC_FALSE;
983: }
985: /*@C
986: PetscSFSetUpRanks - Set up data structures associated with ranks; this is for internal use by `PetscSF` implementations.
988: Collective
990: Input Parameters:
991: + sf - `PetscSF` to set up; `PetscSFSetGraph()` must have been called
992: - dgroup - `MPI_Group` of ranks to be distinguished (e.g., for self or shared memory exchange)
994: Level: developer
996: .seealso: `PetscSF`, `PetscSFGetRootRanks()`
997: @*/
998: PetscErrorCode PetscSFSetUpRanks(PetscSF sf, MPI_Group dgroup)
999: {
1000: PetscHMapI table;
1001: PetscHashIter pos;
1002: PetscMPIInt size, groupsize, *groupranks;
1003: PetscInt *rcount, *ranks;
1004: PetscInt i, irank = -1, orank = -1;
1006: PetscFunctionBegin;
1008: PetscSFCheckGraphSet(sf, 1);
1009: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)sf), &size));
1010: PetscCall(PetscHMapICreateWithSize(10, &table));
1011: for (i = 0; i < sf->nleaves; i++) {
1012: /* Log 1-based rank */
1013: PetscCall(PetscHMapISetWithMode(table, sf->remote[i].rank + 1, 1, ADD_VALUES));
1014: }
1015: PetscCall(PetscHMapIGetSize(table, &sf->nranks));
1016: PetscCall(PetscMalloc4(sf->nranks, &sf->ranks, sf->nranks + 1, &sf->roffset, sf->nleaves, &sf->rmine, sf->nleaves, &sf->rremote));
1017: PetscCall(PetscMalloc2(sf->nranks, &rcount, sf->nranks, &ranks));
1018: PetscHashIterBegin(table, pos);
1019: for (i = 0; i < sf->nranks; i++) {
1020: PetscHashIterGetKey(table, pos, ranks[i]);
1021: PetscHashIterGetVal(table, pos, rcount[i]);
1022: PetscHashIterNext(table, pos);
1023: ranks[i]--; /* Convert back to 0-based */
1024: }
1025: PetscCall(PetscHMapIDestroy(&table));
1027: /* We expect that dgroup is reliably "small" while nranks could be large */
1028: {
1029: MPI_Group group = MPI_GROUP_NULL;
1030: PetscMPIInt *dgroupranks;
1031: PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1032: PetscCallMPI(MPI_Group_size(dgroup, &groupsize));
1033: PetscCall(PetscMalloc1(groupsize, &dgroupranks));
1034: PetscCall(PetscMalloc1(groupsize, &groupranks));
1035: for (i = 0; i < groupsize; i++) dgroupranks[i] = i;
1036: if (groupsize) PetscCallMPI(MPI_Group_translate_ranks(dgroup, groupsize, dgroupranks, group, groupranks));
1037: PetscCallMPI(MPI_Group_free(&group));
1038: PetscCall(PetscFree(dgroupranks));
1039: }
1041: /* Partition ranks[] into distinguished (first sf->ndranks) followed by non-distinguished */
1042: for (sf->ndranks = 0, i = sf->nranks; sf->ndranks < i;) {
1043: for (i--; sf->ndranks < i; i--) { /* Scan i backward looking for distinguished rank */
1044: if (InList(ranks[i], groupsize, groupranks)) break;
1045: }
1046: for (; sf->ndranks <= i; sf->ndranks++) { /* Scan sf->ndranks forward looking for non-distinguished rank */
1047: if (!InList(ranks[sf->ndranks], groupsize, groupranks)) break;
1048: }
1049: if (sf->ndranks < i) { /* Swap ranks[sf->ndranks] with ranks[i] */
1050: PetscInt tmprank, tmpcount;
1052: tmprank = ranks[i];
1053: tmpcount = rcount[i];
1054: ranks[i] = ranks[sf->ndranks];
1055: rcount[i] = rcount[sf->ndranks];
1056: ranks[sf->ndranks] = tmprank;
1057: rcount[sf->ndranks] = tmpcount;
1058: sf->ndranks++;
1059: }
1060: }
1061: PetscCall(PetscFree(groupranks));
1062: PetscCall(PetscSortIntWithArray(sf->ndranks, ranks, rcount));
1063: PetscCall(PetscSortIntWithArray(sf->nranks - sf->ndranks, ranks + sf->ndranks, rcount + sf->ndranks));
1064: sf->roffset[0] = 0;
1065: for (i = 0; i < sf->nranks; i++) {
1066: PetscCall(PetscMPIIntCast(ranks[i], sf->ranks + i));
1067: sf->roffset[i + 1] = sf->roffset[i] + rcount[i];
1068: rcount[i] = 0;
1069: }
1070: for (i = 0, irank = -1, orank = -1; i < sf->nleaves; i++) {
1071: /* short circuit */
1072: if (orank != sf->remote[i].rank) {
1073: /* Search for index of iremote[i].rank in sf->ranks */
1074: PetscCall(PetscFindMPIInt(sf->remote[i].rank, sf->ndranks, sf->ranks, &irank));
1075: if (irank < 0) {
1076: PetscCall(PetscFindMPIInt(sf->remote[i].rank, sf->nranks - sf->ndranks, sf->ranks + sf->ndranks, &irank));
1077: if (irank >= 0) irank += sf->ndranks;
1078: }
1079: orank = sf->remote[i].rank;
1080: }
1081: PetscCheck(irank >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find rank %" PetscInt_FMT " in array", sf->remote[i].rank);
1082: sf->rmine[sf->roffset[irank] + rcount[irank]] = sf->mine ? sf->mine[i] : i;
1083: sf->rremote[sf->roffset[irank] + rcount[irank]] = sf->remote[i].index;
1084: rcount[irank]++;
1085: }
1086: PetscCall(PetscFree2(rcount, ranks));
1087: PetscFunctionReturn(PETSC_SUCCESS);
1088: }
1090: /*@C
1091: PetscSFGetGroups - gets incoming and outgoing process groups
1093: Collective
1095: Input Parameter:
1096: . sf - star forest
1098: Output Parameters:
1099: + incoming - group of origin processes for incoming edges (leaves that reference my roots)
1100: - outgoing - group of destination processes for outgoing edges (roots that I reference)
1102: Level: developer
1104: .seealso: `PetscSF`, `PetscSFGetWindow()`, `PetscSFRestoreWindow()`
1105: @*/
1106: PetscErrorCode PetscSFGetGroups(PetscSF sf, MPI_Group *incoming, MPI_Group *outgoing)
1107: {
1108: MPI_Group group = MPI_GROUP_NULL;
1110: PetscFunctionBegin;
1111: PetscCheck(sf->nranks >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUpRanks() before obtaining groups");
1112: if (sf->ingroup == MPI_GROUP_NULL) {
1113: PetscInt i;
1114: const PetscInt *indegree;
1115: PetscMPIInt rank, *outranks, *inranks;
1116: PetscSFNode *remote;
1117: PetscSF bgcount;
1119: /* Compute the number of incoming ranks */
1120: PetscCall(PetscMalloc1(sf->nranks, &remote));
1121: for (i = 0; i < sf->nranks; i++) {
1122: remote[i].rank = sf->ranks[i];
1123: remote[i].index = 0;
1124: }
1125: PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, &bgcount));
1126: PetscCall(PetscSFSetGraph(bgcount, 1, sf->nranks, NULL, PETSC_COPY_VALUES, remote, PETSC_OWN_POINTER));
1127: PetscCall(PetscSFComputeDegreeBegin(bgcount, &indegree));
1128: PetscCall(PetscSFComputeDegreeEnd(bgcount, &indegree));
1129: /* Enumerate the incoming ranks */
1130: PetscCall(PetscMalloc2(indegree[0], &inranks, sf->nranks, &outranks));
1131: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
1132: for (i = 0; i < sf->nranks; i++) outranks[i] = rank;
1133: PetscCall(PetscSFGatherBegin(bgcount, MPI_INT, outranks, inranks));
1134: PetscCall(PetscSFGatherEnd(bgcount, MPI_INT, outranks, inranks));
1135: PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1136: PetscCallMPI(MPI_Group_incl(group, indegree[0], inranks, &sf->ingroup));
1137: PetscCallMPI(MPI_Group_free(&group));
1138: PetscCall(PetscFree2(inranks, outranks));
1139: PetscCall(PetscSFDestroy(&bgcount));
1140: }
1141: *incoming = sf->ingroup;
1143: if (sf->outgroup == MPI_GROUP_NULL) {
1144: PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1145: PetscCallMPI(MPI_Group_incl(group, sf->nranks, sf->ranks, &sf->outgroup));
1146: PetscCallMPI(MPI_Group_free(&group));
1147: }
1148: *outgoing = sf->outgroup;
1149: PetscFunctionReturn(PETSC_SUCCESS);
1150: }
1152: /*@
1153: PetscSFGetMultiSF - gets the inner `PetscSF` implementing gathers and scatters
1155: Collective
1157: Input Parameter:
1158: . sf - star forest that may contain roots with 0 or with more than 1 vertex
1160: Output Parameter:
1161: . multi - star forest with split roots, such that each root has degree exactly 1
1163: Level: developer
1165: Note:
1166: In most cases, users should use `PetscSFGatherBegin()` and `PetscSFScatterBegin()` instead of manipulating multi
1167: directly. Since multi satisfies the stronger condition that each entry in the global space has exactly one incoming
1168: edge, it is a candidate for future optimization that might involve its removal.
