Actual source code: ex_sharks.c
1: /* Example inspired by the toy example in https://www.r-bloggers.com/2020/06/understanding-lasso-and-ridge-regression-2/
2: * blog post by Dr. Atakan Ekiz.
3: * Here we wish to predict the number of shark attacks (that is, this number is our response variable),
4: * using the following predictor variables:
5: * - percentage of swimmers who watched the movie Jaws
6: * - the number of swimmers in the water
7: * - the average temperature of the day
8: * - the price of your favorite tech stock of the day (totally uncorrelated variable) */
10: static char help[] = "Tests basic creation and destruction of PetscRegressor objects.\n\n";
12: #include <petscregressor.h>
14: int main(int argc, char **args)
15: {
16: PetscRegressor regressor;
17: PetscMPIInt rank;
18: Mat X;
19: Vec y, y_predicted, coefficients;
20: PetscScalar intercept;
22: PetscScalar y_array[20] = {98, 53, 39, 127, 73, 42, 71, 61, 83, 74, 85, 82, 62, 60, 43, 69, 67, 69, 85, 3}; // Number of shark attacks
24: PetscScalar X_array[80] = {37.92934, 513, 92.89899, 137.2139, // % watched Jaws, #swimmers, temperature, stock price
25: 52.77429, 451, 87.86271, 145.7987, //
26: 60.84441, 456, 88.28927, 149.7299, //
27: 26.54302, 546, 89.43875, 147.1180, //
28: 54.29125, 431, 88.01132, 124.3068, //
29: 55.06056, 355, 88.06297, 114.1730, //
30: 44.25260, 557, 87.78536, 112.5773, //
31: 44.53368, 398, 87.49603, 125.1628, //
32: 44.35548, 498, 88.95234, 124.8483, //
33: 41.09962, 406, 89.00630, 115.9223, //
34: 45.22807, 610, 86.38794, 148.1111, //
35: 40.01614, 452, 88.83585, 131.7050, //
36: 42.23746, 429, 87.78222, 106.3717, //
37: 50.64459, 450, 87.97008, 121.1523, //
38: 59.59494, 337, 89.67538, 145.7158, //
39: 48.89715, 383, 91.12611, 123.3896, //
40: 44.88990, 282, 93.29563, 145.4085, //
41: 40.88805, 366, 88.45329, 129.8872, //
42: 41.62828, 471, 93.21182, 131.5871, //
43: 74.15835, 453, 87.68438, 143.4579};
45: PetscInt rows_ix[20] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
46: PetscInt cols_ix[4] = {0, 1, 2, 3};
48: PetscCall(PetscInitialize(&argc, &args, (char *)0, help));
49: PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
51: PetscCall(VecCreate(PETSC_COMM_WORLD, &y));
52: PetscCall(VecSetSizes(y, PETSC_DECIDE, 20));
53: PetscCall(VecSetFromOptions(y));
54: PetscCall(VecDuplicate(y, &y_predicted));
55: PetscCall(MatCreate(PETSC_COMM_WORLD, &X));
56: PetscCall(MatSetSizes(X, PETSC_DECIDE, PETSC_DECIDE, 20, 4));
57: PetscCall(MatSetFromOptions(X));
58: PetscCall(MatSetUp(X));
60: if (!rank) {
61: PetscCall(VecSetValues(y, 20, rows_ix, y_array, INSERT_VALUES));
62: PetscCall(MatSetValues(X, 20, rows_ix, 4, cols_ix, X_array, ADD_VALUES));
63: }
64: PetscCall(VecAssemblyBegin(y));
65: PetscCall(VecAssemblyEnd(y));
66: PetscCall(MatAssemblyBegin(X, MAT_FINAL_ASSEMBLY));
67: PetscCall(MatAssemblyEnd(X, MAT_FINAL_ASSEMBLY));
69: PetscCall(PetscRegressorCreate(PETSC_COMM_WORLD, ®ressor));
70: PetscCall(PetscRegressorSetType(regressor, PETSCREGRESSORLINEAR));
71: PetscRegressorSetFromOptions(regressor);
72: PetscCall(PetscRegressorFit(regressor, X, y));
73: PetscCall(PetscRegressorPredict(regressor, X, y_predicted));
74: PetscCall(PetscRegressorLinearGetIntercept(regressor, &intercept));
75: PetscCall(PetscRegressorLinearGetCoefficients(regressor, &coefficients));
77: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Intercept is %lf\n", intercept));
78: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Coefficients are\n"));
79: PetscCall(VecView(coefficients, PETSC_VIEWER_STDOUT_WORLD));
80: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Predicted values are\n"));
81: PetscCall(VecView(y_predicted, PETSC_VIEWER_STDOUT_WORLD));
83: PetscCall(PetscRegressorDestroy(®ressor));
85: PetscCall(PetscFinalize());
86: return 0;
87: }