1170: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFGatherBegin()`, `PetscSFScatterBegin()`, `PetscSFComputeMultiRootOriginalNumbering()`
1171: @*/
1172: PetscErrorCode PetscSFGetMultiSF(PetscSF sf, PetscSF *multi)
1173: {
1174: PetscFunctionBegin;
1177: if (sf->nroots < 0) { /* Graph has not been set yet; why do we need this? */
1178: PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_RANKS, &sf->multi));
1179: *multi = sf->multi;
1180: sf->multi->multi = sf->multi;
1181: PetscFunctionReturn(PETSC_SUCCESS);
1182: }
1183: if (!sf->multi) {
1184: const PetscInt *indegree;
1185: PetscInt i, *inoffset, *outones, *outoffset, maxlocal;
1186: PetscSFNode *remote;
1187: maxlocal = sf->maxleaf + 1; /* TODO: We should use PetscSFGetLeafRange() */
1188: PetscCall(PetscSFComputeDegreeBegin(sf, &indegree));
1189: PetscCall(PetscSFComputeDegreeEnd(sf, &indegree));
1190: PetscCall(PetscMalloc3(sf->nroots + 1, &inoffset, maxlocal, &outones, maxlocal, &outoffset));
1191: inoffset[0] = 0;
1192: for (i = 0; i < sf->nroots; i++) inoffset[i + 1] = inoffset[i] + indegree[i];
1193: for (i = 0; i < maxlocal; i++) outones[i] = 1;
1194: PetscCall(PetscSFFetchAndOpBegin(sf, MPIU_INT, inoffset, outones, outoffset, MPI_SUM));
1195: PetscCall(PetscSFFetchAndOpEnd(sf, MPIU_INT, inoffset, outones, outoffset, MPI_SUM));
1196: for (i = 0; i < sf->nroots; i++) inoffset[i] -= indegree[i]; /* Undo the increment */
1197: if (PetscDefined(USE_DEBUG)) { /* Check that the expected number of increments occurred */
1198: for (i = 0; i < sf->nroots; i++) PetscCheck(inoffset[i] + indegree[i] == inoffset[i + 1], PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect result after PetscSFFetchAndOp");
1199: }
1200: PetscCall(PetscMalloc1(sf->nleaves, &remote));
1201: for (i = 0; i < sf->nleaves; i++) {
1202: remote[i].rank = sf->remote[i].rank;
1203: remote[i].index = outoffset[sf->mine ? sf->mine[i] : i];
1204: }
1205: PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_RANKS, &sf->multi));
1206: sf->multi->multi = sf->multi;
1207: PetscCall(PetscSFSetGraph(sf->multi, inoffset[sf->nroots], sf->nleaves, sf->mine, PETSC_COPY_VALUES, remote, PETSC_OWN_POINTER));
1208: if (sf->rankorder) { /* Sort the ranks */
1209: PetscMPIInt rank;
1210: PetscInt *inranks, *newoffset, *outranks, *newoutoffset, *tmpoffset, maxdegree;
1211: PetscSFNode *newremote;
1212: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
1213: for (i = 0, maxdegree = 0; i < sf->nroots; i++) maxdegree = PetscMax(maxdegree, indegree[i]);
1214: PetscCall(PetscMalloc5(sf->multi->nroots, &inranks, sf->multi->nroots, &newoffset, maxlocal, &outranks, maxlocal, &newoutoffset, maxdegree, &tmpoffset));
1215: for (i = 0; i < maxlocal; i++) outranks[i] = rank;
1216: PetscCall(PetscSFReduceBegin(sf->multi, MPIU_INT, outranks, inranks, MPI_REPLACE));
1217: PetscCall(PetscSFReduceEnd(sf->multi, MPIU_INT, outranks, inranks, MPI_REPLACE));
1218: /* Sort the incoming ranks at each vertex, build the inverse map */
1219: for (i = 0; i < sf->nroots; i++) {
1220: PetscInt j;
1221: for (j = 0; j < indegree[i]; j++) tmpoffset[j] = j;
1222: PetscCall(PetscSortIntWithArray(indegree[i], inranks + inoffset[i], tmpoffset));
1223: for (j = 0; j < indegree[i]; j++) newoffset[inoffset[i] + tmpoffset[j]] = inoffset[i] + j;
1224: }
1225: PetscCall(PetscSFBcastBegin(sf->multi, MPIU_INT, newoffset, newoutoffset, MPI_REPLACE));
1226: PetscCall(PetscSFBcastEnd(sf->multi, MPIU_INT, newoffset, newoutoffset, MPI_REPLACE));
1227: PetscCall(PetscMalloc1(sf->nleaves, &newremote));
1228: for (i = 0; i < sf->nleaves; i++) {
1229: newremote[i].rank = sf->remote[i].rank;
1230: newremote[i].index = newoutoffset[sf->mine ? sf->mine[i] : i];
1231: }
1232: PetscCall(PetscSFSetGraph(sf->multi, inoffset[sf->nroots], sf->nleaves, sf->mine, PETSC_COPY_VALUES, newremote, PETSC_OWN_POINTER));
1233: PetscCall(PetscFree5(inranks, newoffset, outranks, newoutoffset, tmpoffset));
1234: }
1235: PetscCall(PetscFree3(inoffset, outones, outoffset));
1236: }
1237: *multi = sf->multi;
1238: PetscFunctionReturn(PETSC_SUCCESS);
1239: }
1241: /*@C
1242: PetscSFCreateEmbeddedRootSF - removes edges from all but the selected roots, does not remap indices
1244: Collective
1246: Input Parameters:
1247: + sf - original star forest
1248: . nselected - number of selected roots on this process
1249: - selected - indices of the selected roots on this process
1251: Output Parameter:
1252: . esf - new star forest
1254: Level: advanced
1256: Note:
1257: To use the new `PetscSF`, it may be necessary to know the indices of the leaves that are still participating. This can
1258: be done by calling PetscSFGetGraph().
1260: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
1261: @*/
1262: PetscErrorCode PetscSFCreateEmbeddedRootSF(PetscSF sf, PetscInt nselected, const PetscInt *selected, PetscSF *esf)
1263: {
1264: PetscInt i, j, n, nroots, nleaves, esf_nleaves, *new_ilocal, minleaf, maxleaf, maxlocal;
1265: const PetscInt *ilocal;
1266: signed char *rootdata, *leafdata, *leafmem;
1267: const PetscSFNode *iremote;
1268: PetscSFNode *new_iremote;
1269: MPI_Comm comm;
1271: PetscFunctionBegin;
1273: PetscSFCheckGraphSet(sf, 1);
1277: PetscCall(PetscSFSetUp(sf));
1278: PetscCall(PetscLogEventBegin(PETSCSF_EmbedSF, sf, 0, 0, 0));
1279: PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
1280: PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));
1282: if (PetscDefined(USE_DEBUG)) { /* Error out if selected[] has dups or out of range indices */
1283: PetscBool dups;
1284: PetscCall(PetscCheckDupsInt(nselected, selected, &dups));
1285: PetscCheck(!dups, comm, PETSC_ERR_ARG_WRONG, "selected[] has dups");
1286: for (i = 0; i < nselected; i++) PetscCheck(selected[i] >= 0 && selected[i] < nroots, comm, PETSC_ERR_ARG_OUTOFRANGE, "selected root indice %" PetscInt_FMT " is out of [0,%" PetscInt_FMT ")", selected[i], nroots);
1287: }
1289: if (sf->ops->CreateEmbeddedRootSF) PetscUseTypeMethod(sf, CreateEmbeddedRootSF, nselected, selected, esf);
1290: else {
1291: /* A generic version of creating embedded sf */
1292: PetscCall(PetscSFGetLeafRange(sf, &minleaf, &maxleaf));
1293: maxlocal = maxleaf - minleaf + 1;
1294: PetscCall(PetscCalloc2(nroots, &rootdata, maxlocal, &leafmem));
1295: leafdata = leafmem - minleaf;
1296: /* Tag selected roots and bcast to leaves */
1297: for (i = 0; i < nselected; i++) rootdata[selected[i]] = 1;
1298: PetscCall(PetscSFBcastBegin(sf, MPI_SIGNED_CHAR, rootdata, leafdata, MPI_REPLACE));
1299: PetscCall(PetscSFBcastEnd(sf, MPI_SIGNED_CHAR, rootdata, leafdata, MPI_REPLACE));
1301: /* Build esf with leaves that are still connected */
1302: esf_nleaves = 0;
1303: for (i = 0; i < nleaves; i++) {
1304: j = ilocal ? ilocal[i] : i;
1305: /* esf_nleaves += leafdata[j] should work in theory, but failed with SFWindow bugs
1306: with PetscSFBcast. See https://gitlab.com/petsc/petsc/issues/555
1307: */
1308: esf_nleaves += (leafdata[j] ? 1 : 0);
1309: }
1310: PetscCall(PetscMalloc1(esf_nleaves, &new_ilocal));
1311: PetscCall(PetscMalloc1(esf_nleaves, &new_iremote));
1312: for (i = n = 0; i < nleaves; i++) {
1313: j = ilocal ? ilocal[i] : i;
1314: if (leafdata[j]) {
1315: new_ilocal[n] = j;
1316: new_iremote[n].rank = iremote[i].rank;
1317: new_iremote[n].index = iremote[i].index;
1318: ++n;
1319: }
1320: }
1321: PetscCall(PetscSFCreate(comm, esf));
1322: PetscCall(PetscSFSetFromOptions(*esf));
1323: PetscCall(PetscSFSetGraph(*esf, nroots, esf_nleaves, new_ilocal, PETSC_OWN_POINTER, new_iremote, PETSC_OWN_POINTER));
1324: PetscCall(PetscFree2(rootdata, leafmem));
1325: }
1326: PetscCall(PetscLogEventEnd(PETSCSF_EmbedSF, sf, 0, 0, 0));
1327: PetscFunctionReturn(PETSC_SUCCESS);
1328: }
1330: /*@C
1331: PetscSFCreateEmbeddedLeafSF - removes edges from all but the selected leaves, does not remap indices
1333: Collective
1335: Input Parameters:
1336: + sf - original star forest
1337: . nselected - number of selected leaves on this process
1338: - selected - indices of the selected leaves on this process
1340: Output Parameter:
1341: . newsf - new star forest
1343: Level: advanced
1345: .seealso: `PetscSF`, `PetscSFCreateEmbeddedRootSF()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
1346: @*/
1347: PetscErrorCode PetscSFCreateEmbeddedLeafSF(PetscSF sf, PetscInt nselected, const PetscInt *selected, PetscSF *newsf)
1348: {
1349: const PetscSFNode *iremote;
1350: PetscSFNode *new_iremote;
1351: const PetscInt *ilocal;
1352: PetscInt i, nroots, *leaves, *new_ilocal;
1353: MPI_Comm comm;
1355: PetscFunctionBegin;
1357: PetscSFCheckGraphSet(sf, 1);
1361: /* Uniq selected[] and put results in leaves[] */
1362: PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
1363: PetscCall(PetscMalloc1(nselected, &leaves));
1364: PetscCall(PetscArraycpy(leaves, selected, nselected));
1365: PetscCall(PetscSortedRemoveDupsInt(&nselected, leaves));
1366: PetscCheck(!nselected || !(leaves[0] < 0 || leaves[nselected - 1] >= sf->nleaves), comm, PETSC_ERR_ARG_OUTOFRANGE, "Min/Max leaf indices %" PetscInt_FMT "/%" PetscInt_FMT " are not in [0,%" PetscInt_FMT ")", leaves[0], leaves[nselected - 1], sf->nleaves);
1368: /* Optimize the routine only when sf is setup and hence we can reuse sf's communication pattern */
1369: if (sf->setupcalled && sf->ops->CreateEmbeddedLeafSF) PetscUseTypeMethod(sf, CreateEmbeddedLeafSF, nselected, leaves, newsf);
1370: else {
1371: PetscCall(PetscSFGetGraph(sf, &nroots, NULL, &ilocal, &iremote));
1372: PetscCall(PetscMalloc1(nselected, &new_ilocal));
1373: PetscCall(PetscMalloc1(nselected, &new_iremote));
1374: for (i = 0; i < nselected; ++i) {
1375: const PetscInt l = leaves[i];
1376: new_ilocal[i] = ilocal ? ilocal[l] : l;
1377: new_iremote[i].rank = iremote[l].rank;
1378: new_iremote[i].index = iremote[l].index;
1379: }
1380: PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, newsf));
1381: PetscCall(PetscSFSetGraph(*newsf, nroots, nselected, new_ilocal, PETSC_OWN_POINTER, new_iremote, PETSC_OWN_POINTER));
1382: }
1383: PetscCall(PetscFree(leaves));
1384: PetscFunctionReturn(PETSC_SUCCESS);
1385: }
1387: /*@C
1388: PetscSFBcastBegin - begin pointwise broadcast with root value being reduced to leaf value, to be concluded with call to `PetscSFBcastEnd()`
1390: Collective
1392: Input Parameters:
1393: + sf - star forest on which to communicate
1394: . unit - data type associated with each node
1395: . rootdata - buffer to broadcast
1396: - op - operation to use for reduction
1398: Output Parameter:
1399: . leafdata - buffer to be reduced with values from each leaf's respective root
1401: Level: intermediate
1403: Notes:
1404: When petsc is configured with device support, it will use its own mechanism to figure out whether the given data pointers
1405: are host pointers or device pointers, which may incur a noticeable cost. If you already knew the info, you should
1406: use `PetscSFBcastWithMemTypeBegin()` instead.
1408: .seealso: `PetscSF`, `PetscSFBcastEnd()`, `PetscSFBcastWithMemTypeBegin()`
1409: @*/
1410: PetscErrorCode PetscSFBcastBegin(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata, MPI_Op op)
1411: {
1412: PetscMemType rootmtype, leafmtype;
1414: PetscFunctionBegin;
1416: PetscCall(PetscSFSetUp(sf));
1417: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
1418: PetscCall(PetscGetMemType(rootdata, &rootmtype));
1419: PetscCall(PetscGetMemType(leafdata, &leafmtype));
1420: PetscUseTypeMethod(sf, BcastBegin, unit, rootmtype, rootdata, leafmtype, leafdata, op);
1421: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
1422: PetscFunctionReturn(PETSC_SUCCESS);
1423: }
1425: /*@C
1426: PetscSFBcastWithMemTypeBegin - begin pointwise broadcast with root value being reduced to leaf value with explicit memory types, to be concluded with call to `PetscSFBcastEnd()`
1428: Collective
1430: Input Parameters:
1431: + sf - star forest on which to communicate
1432: . unit - data type associated with each node
1433: . rootmtype - memory type of rootdata
1434: . rootdata - buffer to broadcast
1435: . leafmtype - memory type of leafdata
1436: - op - operation to use for reduction
1438: Output Parameter:
1439: . leafdata - buffer to be reduced with values from each leaf's respective root
1441: Level: intermediate
1443: .seealso: `PetscSF`, `PetscSFBcastEnd()`, `PetscSFBcastBegin()`
1444: @*/
1445: PetscErrorCode PetscSFBcastWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType rootmtype, const void *rootdata, PetscMemType leafmtype, void *leafdata, MPI_Op op)
1446: {
1447: PetscFunctionBegin;
1449: PetscCall(PetscSFSetUp(sf));
1450: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
1451: PetscUseTypeMethod(sf, BcastBegin, unit, rootmtype, rootdata, leafmtype, leafdata, op);
1452: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
1453: PetscFunctionReturn(PETSC_SUCCESS);
1454: }
1456: /*@C
1457: PetscSFBcastEnd - end a broadcast & reduce operation started with `PetscSFBcastBegin()`
1459: Collective
1461: Input Parameters:
1462: + sf - star forest
1463: . unit - data type
1464: . rootdata - buffer to broadcast
1465: - op - operation to use for reduction
1467: Output Parameter:
1468: . leafdata - buffer to be reduced with values from each leaf's respective root
1470: Level: intermediate
1472: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFReduceEnd()`
1473: @*/
1474: PetscErrorCode PetscSFBcastEnd(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata, MPI_Op op)
1475: {
1476: PetscFunctionBegin;
1478: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastEnd, sf, 0, 0, 0));
1479: PetscUseTypeMethod(sf, BcastEnd, unit, rootdata, leafdata, op);
1480: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastEnd, sf, 0, 0, 0));
1481: PetscFunctionReturn(PETSC_SUCCESS);
1482: }
1484: /*@C
1485: PetscSFReduceBegin - begin reduction of leafdata into rootdata, to be completed with call to `PetscSFReduceEnd()`
1487: Collective
1489: Input Parameters:
1490: + sf - star forest
1491: . unit - data type
1492: . leafdata - values to reduce
1493: - op - reduction operation
1495: Output Parameter:
1496: . rootdata - result of reduction of values from all leaves of each root
1498: Level: intermediate
1500: Notes:
1501: When petsc is configured with device support, it will use its own mechanism to figure out whether the given data pointers
1502: are host pointers or device pointers, which may incur a noticeable cost. If you already knew the info, you should
1503: use `PetscSFReduceWithMemTypeBegin()` instead.
1505: .seealso: `PetscSF`, `PetscSFBcastBegin()`, `PetscSFReduceWithMemTypeBegin()`
1506: @*/
1507: PetscErrorCode PetscSFReduceBegin(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *rootdata, MPI_Op op)
1508: {
1509: PetscMemType rootmtype, leafmtype;
1511: PetscFunctionBegin;
1513: PetscCall(PetscSFSetUp(sf));
1514: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1515: PetscCall(PetscGetMemType(rootdata, &rootmtype));
1516: PetscCall(PetscGetMemType(leafdata, &leafmtype));
1517: PetscCall((sf->ops->ReduceBegin)(sf, unit, leafmtype, leafdata, rootmtype, rootdata, op));
1518: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1519: PetscFunctionReturn(PETSC_SUCCESS);
1520: }
1522: /*@C
1523: PetscSFReduceWithMemTypeBegin - begin reduction of leafdata into rootdata with explicit memory types, to be completed with call to `PetscSFReduceEnd()`
1525: Collective
1527: Input Parameters:
1528: + sf - star forest
1529: . unit - data type
1530: . leafmtype - memory type of leafdata
1531: . leafdata - values to reduce
1532: . rootmtype - memory type of rootdata
1533: - op - reduction operation
1535: Output Parameter:
1536: . rootdata - result of reduction of values from all leaves of each root
1538: Level: intermediate
1540: .seealso: `PetscSF`, `PetscSFBcastBegin()`, `PetscSFReduceBegin()`
1541: @*/
1542: PetscErrorCode PetscSFReduceWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType leafmtype, const void *leafdata, PetscMemType rootmtype, void *rootdata, MPI_Op op)
1543: {
1544: PetscFunctionBegin;
1546: PetscCall(PetscSFSetUp(sf));
1547: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1548: PetscCall((sf->ops->ReduceBegin)(sf, unit, leafmtype, leafdata, rootmtype, rootdata, op));
1549: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1550: PetscFunctionReturn(PETSC_SUCCESS);
1551: }
1553: /*@C
1554: PetscSFReduceEnd - end a reduction operation started with `PetscSFReduceBegin()`
1556: Collective
1558: Input Parameters:
1559: + sf - star forest
1560: . unit - data type
1561: . leafdata - values to reduce
1562: - op - reduction operation
1564: Output Parameter:
1565: . rootdata - result of reduction of values from all leaves of each root
1567: Level: intermediate
1569: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFBcastEnd()`
1570: @*/
1571: PetscErrorCode PetscSFReduceEnd(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *rootdata, MPI_Op op)
1572: {
1573: PetscFunctionBegin;
1575: if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceEnd, sf, 0, 0, 0));
1576: PetscUseTypeMethod(sf, ReduceEnd, unit, leafdata, rootdata, op);
1577: if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceEnd, sf, 0, 0, 0));
1578: PetscFunctionReturn(PETSC_SUCCESS);
1579: }
1581: /*@C
1582: PetscSFFetchAndOpBegin - begin operation that fetches values from root and updates atomically by applying operation using my leaf value,
1583: to be completed with `PetscSFFetchAndOpEnd()`
1585: Collective
1587: Input Parameters:
1588: + sf - star forest
1589: . unit - data type
1590: . leafdata - leaf values to use in reduction
1591: - op - operation to use for reduction
1593: Output Parameters:
1594: + rootdata - root values to be updated, input state is seen by first process to perform an update
1595: - leafupdate - state at each leaf's respective root immediately prior to my atomic update
1597: Level: advanced
1599: Note:
1600: The update is only atomic at the granularity provided by the hardware. Different roots referenced by the same process
1601: might be updated in a different order. Furthermore, if a composite type is used for the unit datatype, atomicity is
1602: not guaranteed across the whole vertex. Therefore, this function is mostly only used with primitive types such as
1603: integers.
1605: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFReduceBegin()`, `PetscSFSetGraph()`
1606: @*/
1607: PetscErrorCode PetscSFFetchAndOpBegin(PetscSF sf, MPI_Datatype unit, void *rootdata, const void *leafdata, void *leafupdate, MPI_Op op)
1608: {
1609: PetscMemType rootmtype, leafmtype, leafupdatemtype;
1611: PetscFunctionBegin;
1613: PetscCall(PetscSFSetUp(sf));
1614: PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1615: PetscCall(PetscGetMemType(rootdata, &rootmtype));
1616: PetscCall(PetscGetMemType(leafdata, &leafmtype));
1617: PetscCall(PetscGetMemType(leafupdate, &leafupdatemtype));
1618: PetscCheck(leafmtype == leafupdatemtype, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for leafdata and leafupdate in different memory types");
1619: PetscUseTypeMethod(sf, FetchAndOpBegin, unit, rootmtype, rootdata, leafmtype, leafdata, leafupdate, op);
1620: PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1621: PetscFunctionReturn(PETSC_SUCCESS);
1622: }
1624: /*@C
1625: PetscSFFetchAndOpWithMemTypeBegin - begin operation with explicit memory types that fetches values from root and updates atomically by
1626: applying operation using my leaf value, to be completed with `PetscSFFetchAndOpEnd()`
1628: Collective
1630: Input Parameters:
1631: + sf - star forest
1632: . unit - data type
1633: . rootmtype - memory type of rootdata
1634: . leafmtype - memory type of leafdata
1635: . leafdata - leaf values to use in reduction
1636: . leafupdatemtype - memory type of leafupdate
1637: - op - operation to use for reduction
1639: Output Parameters:
1640: + rootdata - root values to be updated, input state is seen by first process to perform an update
1641: - leafupdate - state at each leaf's respective root immediately prior to my atomic update
1643: Level: advanced
1645: Note:
1646: See `PetscSFFetchAndOpBegin()` for more details.
1648: .seealso: `PetscSF`, `PetscSFFetchAndOpBegin()`, `PetscSFComputeDegreeBegin()`, `PetscSFReduceBegin()`, `PetscSFSetGraph()`
1649: @*/
1650: PetscErrorCode PetscSFFetchAndOpWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType rootmtype, void *rootdata, PetscMemType leafmtype, const void *leafdata, PetscMemType leafupdatemtype, void *leafupdate, MPI_Op op)
1651: {
1652: PetscFunctionBegin;
1654: PetscCall(PetscSFSetUp(sf));
1655: PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1656: PetscCheck(leafmtype == leafupdatemtype, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for leafdata and leafupdate in different memory types");
1657: PetscUseTypeMethod(sf, FetchAndOpBegin, unit, rootmtype, rootdata, leafmtype, leafdata, leafupdate, op);
1658: PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1659: PetscFunctionReturn(PETSC_SUCCESS);
1660: }
1662: /*@C
1663: PetscSFFetchAndOpEnd - end operation started in matching call to PetscSFFetchAndOpBegin() to fetch values from roots and update atomically by applying operation using my leaf value
1665: Collective
1667: Input Parameters:
1668: + sf - star forest
1669: . unit - data type
1670: . leafdata - leaf values to use in reduction
1671: - op - operation to use for reduction
1673: Output Parameters:
1674: + rootdata - root values to be updated, input state is seen by first process to perform an update
1675: - leafupdate - state at each leaf's respective root immediately prior to my atomic update
1677: Level: advanced
1679: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFReduceEnd()`, `PetscSFSetGraph()`
1680: @*/
1681: PetscErrorCode PetscSFFetchAndOpEnd(PetscSF sf, MPI_Datatype unit, void *rootdata, const void *leafdata, void *leafupdate, MPI_Op op)
1682: {
1683: PetscFunctionBegin;
1685: PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpEnd, sf, 0, 0, 0));
1686: PetscUseTypeMethod(sf, FetchAndOpEnd, unit, rootdata, leafdata, leafupdate, op);
1687: PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpEnd, sf, 0, 0, 0));
1688: PetscFunctionReturn(PETSC_SUCCESS);
1689: }
1691: /*@C
1692: PetscSFComputeDegreeBegin - begin computation of degree for each root vertex, to be completed with `PetscSFComputeDegreeEnd()`
1694: Collective
1696: Input Parameter:
1697: . sf - star forest
1699: Output Parameter:
1700: . degree - degree of each root vertex
1702: Level: advanced
1704: Note:
1705: The returned array is owned by `PetscSF` and automatically freed by `PetscSFDestroy()`. Hence no need to call `PetscFree()` on it.
1707: .seealso: `PetscSF`, `PetscSFGatherBegin()`, `PetscSFComputeDegreeEnd()`
1708: @*/
1709: PetscErrorCode PetscSFComputeDegreeBegin(PetscSF sf, const PetscInt **degree)
1710: {
1711: PetscFunctionBegin;
1713: PetscSFCheckGraphSet(sf, 1);
1715: if (!sf->degreeknown) {
1716: PetscInt i, nroots = sf->nroots, maxlocal;
1717: PetscCheck(!sf->degree, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Calls to PetscSFComputeDegreeBegin() cannot be nested.");
1718: maxlocal = sf->maxleaf - sf->minleaf + 1;
1719: PetscCall(PetscMalloc1(nroots, &sf->degree));
1720: PetscCall(PetscMalloc1(PetscMax(maxlocal, 1), &sf->degreetmp)); /* allocate at least one entry, see check in PetscSFComputeDegreeEnd() */
1721: for (i = 0; i < nroots; i++) sf->degree[i] = 0;
1722: for (i = 0; i < maxlocal; i++) sf->degreetmp[i] = 1;
1723: PetscCall(PetscSFReduceBegin(sf, MPIU_INT, sf->degreetmp - sf->minleaf, sf->degree, MPI_SUM));
1724: }
1725: *degree = NULL;
1726: PetscFunctionReturn(PETSC_SUCCESS);
1727: }
1729: /*@C
1730: PetscSFComputeDegreeEnd - complete computation of degree for each root vertex, started with `PetscSFComputeDegreeBegin()`
1732: Collective
1734: Input Parameter:
1735: . sf - star forest
1737: Output Parameter:
1738: . degree - degree of each root vertex
1740: Level: developer
1742: Note:
1743: The returned array is owned by `PetscSF` and automatically freed by `PetscSFDestroy()`. Hence no need to call `PetscFree()` on it.
1745: .seealso: `PetscSF`, `PetscSFGatherBegin()`, `PetscSFComputeDegreeBegin()`
1746: @*/
1747: PetscErrorCode PetscSFComputeDegreeEnd(PetscSF sf, const PetscInt **degree)
1748: {
1749: PetscFunctionBegin;
1751: PetscSFCheckGraphSet(sf, 1);
1753: if (!sf->degreeknown) {
1754: PetscCheck(sf->degreetmp, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFComputeDegreeBegin() before PetscSFComputeDegreeEnd()");
1755: PetscCall(PetscSFReduceEnd(sf, MPIU_INT, sf->degreetmp - sf->minleaf, sf->degree, MPI_SUM));
1756: PetscCall(PetscFree(sf->degreetmp));
1757: sf->degreeknown = PETSC_TRUE;
1758: }
1759: *degree = sf->degree;
1760: PetscFunctionReturn(PETSC_SUCCESS);
1761: }
1763: /*@C
1764: PetscSFComputeMultiRootOriginalNumbering - Returns original numbering of multi-roots (roots of multi-SF returned by `PetscSFGetMultiSF()`).
1765: Each multi-root is assigned index of the corresponding original root.
1767: Collective
1769: Input Parameters:
1770: + sf - star forest
1771: - degree - degree of each root vertex, computed with `PetscSFComputeDegreeBegin()`/`PetscSFComputeDegreeEnd()`
1773: Output Parameters:
1774: + nMultiRoots - (optional) number of multi-roots (roots of multi-SF)
1775: - multiRootsOrigNumbering - original indices of multi-roots; length of this array is nMultiRoots
1777: Level: developer
1779: Note:
1780: The returned array multiRootsOrigNumbering is newly allocated and should be destroyed with `PetscFree()` when no longer needed.
1782: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFComputeDegreeEnd()`, `PetscSFGetMultiSF()`
1783: @*/
1784: PetscErrorCode PetscSFComputeMultiRootOriginalNumbering(PetscSF sf, const PetscInt degree[], PetscInt *nMultiRoots, PetscInt *multiRootsOrigNumbering[])
1785: {
1786: PetscSF msf;
1787: PetscInt i, j, k, nroots, nmroots;
1789: PetscFunctionBegin;
1791: PetscCall(PetscSFGetGraph(sf, &nroots, NULL, NULL, NULL));
1795: PetscCall(PetscSFGetMultiSF(sf, &msf));
1796: PetscCall(PetscSFGetGraph(msf, &nmroots, NULL, NULL, NULL));
1797: PetscCall(PetscMalloc1(nmroots, multiRootsOrigNumbering));
1798: for (i = 0, j = 0, k = 0; i < nroots; i++) {
1799: if (!degree[i]) continue;
1800: for (j = 0; j < degree[i]; j++, k++) (*multiRootsOrigNumbering)[k] = i;
1801: }
1802: PetscCheck(k == nmroots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "sanity check fail");
1803: if (nMultiRoots) *nMultiRoots = nmroots;
1804: PetscFunctionReturn(PETSC_SUCCESS);
1805: }
1807: /*@C
1808: PetscSFGatherBegin - begin pointwise gather of all leaves into multi-roots, to be completed with `PetscSFGatherEnd()`
1810: Collective
1812: Input Parameters:
1813: + sf - star forest
1814: . unit - data type
1815: - leafdata - leaf data to gather to roots
1817: Output Parameter:
1818: . multirootdata - root buffer to gather into, amount of space per root is equal to its degree
1820: Level: intermediate
1822: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFScatterBegin()`
1823: @*/
1824: PetscErrorCode PetscSFGatherBegin(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *multirootdata)
1825: {
1826: PetscSF multi = NULL;
1828: PetscFunctionBegin;
1830: PetscCall(PetscSFSetUp(sf));
1831: PetscCall(PetscSFGetMultiSF(sf, &multi));
1832: PetscCall(PetscSFReduceBegin(multi, unit, leafdata, multirootdata, MPI_REPLACE));
1833: PetscFunctionReturn(PETSC_SUCCESS);
1834: }
1836: /*@C
1837: PetscSFGatherEnd - ends pointwise gather operation that was started with `PetscSFGatherBegin()`
1839: Collective
1841: Input Parameters:
1842: + sf - star forest
1843: . unit - data type
1844: - leafdata - leaf data to gather to roots
1846: Output Parameter:
1847: . multirootdata - root buffer to gather into, amount of space per root is equal to its degree
1849: Level: intermediate
1851: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFScatterEnd()`
1852: @*/
1853: PetscErrorCode PetscSFGatherEnd(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *multirootdata)
1854: {
1855: PetscSF multi = NULL;
1857: PetscFunctionBegin;
1859: PetscCall(PetscSFGetMultiSF(sf, &multi));
1860: PetscCall(PetscSFReduceEnd(multi, unit, leafdata, multirootdata, MPI_REPLACE));
1861: PetscFunctionReturn(PETSC_SUCCESS);
1862: }
1864: /*@C
1865: PetscSFScatterBegin - begin pointwise scatter operation from multi-roots to leaves, to be completed with `PetscSFScatterEnd()`
1867: Collective
1869: Input Parameters:
1870: + sf - star forest
1871: . unit - data type
1872: - multirootdata - root buffer to send to each leaf, one unit of data per leaf
1874: Output Parameter:
1875: . leafdata - leaf data to be update with personal data from each respective root
1877: Level: intermediate
1879: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFScatterBegin()`
1880: @*/
1881: PetscErrorCode PetscSFScatterBegin(PetscSF sf, MPI_Datatype unit, const void *multirootdata, void *leafdata)
1882: {
1883: PetscSF multi = NULL;
1885: PetscFunctionBegin;
1887: PetscCall(PetscSFSetUp(sf));
1888: PetscCall(PetscSFGetMultiSF(sf, &multi));
1889: PetscCall(PetscSFBcastBegin(multi, unit, multirootdata, leafdata, MPI_REPLACE));
1890: PetscFunctionReturn(PETSC_SUCCESS);
1891: }
1893: /*@C
1894: PetscSFScatterEnd - ends pointwise scatter operation that was started with `PetscSFScatterBegin()`
1896: Collective
1898: Input Parameters:
1899: + sf - star forest
1900: . unit - data type
1901: - multirootdata - root buffer to send to each leaf, one unit of data per leaf
1903: Output Parameter:
1904: . leafdata - leaf data to be update with personal data from each respective root
1906: Level: intermediate
1908: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFScatterEnd()`
1909: @*/
1910: PetscErrorCode PetscSFScatterEnd(PetscSF sf, MPI_Datatype unit, const void *multirootdata, void *leafdata)
1911: {
1912: PetscSF multi = NULL;
1914: PetscFunctionBegin;
1916: PetscCall(PetscSFGetMultiSF(sf, &multi));
1917: PetscCall(PetscSFBcastEnd(multi, unit, multirootdata, leafdata, MPI_REPLACE));
1918: PetscFunctionReturn(PETSC_SUCCESS);
1919: }
1921: static PetscErrorCode PetscSFCheckLeavesUnique_Private(PetscSF sf)
1922: {
1923: PetscInt i, n, nleaves;
1924: const PetscInt *ilocal = NULL;
1925: PetscHSetI seen;
1927: PetscFunctionBegin;
1928: if (PetscDefined(USE_DEBUG)) {
1929: PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &ilocal, NULL));
1930: PetscCall(PetscHSetICreate(&seen));
1931: for (i = 0; i < nleaves; i++) {
1932: const PetscInt leaf = ilocal ? ilocal[i] : i;
1933: PetscCall(PetscHSetIAdd(seen, leaf));
1934: }
1935: PetscCall(PetscHSetIGetSize(seen, &n));
1936: PetscCheck(n == nleaves, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided leaves have repeated values: all leaves must be unique");
1937: PetscCall(PetscHSetIDestroy(&seen));
1938: }
1939: PetscFunctionReturn(PETSC_SUCCESS);
1940: }
1942: /*@
1943: PetscSFCompose - Compose a new `PetscSF` by putting the second `PetscSF` under the first one in a top (roots) down (leaves) view
1945: Input Parameters:
1946: + sfA - The first `PetscSF`
1947: - sfB - The second `PetscSF`
1949: Output Parameters:
1950: . sfBA - The composite `PetscSF`
1952: Level: developer
1954: Notes:
1955: Currently, the two `PetscSF`s must be defined on congruent communicators and they must be true star
1956: forests, i.e. the same leaf is not connected with different roots.
1958: sfA's leaf space and sfB's root space might be partially overlapped. The composition builds
1959: a graph with sfA's roots and sfB's leaves only when there is a path between them. Unconnected
1960: nodes (roots or leaves) are not in sfBA. Doing a Bcast on the new SF is equivalent to doing a
1961: Bcast on sfA, then a Bcast on sfB, on connected nodes.
1963: .seealso: `PetscSF`, `PetscSFComposeInverse()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`
1964: @*/
1965: PetscErrorCode PetscSFCompose(PetscSF sfA, PetscSF sfB, PetscSF *sfBA)
1966: {
1967: const PetscSFNode *remotePointsA, *remotePointsB;
1968: PetscSFNode *remotePointsBA = NULL, *reorderedRemotePointsA = NULL, *leafdataB;
1969: const PetscInt *localPointsA, *localPointsB;
1970: PetscInt *localPointsBA;
1971: PetscInt i, numRootsA, numLeavesA, numRootsB, numLeavesB, minleaf, maxleaf, numLeavesBA;
1972: PetscBool denseB;
1974: PetscFunctionBegin;
1976: PetscSFCheckGraphSet(sfA, 1);
1978: PetscSFCheckGraphSet(sfB, 2);
1979: PetscCheckSameComm(sfA, 1, sfB, 2);
1981: PetscCall(PetscSFCheckLeavesUnique_Private(sfA));
1982: PetscCall(PetscSFCheckLeavesUnique_Private(sfB));
1984: PetscCall(PetscSFGetGraph(sfA, &numRootsA, &numLeavesA, &localPointsA, &remotePointsA));
1985: PetscCall(PetscSFGetGraph(sfB, &numRootsB, &numLeavesB, &localPointsB, &remotePointsB));
1986: /* Make sure that PetscSFBcast{Begin, End}(sfB, ...) works with root data of size */
1987: /* numRootsB; otherwise, garbage will be broadcasted. */
1988: /* Example (comm size = 1): */
1989: /* sfA: 0 <- (0, 0) */
1990: /* sfB: 100 <- (0, 0) */
1991: /* 101 <- (0, 1) */
1992: /* Here, we have remotePointsA = [(0, 0)], but for remotePointsA to be a valid tartget */
1993: /* of sfB, it has to be recasted as [(0, 0), (-1, -1)] so that points 100 and 101 would */
1994: /* receive (0, 0) and (-1, -1), respectively, when PetscSFBcast(sfB, ...) is called on */
1995: /* remotePointsA; if not recasted, point 101 would receive a garbage value. */
1996: PetscCall(PetscMalloc1(numRootsB, &reorderedRemotePointsA));
1997: for (i = 0; i < numRootsB; i++) {
1998: reorderedRemotePointsA[i].rank = -1;
1999: reorderedRemotePointsA[i].index = -1;
2000: }
2001: for (i = 0; i < numLeavesA; i++) {
2002: PetscInt localp = localPointsA ? localPointsA[i] : i;
2004: if (localp >= numRootsB) continue;
2005: reorderedRemotePointsA[localp] = remotePointsA[i];
2006: }
2007: remotePointsA = reorderedRemotePointsA;
2008: PetscCall(PetscSFGetLeafRange(sfB, &minleaf, &maxleaf));
2009: PetscCall(PetscMalloc1(maxleaf - minleaf + 1, &leafdataB));
2010: for (i = 0; i < maxleaf - minleaf + 1; i++) {
2011: leafdataB[i].rank = -1;
2012: leafdataB[i].index = -1;
2013: }
2014: PetscCall(PetscSFBcastBegin(sfB, MPIU_2INT, remotePointsA, leafdataB - minleaf, MPI_REPLACE));
2015: PetscCall(PetscSFBcastEnd(sfB, MPIU_2INT, remotePointsA, leafdataB - minleaf, MPI_REPLACE));
2016: PetscCall(PetscFree(reorderedRemotePointsA));
2018: denseB = (PetscBool)!localPointsB;
2019: for (i = 0, numLeavesBA = 0; i < numLeavesB; i++) {
2020: if (leafdataB[localPointsB ? localPointsB[i] - minleaf : i].rank == -1) denseB = PETSC_FALSE;
2021: else numLeavesBA++;
2022: }
2023: if (denseB) {
2024: localPointsBA = NULL;
2025: remotePointsBA = leafdataB;
2026: } else {
2027: PetscCall(PetscMalloc1(numLeavesBA, &localPointsBA));
2028: PetscCall(PetscMalloc1(numLeavesBA, &remotePointsBA));
2029: for (i = 0, numLeavesBA = 0; i < numLeavesB; i++) {
2030: const PetscInt l = localPointsB ? localPointsB[i] : i;
2032: if (leafdataB[l - minleaf].rank == -1) continue;
2033: remotePointsBA[numLeavesBA] = leafdataB[l - minleaf];
2034: localPointsBA[numLeavesBA] = l;
2035: numLeavesBA++;
2036: }
2037: PetscCall(PetscFree(leafdataB));
2038: }
2039: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sfA), sfBA));
2040: PetscCall(PetscSFSetFromOptions(*sfBA));
2041: PetscCall(PetscSFSetGraph(*sfBA, numRootsA, numLeavesBA, localPointsBA, PETSC_OWN_POINTER, remotePointsBA, PETSC_OWN_POINTER));
2042: PetscFunctionReturn(PETSC_SUCCESS);
2043: }
2045: /*@
2046: PetscSFComposeInverse - Compose a new `PetscSF` by putting the inverse of the second `PetscSF` under the first one
2048: Input Parameters:
2049: + sfA - The first `PetscSF`
2050: - sfB - The second `PetscSF`
2052: Output Parameters:
2053: . sfBA - The composite `PetscSF`.
2055: Level: developer
2057: Notes:
2058: Currently, the two SFs must be defined on congruent communicators and they must be true star
2059: forests, i.e. the same leaf is not connected with different roots. Even more, all roots of the
2060: second SF must have a degree of 1, i.e., no roots have more than one leaf connected.
2062: sfA's leaf space and sfB's leaf space might be partially overlapped. The composition builds
2063: a graph with sfA's roots and sfB's roots only when there is a path between them. Unconnected
2064: roots are not in sfBA. Doing a Bcast on the new SF is equivalent to doing a Bcast on sfA, then
2065: a Reduce on sfB, on connected roots.
2067: .seealso: `PetscSF`, `PetscSFCompose()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`, `PetscSFCreateInverseSF()`
2068: @*/
2069: PetscErrorCode PetscSFComposeInverse(PetscSF sfA, PetscSF sfB, PetscSF *sfBA)
2070: {
2071: const PetscSFNode *remotePointsA, *remotePointsB;
2072: PetscSFNode *remotePointsBA;
2073: const PetscInt *localPointsA, *localPointsB;
2074: PetscSFNode *reorderedRemotePointsA = NULL;
2075: PetscInt i, numRootsA, numLeavesA, numLeavesBA, numRootsB, numLeavesB, minleaf, maxleaf, *localPointsBA;
2076: MPI_Op op;
2077: #if defined(PETSC_USE_64BIT_INDICES)
2078: PetscBool iswin;
2079: #endif
2081: PetscFunctionBegin;
2083: PetscSFCheckGraphSet(sfA, 1);
2085: PetscSFCheckGraphSet(sfB, 2);
2086: PetscCheckSameComm(sfA, 1, sfB, 2);
2088: PetscCall(PetscSFCheckLeavesUnique_Private(sfA));
2089: PetscCall(PetscSFCheckLeavesUnique_Private(sfB));
2091: PetscCall(PetscSFGetGraph(sfA, &numRootsA, &numLeavesA, &localPointsA, &remotePointsA));
2092: PetscCall(PetscSFGetGraph(sfB, &numRootsB, &numLeavesB, &localPointsB, &remotePointsB));
2094: /* TODO: Check roots of sfB have degree of 1 */
2095: /* Once we implement it, we can replace the MPI_MAXLOC
2096: with MPI_REPLACE. In that case, MPI_MAXLOC and MPI_REPLACE have the same effect.
2097: We use MPI_MAXLOC only to have a deterministic output from this routine if
2098: the root condition is not meet.
2099: */
2100: op = MPI_MAXLOC;
2101: #if defined(PETSC_USE_64BIT_INDICES)
2102: /* we accept a non-deterministic output (if any) with PETSCSFWINDOW, since MPI_MAXLOC cannot operate on MPIU_2INT with MPI_Accumulate */
2103: PetscCall(PetscObjectTypeCompare((PetscObject)sfB, PETSCSFWINDOW, &iswin));
2104: if (iswin) op = MPI_REPLACE;
2105: #endif
2107: PetscCall(PetscSFGetLeafRange(sfB, &minleaf, &maxleaf));
2108: PetscCall(PetscMalloc1(maxleaf - minleaf + 1, &reorderedRemotePointsA));
2109: for (i = 0; i < maxleaf - minleaf + 1; i++) {
2110: reorderedRemotePointsA[i].rank = -1;
2111: reorderedRemotePointsA[i].index = -1;
2112: }
2113: if (localPointsA) {
2114: for (i = 0; i < numLeavesA; i++) {
2115: if (localPointsA[i] > maxleaf || localPointsA[i] < minleaf) continue;
2116: reorderedRemotePointsA[localPointsA[i] - minleaf] = remotePointsA[i];
2117: }
2118: } else {
2119: for (i = 0; i < numLeavesA; i++) {
2120: if (i > maxleaf || i < minleaf) continue;
2121: reorderedRemotePointsA[i - minleaf] = remotePointsA[i];
2122: }
2123: }
2125: PetscCall(PetscMalloc1(numRootsB, &localPointsBA));
2126: PetscCall(PetscMalloc1(numRootsB, &remotePointsBA));
2127: for (i = 0; i < numRootsB; i++) {
2128: remotePointsBA[i].rank = -1;
2129: remotePointsBA[i].index = -1;
2130: }
2132: PetscCall(PetscSFReduceBegin(sfB, MPIU_2INT, reorderedRemotePointsA - minleaf, remotePointsBA, op));
2133: PetscCall(PetscSFReduceEnd(sfB, MPIU_2INT, reorderedRemotePointsA - minleaf, remotePointsBA, op));
2134: PetscCall(PetscFree(reorderedRemotePointsA));
2135: for (i = 0, numLeavesBA = 0; i < numRootsB; i++) {
2136: if (remotePointsBA[i].rank == -1) continue;
2137: remotePointsBA[numLeavesBA].rank = remotePointsBA[i].rank;
2138: remotePointsBA[numLeavesBA].index = remotePointsBA[i].index;
2139: localPointsBA[numLeavesBA] = i;
2140: numLeavesBA++;
2141: }
2142: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sfA), sfBA));
2143: PetscCall(PetscSFSetFromOptions(*sfBA));
2144: PetscCall(PetscSFSetGraph(*sfBA, numRootsA, numLeavesBA, localPointsBA, PETSC_OWN_POINTER, remotePointsBA, PETSC_OWN_POINTER));
2145: PetscFunctionReturn(PETSC_SUCCESS);
2146: }
2148: /*
2149: PetscSFCreateLocalSF_Private - Creates a local `PetscSF` that only has intra-process edges of the global `PetscSF`
2151: Input Parameters:
2152: . sf - The global `PetscSF`
2154: Output Parameters:
2155: . out - The local `PetscSF`
2157: .seealso: `PetscSF`, `PetscSFCreate()`
2158: */
2159: PetscErrorCode PetscSFCreateLocalSF_Private(PetscSF sf, PetscSF *out)
2160: {
2161: MPI_Comm comm;
2162: PetscMPIInt myrank;
2163: const PetscInt *ilocal;
2164: const PetscSFNode *iremote;
2165: PetscInt i, j, nroots, nleaves, lnleaves, *lilocal;
2166: PetscSFNode *liremote;
2167: PetscSF lsf;
2169: PetscFunctionBegin;
2171: if (sf->ops->CreateLocalSF) PetscUseTypeMethod(sf, CreateLocalSF, out);
2172: else {
2173: /* Could use PetscSFCreateEmbeddedLeafSF, but since we know the comm is PETSC_COMM_SELF, we can make it fast */
2174: PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
2175: PetscCallMPI(MPI_Comm_rank(comm, &myrank));
2177: /* Find out local edges and build a local SF */
2178: PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));
2179: for (i = lnleaves = 0; i < nleaves; i++) {
2180: if (iremote[i].rank == (PetscInt)myrank) lnleaves++;
2181: }
2182: PetscCall(PetscMalloc1(lnleaves, &lilocal));
2183: PetscCall(PetscMalloc1(lnleaves, &liremote));
2185: for (i = j = 0; i < nleaves; i++) {
2186: if (iremote[i].rank == (PetscInt)myrank) {
2187: lilocal[j] = ilocal ? ilocal[i] : i; /* ilocal=NULL for contiguous storage */
2188: liremote[j].rank = 0; /* rank in PETSC_COMM_SELF */
2189: liremote[j].index = iremote[i].index;
2190: j++;
2191: }
2192: }
2193: PetscCall(PetscSFCreate(PETSC_COMM_SELF, &lsf));
2194: PetscCall(PetscSFSetFromOptions(lsf));
2195: PetscCall(PetscSFSetGraph(lsf, nroots, lnleaves, lilocal, PETSC_OWN_POINTER, liremote, PETSC_OWN_POINTER));
2196: PetscCall(PetscSFSetUp(lsf));
2197: *out = lsf;
2198: }
2199: PetscFunctionReturn(PETSC_SUCCESS);
2200: }
2202: /* Similar to PetscSFBcast, but only Bcast to leaves on rank 0 */
2203: PetscErrorCode PetscSFBcastToZero_Private(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata)
2204: {
2205: PetscMemType rootmtype, leafmtype;
2207: PetscFunctionBegin;
2209: PetscCall(PetscSFSetUp(sf));
2210: PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
2211: PetscCall(PetscGetMemType(rootdata, &rootmtype));
2212: PetscCall(PetscGetMemType(leafdata, &leafmtype));
2213: PetscUseTypeMethod(sf, BcastToZero, unit, rootmtype, rootdata, leafmtype, leafdata);
2214: PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
2215: PetscFunctionReturn(PETSC_SUCCESS);
2216: }
2218: /*@
2219: PetscSFConcatenate - concatenate multiple `PetscSF` into one
2221: Input Parameters:
2222: + comm - the communicator
2223: . nsfs - the number of input `PetscSF`
2224: . sfs - the array of input `PetscSF`
2225: . rootMode - the root mode specifying how roots are handled
2226: - leafOffsets - the array of local leaf offsets, one for each input `PetscSF`, or NULL for contiguous storage
2228: Output Parameters:
2229: . newsf - The resulting `PetscSF`
2231: Level: advanced
2233: Notes:
2234: The communicator of all SFs in sfs must be comm.
2236: Leaves are always concatenated locally, keeping them ordered by the input SF index and original local order.
2237: The offsets in leafOffsets are added to the original leaf indices.
2238: If all input SFs use contiguous leaf storage (ilocal = NULL), leafOffsets can be passed as NULL as well.
2239: In this case, NULL is also passed as ilocal to the resulting SF.
2240: If any input SF has non-null ilocal, leafOffsets is needed to distinguish leaves from different input SFs.
2241: In this case, user is responsible to provide correct offsets so that the resulting leaves are unique (otherwise an error occurs).
2243: All root modes retain the essential connectivity condition:
2244: If two leaves of the same input SF are connected (sharing the same root), they are also connected in the output SF.
2245: Parameter rootMode controls how the input root spaces are combined.
2246: For `PETSCSF_CONCATENATE_../../../../..MODE_SHARED`, the root space is considered the same for each input SF (checked in debug mode) and is also the same in the output SF.
2247: For `PETSCSF_CONCATENATE_../../../../..MODE_LOCAL` and `PETSCSF_CONCATENATE_../../../../..MODE_GLOBAL`, the input root spaces are taken as separate and joined.
2248: `PETSCSF_CONCATENATE_../../../../..MODE_LOCAL` joins the root spaces locally;
2249: roots of sfs[0], sfs[1], sfs[2], ... are joined on each rank separately, ordered by input SF and original local index, and renumbered contiguously.
2250: `PETSCSF_CONCATENATE_../../../../..MODE_GLOBAL` joins the root spaces globally;
2251: roots of sfs[0], sfs[1], sfs[2, ... are joined globally, ordered by input SF index and original global index, and renumbered contiguously;
2252: the original root ranks are ignored.
2253: For both `PETSCSF_CONCATENATE_../../../../..MODE_LOCAL` and `PETSCSF_CONCATENATE_../../../../..MODE_GLOBAL`,
2254: the output SF's root layout is such that the local number of roots is a sum of the input SF's local numbers of roots on each rank to keep the load balancing.
2255: However, for `PETSCSF_CONCATENATE_../../../../..MODE_GLOBAL`, that means roots can move to different ranks.
2257: Example:
2258: We can use src/vec/is/sf/tests/ex18.c to compare the root modes. By running
2259: $ make -C $PETSC_DIR/src/vec/is/sf/tests ex18
2260: $ for m in {local,global,shared}; do
2261: $ mpirun -n 2 $PETSC_DIR/src/vec/is/sf/tests/ex18 -nsfs 2 -n 2 -root_mode $m -sf_view
2262: $ done
2263: we generate two identical SFs sf_0 and sf_1,
2264: $ PetscSF Object: sf_0 2 MPI processes
2265: $ type: basic
2266: $ rank #leaves #roots
2267: $ [ 0] 4 2
2268: $ [ 1] 4 2
2269: $ leaves roots roots in global numbering
2270: $ ( 0, 0) <- ( 0, 0) = 0
2271: $ ( 0, 1) <- ( 0, 1) = 1
2272: $ ( 0, 2) <- ( 1, 0) = 2
2273: $ ( 0, 3) <- ( 1, 1) = 3
2274: $ ( 1, 0) <- ( 0, 0) = 0
2275: $ ( 1, 1) <- ( 0, 1) = 1
2276: $ ( 1, 2) <- ( 1, 0) = 2
2277: $ ( 1, 3) <- ( 1, 1) = 3
2278: and pass them to `PetscSFConcatenate()` along with different choices of rootMode, yielding different result_sf:
2279: $ rootMode = local:
2280: $ PetscSF Object: result_sf 2 MPI processes
2281: $ type: basic
2282: $ rank #leaves #roots
2283: $ [ 0] 8 4
2284: $ [ 1] 8 4
2285: $ leaves roots roots in global numbering
2286: $ ( 0, 0) <- ( 0, 0) = 0
2287: $ ( 0, 1) <- ( 0, 1) = 1
2288: $ ( 0, 2) <- ( 1, 0) = 4
2289: $ ( 0, 3) <- ( 1, 1) = 5
2290: $ ( 0, 4) <- ( 0, 2) = 2
2291: $ ( 0, 5) <- ( 0, 3) = 3
2292: $ ( 0, 6) <- ( 1, 2) = 6
2293: $ ( 0, 7) <- ( 1, 3) = 7
2294: $ ( 1, 0) <- ( 0, 0) = 0
2295: $ ( 1, 1) <- ( 0, 1) = 1
2296: $ ( 1, 2) <- ( 1, 0) = 4
2297: $ ( 1, 3) <- ( 1, 1) = 5
2298: $ ( 1, 4) <- ( 0, 2) = 2
2299: $ ( 1, 5) <- ( 0, 3) = 3
2300: $ ( 1, 6) <- ( 1, 2) = 6
2301: $ ( 1, 7) <- ( 1, 3) = 7
2302: $
2303: $ rootMode = global:
2304: $ PetscSF Object: result_sf 2 MPI processes
2305: $ type: basic
2306: $ rank #leaves #roots
2307: $ [ 0] 8 4
2308: $ [ 1] 8 4
2309: $ leaves roots roots in global numbering
2310: $ ( 0, 0) <- ( 0, 0) = 0
2311: $ ( 0, 1) <- ( 0, 1) = 1
2312: $ ( 0, 2) <- ( 0, 2) = 2
2313: $ ( 0, 3) <- ( 0, 3) = 3
2314: $ ( 0, 4) <- ( 1, 0) = 4
2315: $ ( 0, 5) <- ( 1, 1) = 5
2316: $ ( 0, 6) <- ( 1, 2) = 6
2317: $ ( 0, 7) <- ( 1, 3) = 7
2318: $ ( 1, 0) <- ( 0, 0) = 0
2319: $ ( 1, 1) <- ( 0, 1) = 1
2320: $ ( 1, 2) <- ( 0, 2) = 2
2321: $ ( 1, 3) <- ( 0, 3) = 3
2322: $ ( 1, 4) <- ( 1, 0) = 4
2323: $ ( 1, 5) <- ( 1, 1) = 5
2324: $ ( 1, 6) <- ( 1, 2) = 6
2325: $ ( 1, 7) <- ( 1, 3) = 7
2326: $
2327: $ rootMode = shared:
2328: $ PetscSF Object: result_sf 2 MPI processes
2329: $ type: basic
2330: $ rank #leaves #roots
2331: $ [ 0] 8 2
2332: $ [ 1] 8 2
2333: $ leaves roots roots in global numbering
2334: $ ( 0, 0) <- ( 0, 0) = 0
2335: $ ( 0, 1) <- ( 0, 1) = 1
2336: $ ( 0, 2) <- ( 1, 0) = 2
2337: $ ( 0, 3) <- ( 1, 1) = 3
2338: $ ( 0, 4) <- ( 0, 0) = 0
2339: $ ( 0, 5) <- ( 0, 1) = 1
2340: $ ( 0, 6) <- ( 1, 0) = 2
2341: $ ( 0, 7) <- ( 1, 1) = 3
2342: $ ( 1, 0) <- ( 0, 0) = 0
2343: $ ( 1, 1) <- ( 0, 1) = 1
2344: $ ( 1, 2) <- ( 1, 0) = 2
2345: $ ( 1, 3) <- ( 1, 1) = 3
2346: $ ( 1, 4) <- ( 0, 0) = 0
2347: $ ( 1, 5) <- ( 0, 1) = 1
2348: $ ( 1, 6) <- ( 1, 0) = 2
2349: $ ( 1, 7) <- ( 1, 1) = 3
2351: .seealso: `PetscSF`, `PetscSFCompose()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`, `PetscSFConcatenateRootMode`
2352: @*/
2353: PetscErrorCode PetscSFConcatenate(MPI_Comm comm, PetscInt nsfs, PetscSF sfs[], PetscSFConcatenateRootMode rootMode, PetscInt leafOffsets[], PetscSF *newsf)
2354: {
2355: PetscInt i, s, nLeaves, nRoots;
2356: PetscInt *leafArrayOffsets;
2357: PetscInt *ilocal_new;
2358: PetscSFNode *iremote_new;
2359: PetscBool all_ilocal_null = PETSC_FALSE;
2360: PetscLayout glayout = NULL;
2361: PetscInt *gremote = NULL;
2362: PetscMPIInt rank, size;
2364: PetscFunctionBegin;
2365: if (PetscDefined(USE_DEBUG)) {
2366: PetscSF dummy; /* just to have a PetscObject on comm for input validation */
2368: PetscCall(PetscSFCreate(comm, &dummy));
2371: for (i = 0; i < nsfs; i++) {
2373: PetscCheckSameComm(dummy, 1, sfs[i], 3);
2374: }
2378: PetscCall(PetscSFDestroy(&dummy));
2379: }
2380: if (!nsfs) {
2381: PetscCall(PetscSFCreate(comm, newsf));
2382: PetscCall(PetscSFSetGraph(*newsf, 0, 0, NULL, PETSC_OWN_POINTER, NULL, PETSC_OWN_POINTER));
2383: PetscFunctionReturn(PETSC_SUCCESS);
2384: }
2385: PetscCallMPI(MPI_Comm_rank(comm, &rank));
2386: PetscCallMPI(MPI_Comm_size(comm, &size));
2388: /* Calculate leaf array offsets */
2389: PetscCall(PetscMalloc1(nsfs + 1, &leafArrayOffsets));
2390: leafArrayOffsets[0] = 0;
2391: for (s = 0; s < nsfs; s++) {
2392: PetscInt nl;
2394: PetscCall(PetscSFGetGraph(sfs[s], NULL, &nl, NULL, NULL));
2395: leafArrayOffsets[s + 1] = leafArrayOffsets[s] + nl;
2396: }
2397: nLeaves = leafArrayOffsets[nsfs];
2399: /* Calculate number of roots */
2400: switch (rootMode) {
2401: case PETSCSF_CONCATENATE_../../../../..MODE_SHARED: {
2402: PetscCall(PetscSFGetGraph(sfs[0], &nRoots, NULL, NULL, NULL));
2403: if (PetscDefined(USE_DEBUG)) {
2404: for (s = 1; s < nsfs; s++) {
2405: PetscInt nr;
2407: PetscCall(PetscSFGetGraph(sfs[s], &nr, NULL, NULL, NULL));
2408: PetscCheck(nr == nRoots, comm, PETSC_ERR_ARG_SIZ, "rootMode = %s but sfs[%" PetscInt_FMT "] has a different number of roots (%" PetscInt_FMT ") than sfs[0] (%" PetscInt_FMT ")", PetscSFConcatenateRootModes[rootMode], s, nr, nRoots);
2409: }
2410: }
2411: } break;
2412: case PETSCSF_CONCATENATE_../../../../..MODE_GLOBAL: {
2413: /* Calculate also global layout in this case */
2414: PetscInt *nls;
2415: PetscLayout *lts;
2416: PetscInt **inds;
2417: PetscInt j;
2418: PetscInt rootOffset = 0;
2420: PetscCall(PetscCalloc3(nsfs, <s, nsfs, &nls, nsfs, &inds));
2421: PetscCall(PetscLayoutCreate(comm, &glayout));
2422: glayout->bs = 1;
2423: glayout->n = 0;
2424: glayout->N = 0;
2425: for (s = 0; s < nsfs; s++) {
2426: PetscCall(PetscSFGetGraphLayout(sfs[s], <s[s], &nls[s], NULL, &inds[s]));
2427: glayout->n += lts[s]->n;
2428: glayout->N += lts[s]->N;
2429: }
2430: PetscCall(PetscLayoutSetUp(glayout));
2431: PetscCall(PetscMalloc1(nLeaves, &gremote));
2432: for (s = 0, j = 0; s < nsfs; s++) {
2433: for (i = 0; i < nls[s]; i++, j++) gremote[j] = inds[s][i] + rootOffset;
2434: rootOffset += lts[s]->N;
2435: PetscCall(PetscLayoutDestroy(<s[s]));
2436: PetscCall(PetscFree(inds[s]));
2437: }
2438: PetscCall(PetscFree3(lts, nls, inds));
2439: nRoots = glayout->N;
2440: } break;
2441: case PETSCSF_CONCATENATE_../../../../..MODE_LOCAL:
2442: /* nRoots calculated later in this case */
2443: break;
2444: default:
2445: SETERRQ(comm, PETSC_ERR_ARG_WRONG, "Invalid PetscSFConcatenateRootMode %d", rootMode);
2446: }
2448: if (!leafOffsets) {
2449: all_ilocal_null = PETSC_TRUE;
2450: for (s = 0; s < nsfs; s++) {
2451: const PetscInt *ilocal;
2453: PetscCall(PetscSFGetGraph(sfs[s], NULL, NULL, &ilocal, NULL));
2454: if (ilocal) {
2455: all_ilocal_null = PETSC_FALSE;
2456: break;
2457: }
2458: }
2459: PetscCheck(all_ilocal_null, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "leafOffsets can be passed as NULL only if all SFs have ilocal = NULL");
2460: }
2462: /* Renumber and concatenate local leaves */
2463: ilocal_new = NULL;
2464: if (!all_ilocal_null) {
2465: PetscCall(PetscMalloc1(nLeaves, &ilocal_new));
2466: for (i = 0; i < nLeaves; i++) ilocal_new[i] = -1;
2467: for (s = 0; s < nsfs; s++) {
2468: const PetscInt *ilocal;
2469: PetscInt *ilocal_l = &ilocal_new[leafArrayOffsets[s]];
2470: PetscInt i, nleaves_l;
2472: PetscCall(PetscSFGetGraph(sfs[s], NULL, &nleaves_l, &ilocal, NULL));
2473: for (i = 0; i < nleaves_l; i++) ilocal_l[i] = (ilocal ? ilocal[i] : i) + leafOffsets[s];
2474: }
2475: }
2477: /* Renumber and concatenate remote roots */
2478: if (rootMode == PETSCSF_CONCATENATE_../../../../..MODE_LOCAL || rootMode == PETSCSF_CONCATENATE_../../../../..MODE_SHARED) {
2479: PetscInt rootOffset = 0;
2481: PetscCall(PetscMalloc1(nLeaves, &iremote_new));
2482: for (i = 0; i < nLeaves; i++) {
2483: iremote_new[i].rank = -1;
2484: iremote_new[i].index = -1;
2485: }
2486: for (s = 0; s < nsfs; s++) {
2487: PetscInt i, nl, nr;
2488: PetscSF tmp_sf;
2489: const PetscSFNode *iremote;
2490: PetscSFNode *tmp_rootdata;
2491: PetscSFNode *tmp_leafdata = &iremote_new[leafArrayOffsets[s]];
2493: PetscCall(PetscSFGetGraph(sfs[s], &nr, &nl, NULL, &iremote));
2494: PetscCall(PetscSFCreate(comm, &tmp_sf));
2495: /* create helper SF with contiguous leaves */
2496: PetscCall(PetscSFSetGraph(tmp_sf, nr, nl, NULL, PETSC_USE_POINTER, (PetscSFNode *)iremote, PETSC_COPY_VALUES));
2497: PetscCall(PetscSFSetUp(tmp_sf));
2498: PetscCall(PetscMalloc1(nr, &tmp_rootdata));
2499: if (rootMode == PETSCSF_CONCATENATE_../../../../..MODE_LOCAL) {
2500: for (i = 0; i < nr; i++) {
2501: tmp_rootdata[i].index = i + rootOffset;
2502: tmp_rootdata[i].rank = (PetscInt)rank;
2503: }
2504: rootOffset += nr;
2505: } else {
2506: for (i = 0; i < nr; i++) {
2507: tmp_rootdata[i].index = i;
2508: tmp_rootdata[i].rank = (PetscInt)rank;
2509: }
2510: }
2511: PetscCall(PetscSFBcastBegin(tmp_sf, MPIU_2INT, tmp_rootdata, tmp_leafdata, MPI_REPLACE));
2512: PetscCall(PetscSFBcastEnd(tmp_sf, MPIU_2INT, tmp_rootdata, tmp_leafdata, MPI_REPLACE));
2513: PetscCall(PetscSFDestroy(&tmp_sf));
2514: PetscCall(PetscFree(tmp_rootdata));
2515: }
2516: if (rootMode == PETSCSF_CONCATENATE_../../../../..MODE_LOCAL) nRoots = rootOffset; // else nRoots already calculated above
2518: /* Build the new SF */
2519: PetscCall(PetscSFCreate(comm, newsf));
2520: PetscCall(PetscSFSetGraph(*newsf, nRoots, nLeaves, ilocal_new, PETSC_OWN_POINTER, iremote_new, PETSC_OWN_POINTER));
2521: } else {
2522: /* Build the new SF */
2523: PetscCall(PetscSFCreate(comm, newsf));
2524: PetscCall(PetscSFSetGraphLayout(*newsf, glayout, nLeaves, ilocal_new, PETSC_OWN_POINTER, gremote));
2525: }
2526: PetscCall(PetscSFSetUp(*newsf));
2527: PetscCall(PetscSFViewFromOptions(*newsf, NULL, "-sf_concat_view"));
2528: PetscCall(PetscLayoutDestroy(&glayout));
2529: PetscCall(PetscFree(gremote));
2530: PetscCall(PetscFree(leafArrayOffsets));
2531: PetscFunctionReturn(PETSC_SUCCESS);
2532: }